Supplemental Figure Legends

Supplemental Figure 1 - Relative size of Hardy Fractions is unaffected by 3H9 transgene or *Tlr9* genotype. BM isolated from MRL.*Fas^{lpr}* mice of the indicated genotypes was stained for FACS analysis of Hardy fractions, expressed here as a percentage of live bone marrow cells. Populations were defined as follows: (**A**) Fractions A-C': EMA⁻ B220⁺ CD43⁺ (**B**) Fraction D: EMA⁻ B220⁺ CD43⁻ CD93⁺ IgMa⁻ (**C**) Fraction E: EMA⁻ B220⁺ CD43⁻ CD93⁺ IgMa⁺ (**D**) Fraction F: EMA⁻ B220⁺ CD43⁻ CD93⁻ IgMa⁺. Data are from the same animals in Figure S2C-S2D.

Supplemental Figure 2 - 3H9/V λ 1 B cells generate TLR9-dependent EF plasmablasts but do not enter GCs or the long-lived BM AFC compartment. (A-C) Immunofluorescent staining of spleen sections from 19 week old mice with λ 1 (red), PNA (green) and CD19 (blue). Scale bar = 200 µm. (A) 3H9⁺ *Tlr9^{+/+}* MRL.*Fas^{lpr}* and (B) 3H9⁺ *Tlr9^{-/-}* MRL.*Fas^{lpr}*. (C) Magnified view of region indicated by white box in (A) with individual channels and merged image as indicated. Data in (A-C) are representative of 3 mice per genotype. (D) λ 1⁺ ELISPOTs were measured from BM of 17-20 week old MRL.*Fas^{lpr}* mice of the indicated genotypes. Data are pooled from two independent experiments, *n*=3-8 mice per group.

Supplemental Figure 3 - $\lambda x L$ chain usage among B cell populations. Frequency of λx^+ cells among (A) splenic CD19⁺ CD93⁻ CD21/35^{int} CD23⁺ FO B cells, (B) splenic CD19⁺ CD93⁻ CD21/35⁺ CD23⁻ MZ B cells, (C) splenic CD19⁺ CD93⁺ transitional B cells, or (D) LN CD19⁺ B cells. Data are from the same animals in Figure 5. Supplemental Figure 4 - BrdU is incorporated into developing B cells, but mature FO B cells are quiescent. (A-B) 8-10 wk old mice were given 0.5 mg BrdU *i.p.* every 12 hours for 0, 2 or 4 days before sacrifice. BrdU staining among (A) CD19⁺ CD22⁺ CD44^{low} 11⁺ naive B cells or (B) total CD19⁺ CD22⁺ CD44^{low} naive B cells. Data are pooled from three experiments. (C) BrdU staining among B220⁺ bone marrow cells from 6-9 week old mice of the indicated genotypes following a 2 hr pulse of BrdU (0.5 mg/animal *i.p.*) The majority of this incorporation was in the IgM⁻ compartment (not shown). (D) BrdU incorporation among CD22⁺ CD21/35^{int} CD23⁺ λ 1⁺ FO B cells from 6-9 week old MRL.*Fas^{lpr}* of the indicated genotypes following a 2hr BrdU pulse (0.5 mg/animal *i.p.*) was not significantly above background staining. Data are pooled from three experiments. (**E-F**) Representative λ 1 and BrdU staining of FO B cells in (D) from mice of indicated genotypes. The broader distribution of the measurement of "%BrdU⁺" populations in (D) column 3 vs. column 4 is a result of differences in the relative proportion of λ 1⁺ cells in the FO in these two groups, not due to differences in BrdU incorporation, which was negligible.

Supplemental Figure 1

Supplemental Figure 2

lambda-1

Supplemental Figure 3

