## Supplementary Material of "Anisotropic isolation by distance: the main orientations of human genetic differentiation"

- Figure S1: First and second components of the multidimensional scaling analysis for each continent.
- Figure S2: Projections of the first principal components for each continent.
- Figure S3: Correspondence between azimuths/bearings ( $\theta$ ) and cardinal directions.
- Figure S4:  $F_{st}$  as a function of the distance computed along the orientation of maximum and minimum differentiation.
- Figure S5: Prediction of average  $F_{st}$  for pairs of populations separated by 0 km and by 1,000 km along the axis of maximum differentiation.
- Figure S6: Grid used for the isolation by distance *ms* simulations.
- Figure S7: Angular distributions of the angles of maximum differentiation found with the three methods under anisotropic isolation by distance models
- Figure S8: Boxplots of the individual localization errors for each population from the 4 continents
- Figure S9: Mean error of the localization method in N-S and E-W directions
- Figure S10:  $F_{st}$  of Sub-Saharan populations as a function of the distance computed along the orientation of maximum and minimum differentiation.
- Figure S11:  $F_{st}$  of Native American populations, typed with microsatellites, as a function of the distance computed along the orientation of maximum and minimum differentiation.
- Table S1: Orientations of maximum differentiation obtained after different transformations of the dependent and independent variables
- Table S2: Orientations of maximum differentiation after having moved the geographical coordinates by 500 km
- Table S3: Orientations of maximum differentiation obtained with the different methods
- Table S4: Median errors of geographic localization based on the SNP data sets
- Table S5: The different subdivisions of Europe
- Table S6: The different subdivisions of Africa
- Table S7: The different subdivisions of Asia



Figure 1: First and second components of multidimensional scaling analysis (MDS). MDS was applied separately in each continent.



Figure 2: Spatial interpolation of the first component of principal component analysis (PCA). PCA was applied separately in each continent. Spatial interpolation was performed using the *krig* function with a trend surface of degree 2.



Figure 3: Correspondence between azimuths/bearings  $(\theta)$  and compass directions.



Figure 4:  $F_{st}$  as a function of the distance computed along the orientation of maximum and minimum differentiation. Here the orientation of maximum (resp. minimum) differentiation is the orientation that maximizes the correlation between  $F_{st}$  and the orientational distances  $d_{\theta}$  computed along the different orientations.



Figure 5: Prediction of average  $F_{st}$  for pairs of populations separated by 0 km and by 1,000 km along the axis of maximum differentiation. The  $F_{st}$  was regressed with the equation (1) of the main text.



Figure 6: Grid used for the isolation by distance ms simulations and the four sampling scheme that was considered to pick n = 38 populations.



Figure 7: Angular distribution of the angles of maximum differentiation found with the MDS, regression, and geometric methods under anisotropic isolation by distance models. A total of 100 IBD simulations was performed for each scenario and the quadrants show the distribution of the 100 estimated angles of maximum differentiation. Simulations were performed under anisotropic isolation by distance assuming a 20 (N-S)  $\times$  24 (E-W) grid with 4Nm = 1 under the direction of maximum genetic differentiation and 4Nm = 5 in the other direction. The grid used for the isolation by distance simulations is shown in Figure S6.



Figure 8: Boxplots of the individual localization errors for each population from the 4 continents The errors were computed using SNP data.



Mean error in E-W and N-S directions

Figure 9: Mean error of the localization method in N-S (lat.) and E-W (long.) direction. Upper panel shows the errors in km and lower panel shows the error after rescaling to account for the intra-continental sampling.

![](_page_10_Figure_0.jpeg)

Figure 10:  $F_{st}$  of the Sub-Saharan populations as a function of the distance computed along the orientation of maximum and minimum differentiation. Here the orientation of maximum (resp. minimum) differentiation is the orientation that maximizes the correlation between  $F_{st}$  and the orientational distances  $d_{\theta}$  computed along the different orientations.

![](_page_10_Figure_2.jpeg)

Figure 11:  $F_{st}$  of the Native American populations, typed with microsatellites, as a function of the distance computed along the orientation of maximum and minimum differentiation. Here the orientation of maximum (resp. minimum) differentiation is the orientation that maximizes the correlation between  $F_{st}$  and the orientational distances  $d_{\theta}$  computed along the different orientations.

| Continent | Region                                          |          | Reg                      | ression                               | Geometric |                          |                                       |  |
|-----------|-------------------------------------------------|----------|--------------------------|---------------------------------------|-----------|--------------------------|---------------------------------------|--|
|           | 5                                               | $F_{st}$ | $\log F_{st}/(1-F_{st})$ | $\log F_{st}/(1-F_{st})$ and $\log d$ | $F_{st}$  | $\log F_{st}/(1-F_{st})$ | $\log F_{st}/(1-F_{st})$ and $\log d$ |  |
| Africa    | All                                             | 9        | 10                       | 0                                     | 6         | 2                        | 177                                   |  |
|           | Western                                         | 9        | 9                        | 5                                     | 7         | 7                        | 175                                   |  |
|           | Eastern                                         | 46       | 51                       | 58                                    | 54        | 54                       | 38                                    |  |
|           | Sub-Sahara                                      | 25       | 35                       | 10                                    | 3         | 173                      | 176                                   |  |
|           | North Sahara                                    | 79       | 77                       | 75                                    | 21        | 21                       | 21                                    |  |
| Asia      | All                                             | 102      | 111                      | 97                                    | 102       | 95                       | 90                                    |  |
|           | Eastern                                         | 177      | 169                      | 0                                     | 6         | 8                        | 3                                     |  |
|           | Western                                         | 66       | 49                       | 62                                    | 86        | 71                       | 66                                    |  |
|           |                                                 |          |                          |                                       |           |                          |                                       |  |
| America   | All                                             | 92       | 69                       | 15                                    | 67        | 67                       | 1                                     |  |
|           | All (microsat.)                                 | 139      | 133                      | 136                                   | 86        | 85                       | 88                                    |  |
| Europe    | All                                             | 167      | 161                      | 165                                   | 167       | 161                      | 0                                     |  |
| -         | $n_{\text{indiv}} > 2^1$                        | 163      | 161                      | 158                                   | 164       | 161                      | 173                                   |  |
|           | $n_{\rm indiv} > 2$ , no SEandME <sup>2,3</sup> | 15       | 20                       | 34                                    | 12        | 48                       | 68                                    |  |
|           | $n_{\rm indiv} > 2$ , no SE <sup>2</sup>        | 161      | 166                      | 157                                   | 164       | 168                      | 162                                   |  |
|           | $n_{\rm indiv} > 2$ , no ME <sup>3</sup>        | 177      | 167                      | 170                                   | 0         | 179                      | 5                                     |  |
|           | $n_{\rm indiv} > 2$ , no Fennoscandia           | 156      | 153                      | 161                                   | 155       | 152                      | 122                                   |  |
|           | $n_{\rm indiv} > 2$ , SEandME <sup>2,3</sup>    | 129      | 157                      | 156                                   | 137       | 155                      | 167                                   |  |
|           | $n_{\rm indiv} > 2$ , Western                   | 154      | 75                       | 119                                   | 173       | 3                        | 161                                   |  |
|           | $n_{\rm indiv} > 2$ , Southern                  | 148      | 162                      | 160                                   | 155       | 152                      | 158                                   |  |
|           | $n_{\rm indiv} > 2$ , Northern                  | 11       | 176                      | 129                                   | 16        | 15                       | 136                                   |  |
|           | $n_{\rm indiv} > 2$ , Middle                    | 152      | 129                      | 9                                     | 164       | 7                        | 21                                    |  |
|           | $n_{\text{indiv}} > 2$ , Eastern                | 159      | 157                      | 155                                   | 158       | 160                      | 153                                   |  |
|           | $n_{\rm indiv} > 2$ , Central                   | 70       | 11                       | 26                                    | 82        | 80                       | 96                                    |  |

<sup>1</sup>  $n_{\rm indiv} > 2$  correspond to the 31 populations with a sample size larger than 2 <sup>2</sup> SE stands for Southeast <sup>3</sup> ME stands for Middle East (Cyprus and Turkey here)

Table 1: Orientations of maximum differentiation obtained when regressing  $F_{st}$  on d,  $\log F_{st}/(1-F_{st})$  on d, and  $\log F_{st}/(1-F_{st})$  on  $\log d$ .

| Continent | Region                                          | ${\rm Regression}^1$ | $Geometric^1$ |
|-----------|-------------------------------------------------|----------------------|---------------|
|           |                                                 |                      |               |
| Africa    | All                                             | 8 (177-18)           | 5(176-14))    |
|           | Western                                         | 6(175-16)            | 4(172-16)     |
|           | Eastern                                         | 37(1-73)             | 44(15-74)     |
|           | Sub-Sahara                                      | 15(162-49)           | 10(153-46)    |
|           | North Sahara                                    | 77 (11-143)          | 173 (88-77)   |
|           |                                                 |                      |               |
| Asia      | All                                             | 100 (91-110)         | 101 (93-110)  |
|           | Eastern                                         | 4(148-39)            | 10(167-32)    |
|           | Western                                         | 54(166-121)          | 66 (171-142)  |
|           |                                                 |                      |               |
| America   | All                                             | 97 (47-148)          | 72(36-110)    |
|           | All (microsat.)                                 | 135(118-152)         | 90 (77-102)   |
|           |                                                 |                      |               |
| Europe    | All                                             | 163(143-3)           | 162(143-2)    |
|           | $n_{\rm indiv} > 2^2$                           | 159(144-174)         | 159(147-171)  |
|           | $n_{\rm indiv} > 2$ , no SEandME <sup>3,4</sup> | 22(168-57)           | 23 (167-58)   |
|           | $n_{\rm indiv} > 2$ , no SE <sup>3</sup>        | 154(138-171)         | 156(139-173)  |
|           | $n_{\rm indiv} > 2$ , no ME <sup>4</sup>        | 1(160-23)            | 2(162-22)     |
|           | $n_{\rm indiv} > 2$ , no Fennoscandia           | 139(114-164)         | 139(114-164)  |
|           | $n_{\text{indiv}} > 2$ , SEandME <sup>3,4</sup> | 120(64-176)          | 120(66-174)   |
|           | $n_{\text{indiv}} > 2$ , Western                | 176 (130-43          | 178(132-45))  |
|           | $n_{\rm indiv} > 2$ , Southern                  | 135 (105-165)        | 141 (114-168) |
|           | $n_{\rm indiv} > 2$ , Northern                  | 47 (145-128          | 17 (117-97))  |
|           | $n_{\text{indiv}} > 2$ , Middle                 | 178(112-65)          | 176 (100-73)  |
|           | $n_{\text{indiv}} > 2$ , Eastern                | 160 (141-0)          | 160 (141-177) |
|           | $n_{\rm indiv} > 2$ , Central                   | 91 (22-160)          | 91 (20-163)   |

- $^1$  The 95% confidence intervals are given in parenthesis and should be read clockwise
- $^2~n_{\rm indiv}>2$  correspond to the 31 populations with a sample size larger than 2
- $^3$  SE stands for Southeast
- <sup>4</sup> ME stands for Middle East (Cyprus and Turkey here)

Table 2: Median angle of maximal differentiation after having moved the geographical coordinates along a rhumb line of 500 km with angles chosen uniformly between 0° and 360°. A total of 100 orientations of maximum differentiation were calculated and an interval containing 95% of the replicates is provided in parenthesis (should be read clockwise). No transformation of  $F_{st}$  or distances were considered.

•

| Continent | Region                                          | Pop. number | MDS   | 1                   | Regression               | D                                | Geometric          | с<br>Б2 4 |
|-----------|-------------------------------------------------|-------------|-------|---------------------|--------------------------|----------------------------------|--------------------|-----------|
|           |                                                 |             | Angle | Angle               | Mantel test <sup>2</sup> | Partial Mantel test <sup>3</sup> | Angle <sup>1</sup> | $R^{2-4}$ |
| Africa    | All                                             | 29          | 9     | 9*** (160-33)       | $< 10^{-4}$              | $< 10^{-4}$                      | 6 (164-26)         | 0.4       |
|           | Western                                         | 18          | NA    | $9^{***}$ (166-28)  | $< 10^{-4}$              | $< 10^{-4}$                      | 7(162-31)          | 0.74      |
|           | Eastern                                         | 11          | NA    | 46(164-111)         | 0.093                    | 0.371                            | 54(179-112)        | 0.20      |
|           | Sub-Sahara                                      | 21          | NA    | 19(130-86)          | 0.091                    | 0.358                            | 0(103-70)          | 0.09      |
|           | North Sahara                                    | 8           | NA    | 79 (19-127)         | 0.95                     | 0.921                            | 21 (108-74)        | 0.01      |
| Asia      | All                                             | 26          | 109   | 102*** (84-121)     | $< 10^{-4}$              | $< 10^{-4}$                      | 102 (80-124)       | 0.51      |
|           | Eastern                                         | 16          | NA    | 177(131-43)         | $< 10^{-4}$              | 0.060                            | 6(149-41)          | 0.51      |
|           | Western                                         | 10          | NA    | 66(172-145)         | 0.022                    | 0.400                            | 86 (38-152)        | 0.25      |
|           |                                                 | _           |       |                     |                          |                                  |                    |           |
| America   | All                                             | 9           | 67    | 92(22-167)          | 0.133                    | 0.33                             | 67 (10-118)        | 0.13      |
|           | All (microsat.)                                 | 29          | NA    | 139* (106-163)      | 0.93                     | 0.05                             | 86 (54-123)        | 0.02      |
| Europe    | All                                             | 38          | 3     | 167* (140-14)       | $< 10^{-4}$              | 0.012                            | 167 (138-14)       | 0.26      |
|           | $n_{\rm indiv} > 2^5$                           | 30          | NA    | $163^{***}$ (137-9) | $< 10^{-4}$              | $2 \times 10^{-4}$               | 164(137-9)         | 0.53      |
|           | $n_{\rm indiv} > 2$ , no SEandME <sup>6,7</sup> | 21          | NA    | 15 (139-71)         | $< 10^{-4}$              | 0.178                            | 12(146-71)         | 0.34      |
|           | $n_{\rm indiv} > 2$ , no SE <sup>6</sup>        | 23          | NA    | 161*** (127-18)     | $< 10^{-4}$              | $5 \times 10^{-4}$               | 164(125-23)        | 0.56      |
|           | $n_{\rm indiv} > 2$ , no ME <sup>7</sup>        | 28          | NA    | 177** (145-25)      | $< 10^{-4}$              | 0.006                            | 0 (147-28)         | 0.38      |
|           | $n_{\rm indiv} > 2$ , no Fennoscandia           |             | NA    | 156** (130-7)       | $< 10^{-4}$              | $< 10^{-4}$                      | 155(127-2)         | 0.62      |
|           | $n_{\rm indiv} > 2$ , SEandME <sup>6,7</sup>    | 9           | NA    | 129 (69-39)         | $4 \times 10^{-4}$       | 0.798                            | 137 (86-9)         | 0.82      |
|           | $n_{\rm indiv} > 2$ , Western                   | 8           | NA    | 154(100-65)         | 0.002                    | 0.677                            | 173(121-60)        | 0.61      |
|           | $n_{\rm indiv} > 2$ , Southern                  | 13          | NA    | $148^{**}$ (119-5)  | 0.011                    | 0.007                            | 155 (129-2)        | 0.61      |
|           | $n_{\rm indiv} > 2$ , Northern                  | 8           | NA    | 11 (117-81)         | 0.34                     | 0.802                            | 16(105-73)         | 0.14      |
|           | $n_{\rm indiv} > 2$ , Middle                    | 8           | NA    | 152(100-65)         | 0.023                    | 0.675                            | 164(84-64)         | 0.37      |
|           | $n_{\rm indiv} > 2$ , Eastern                   | 14          | NA    | $159^{***}$ (137-3) | $< 10^{-4}$              | $< 10^{-4}$                      | 158 (142-171)      | 0.88      |
|           | $n_{\rm indiv} > 2$ , Central                   | 9           | NA    | 70(165-150)         | $< 10^{-4}$              | 0.937                            | 82 (26-159)        | 0.50      |

 $^1$  The 95% confidence intervals are given in parenthesis and should be read clockwise  $^2$  The Mantel test assesses whether there is an effect of the geographic distances on  $F_{st}$ .

<sup>3</sup> The partial Mantel test assesses whether there is an additional effect of the bearings between two populations when regressing  $F_{st}$ .

<sup>4</sup> The coefficient  $R^2$  is obtained when regressing  $F_{st}$  by the distance computed along the direction of maximum differentiation

The coefficient n is obtained when regressing  $r_{st}$  by the distance compared  $5 n_{\text{indiv}} > 2$  correspond to the 31 populations with a sample size larger than 2 6 SE stands for Southeast 7 ME stands for Middle East (Cyprus and Turkey here)

Table 3: Orientations of maximum differentiation obtained with the different methods. A total of 10,000 permutations was performed to provide the P values.

| Continent | Number of PC       | Error | E-W error | N-S error | Rel. error | Rel. E-W error | Rel. N-S error |
|-----------|--------------------|-------|-----------|-----------|------------|----------------|----------------|
| Africa    | 2                  | 1180  | 910       | 480       | 0.38       | 0.62           | 0.27           |
| Africa    | $K_{\rm opt} = 52$ | 430   | 250       | 260       | 0.15       | 0.14           | 0.12           |
|           |                    | 1     |           | I         | 1          | I              | I              |
| America   | 2                  | 470   | 330       | 240       | 0.19       | 0.23           | 0.12           |
| America   | $K_{\rm opt} = 17$ | 250   | 140       | 180       | 0.10       | 0.09           | 0.10           |
|           | opt                | I     | I         | I         | I          | I              | I              |
| Asia      | 2                  | 1090  | 390       | 520       | 0.39       | 0.16           | 0.54           |
| Asia      | $K_{\rm opt} = 34$ | 510   | 350       | 200       | 0.17       | 0.14           | 0.19           |
|           | opt -              |       |           | 1         |            |                |                |
| Europe    | 2                  | 470   | 380       | 230       | 0.41       | 0.47           | 0.33           |
| Europe    | $K_{\rm opt} = 17$ | 280   | 190       | 140       | 0.24       | 0.23           | 0.19           |

Table 4: Median errors (in kilometers) of geographic localization based on SNP and microsatellite data. The relative errors are computed with respect to a naive localizer which assigns each individual to a population that is chosen at random among the sampled populations.

|               | n   | All pops | BigPops | North | Central | South | West | Mid | East | no SEandCT | no ME | no SE | no Fennoscandia | SEandCT |
|---------------|-----|----------|---------|-------|---------|-------|------|-----|------|------------|-------|-------|-----------------|---------|
| Swiss-German  | 84  | x        | x       |       | x       |       |      | x   |      | x          | x     | x     | x               |         |
| Germany       | 71  | x        | x       |       | x       |       |      | x   |      | x          | x     | x     | x               |         |
| Netherlands   | 17  | x        | x       |       | x       |       |      | x   |      | x          | x     | x     | x               |         |
| Austria       | 14  | x        | x       |       | x       |       |      | x   |      | x          | x     | x     | x               |         |
| Hungary       | 19  | x        | x       |       | x       |       |      |     | x    | x          | x     | x     | x               |         |
| Czech         | 11  | x        | x       |       | x       |       |      |     | x    | x          | x     | x     | x               |         |
| Slovakia      | 1   | x        |         |       |         |       |      |     |      |            |       |       |                 |         |
| Cyprus        | 4   | x        | x       |       |         | x     |      |     | x    |            |       | x     | x               | x       |
| Turkey        | 4   | x        | x       |       |         | x     |      |     | x    |            |       | x     | x               | x       |
| Sweden        | 10  | x        | x       | x     |         |       |      | x   |      | x          | x     | x     |                 |         |
| Norway        | 3   | x        | x       | x     |         |       |      | x   |      | x          | x     | x     |                 |         |
| Denmark       | 1   | x        |         |       |         |       |      |     |      |            |       |       |                 |         |
| Poland        | 22  | x        | x       | x     |         |       |      |     | x    | x          | x     | x     | x               |         |
| Russian       | 6   | x        | x       | x     |         |       |      |     | x    | x          | x     | x     | x               |         |
| Finland       | 41  | x        | x       | x     |         |       |      |     | x    | x          | x     | x     |                 |         |
| Latvia        | 1   | x        |         |       |         |       |      |     |      |            |       |       |                 |         |
| Ukraine       | 1   | x        |         |       |         |       |      |     |      |            |       |       |                 |         |
| LS-Finland    | 41  | x        |         |       |         |       |      |     |      |            |       |       |                 |         |
| United        | 200 | x        | x       | x     |         |       | x    |     |      | x          | x     | x     | x               |         |
| Ireland       | 61  | x        | x       | x     |         |       | x    |     |      | x          | x     | x     | x               |         |
| Scotland      | 5   | x        | x       | x     |         |       | x    |     |      | x          | x     | x     | x               |         |
| Italy         | 219 | x        | x       |       |         | x     |      | x   |      | x          | x     | x     | x               |         |
| Swiss-Italian | 13  | x        | x       |       |         | x     |      | x   |      | x          | x     | x     | x               |         |
| Serbia        | 44  | x        | x       |       |         | x     |      |     | x    |            | x     |       | x               | x       |
| Romania       | 14  | x        | x       |       |         | x     |      |     | x    |            | x     |       | x               | x       |
| Bosnia        | 9   | x        | x       |       |         | x     |      |     | x    |            | x     |       | x               | x       |
| Croatia       | 8   | x        | x       |       |         | x     |      |     | x    |            | x     |       | x               | x       |
| Greece        | 8   | x        | x       |       |         | x     |      |     | x    |            | x     |       | x               | x       |
| Macedonia     | 4   | x        | x       |       |         | x     |      |     | x    |            | x     |       | x               | x       |
| Albania       | 3   | x        | x       |       |         | x     |      |     | x    |            | x     |       | x               | x       |
| Bulgaria      | 2   | x        |         |       |         |       |      |     |      |            |       |       |                 |         |
| Kosovo        | 2   | x        |         |       |         |       |      |     |      |            |       |       |                 |         |
| Slovenia      | 2   | x        |         |       |         |       |      |     |      |            |       |       |                 |         |
| Spain         | 136 | x        | x       |       |         | x     | x    |     |      | x          | x     | x     | x               |         |
| Portugal      | 128 | x        | x       |       |         | x     | x    |     |      | x          | x     | x     | x               |         |
| Swiss-French  | 125 | x        | x       |       | x       |       | x    |     |      | x          | x     | x     | x               |         |
| France        | 91  | x        | x       |       | x       |       | x    |     |      | x          | x     | x     | x               |         |
| Belgium       | 43  | x        | x       |       | x       |       | x    |     |      | x          | x     | x     | x               |         |

Table 5: The different subdivisions of Europe.

|             | all | West | East | North Sahara | SubSaharan |
|-------------|-----|------|------|--------------|------------|
| Morocco N   | x   | х    |      | х            |            |
| Algeria     | x   | х    |      | х            |            |
| Tunisia     | x   | х    |      | х            |            |
| Mozabite    | x   | х    |      | х            |            |
| Libya       | x   | х    |      | х            |            |
| Morocco S   | x   | х    |      | х            |            |
| Egypt       | x   |      | х    | х            |            |
| Sahara OCC  | x   | х    |      | х            |            |
| Bulala      | x   |      | x    |              | х          |
| Hausa       | x   | х    |      |              | x          |
| Mandenka    | x   | х    |      |              | x          |
| Fulani      | x   | х    |      |              | х          |
| Mada        | x   | х    |      |              | х          |
| Kaba        | x   | х    |      |              | х          |
| Yoruba      | x   | x    |      |              | x          |
| Brongx      | x   |      |      | х            |            |
| Igbo        | x   | x    |      |              | х          |
| Bamoun      | x   | x    |      |              | х          |
| Biaka Pygmy | x   |      | x    |              | х          |
| Fang        | x   | x    |      |              | х          |
| Mbuti Pygmy | x   |      | x    |              | х          |
| Luhya       | x   |      | x    |              | х          |
| Maasai      | x   |      | x    |              | х          |
| Hadza       | x   |      | x    |              | х          |
| Sandawe     | x   |      | x    |              | х          |
| Kongo       | x   | x    |      |              | x          |
| San NB      | x   |      | х    |              | x          |
| San SA      | x   |      | x    |              | х          |
| Xhosa       | x   |      | x    |              | х          |

 Table 6: The different subdivisions of Africa.

|           | All | West Asia | East Asia |
|-----------|-----|-----------|-----------|
| Makrani   | x   | х         |           |
| Balochi   | x   | x         |           |
| Brahui    | x   | x         |           |
| Sindhi    | x   | x         |           |
| Hazara    | x   | x         |           |
| Pathan    | x   | x         |           |
| Kalash    | x   | x         |           |
| Burusho   | x   | x         |           |
| Uygur     | x   | x         |           |
| Xibo      | x   | x         |           |
| Naxi      | x   |           | x         |
| Dai       | x   |           | x         |
| Lahu      | x   |           | x         |
| Tu        | x   |           | x         |
| Yizu      | x   |           | x         |
| Cambodian | x   |           | x         |
| Miaozu    | x   |           | x         |
| Tujia     | x   |           | x         |
| Han       | x   |           | x         |
| She       | x   |           | x         |
| Mongola   | x   |           | x         |
| Daur      | x   |           | x         |
| Oroqen    | x   |           | x         |
| Yakut     | x   |           | x         |
| Hezhen    | x   |           | x         |
| Japanese  | х   |           | x         |

 Table 7: The different subdivisions of Asia.