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Supplementary Information on Methods

1.1 DFTB Calculations of Electrons and Phonons

In this work, electronic Hamiltonians and overlap matrices as well as the intéiafiorce constants are obtained using
the density functional tight binding (DFTB) method as implemented in the DFTRB#ase packagé The advantage
of the DFTB approach, when compared to genuine density functional dgti®its accuracy and efficiency in the
calculation of systems with large unit cells. As shown in Figure 1a, the caldytatenon dispersions of 2D graphene
by using finite displacement schefand the experimental results (see Ref. 3) shows the accuracy of DFTB in
describing the vibrational properties of sp2 carbon structures. Thie@iéc bands are also well decribed with DFTB
(see Figur€ll).

In Figure[2, we show the electronic bands, DOS (a, ¢) and ballistic eletrtnesmission spectra (b, d) for s-GNR
(a, b) and c-GNR (c, d). Likewise, phonon dispersions and transmispiectra of s-GNR and c-GNR are plotted in
Figure[3. In Figuré13a arld 3c phonon dispersions and ballistic transnssaiershown except dispersionless high
frequency C-H modes lying above 300@ . Figures Bb and]3d are close-ups to lower energy modes that dominate
vibrational heat transport. The fundamental effect of chevron gagrigethe formation of mini-bands in electron
and phonon dispersions, which results in a subsequent increase idbva singularities in the densities of states and
narrowing of ballistic transmission plateaus. As a result the electronic steuafe-GNR becomes more compatible
with Mahan-Sofo criteria and phonon transmission is substantially redusedodthe fragmented dispersions and
geometry induced energy gaps.
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Figure 1: Phonon dispersions (left) and electronic bands (right) gfhgir@e as calculated by using the DFTB ap-
proach. Diamonds in (a) represent the experimental data.
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Figure 2: Electronic bands, densities of states and ballistic transmissidanespes-GNR (a,b) and c-GNR (c,d).

1.2 Nonequilibrium Green’s Functions (NEGF)

The partitioning scheme is employed in transport calculations, where thersigstivided into three regions as the
central disordered regiod) and the left and right pristine reservoirs &nd R) of the same material. Having obtained
the HamiltonianH and the overlap matri from DFTB simulations, the retarded GF is defined as

a(E) = [eS—H]™, (1)

el

wheres = F + i6 andd being an infinitesimal real positive number. Using the identity

eSpp — Hrpp eSpe — Hio 0 1. Gre Glg
ESCL — HCL ESCC — HCC SSCR — HCR GTCL GTCC GE’R — 1, (2)
0 ESRC — HRC ESRR — HRR G%L G%C G%{R

the retarded GF of the central region is expressed as
Gacc(B) = (eScc — Hee — B, — )™ 3)
with
Yar/r(E) = (eScrjor — HCL/CR)GZi?LL/RR(ESLC/RC — Hrc/re) (4)

being the self energies due to coupling to the reservoir states. HQ?EL rr = (ESLL/RR — HLL/RR)—l are the
surface GF of the semi-infinite free reservoirs and they are calculaiteglthe iterative scheme as explained in Ref.4.
Having obtained the broadening functiong,r = i(Zz/R — E“L/R), the lesser and greater self energies are defined
as

Sir = Jep(E —pur/r, 7)1k, (5)
ST/R (1= fro(E — pr/r, D)) Rs (6)
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Figure 3: Phonon dispersions and ballistic phonon transmission spedr&NR (a,b) and c-GNR (c,d), whose
geometries are sketched on top. (b) and (d) are close-ups to lowgresidrat have the major contribution in thermal
transport.

by using Fermi-Dirac distribution functiofi-p and chemical potentiafs; ,z. Correspondingly, the lesser and greater
GFs are

Gi = GalE[+ZR)Ga, (7)
Gg = Gy +XR)Gq (8)

and the advanced GF¢, is obtained by setting = £ — ¢ in Equation$ B anfl4. Electrical current is written as
2e

1= 5 dE [~ G< — <G~ 9
and the transmission spectrum in the coherent limit is obtained by settirg 1 anduz = 0 with
Ta = Tr[X<G~ — ¥~ G<]. (10)

The scatterings in the central region are taken into account through impksioanof the recursion algorithm as
explained in Section 1.4

1.3 Atomistic Green’s Functions

Phonon transport properties are calculated using the AGF method, whacheficient tool for addressing phonon
scatterings at boundaries, interfaces and disordered systemdsadigpeceduced dimensions. The system is parti-
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tioned as the central region and the reservoirs as is done for electritimshe central part being isotopically disor-
dered, and left and right reservoirs are semi-infinite pristine GNRs. utailcg the elements of the force constant
matrix K in the harmonic approximation, AGF is defined in terms of the dynamical mBtex M~ /2K M~1/2 as

Gpn(w) = [(W? +140)1 — D], (11)

whereM is the diagonal matrix of corresponding atomic masseslaisdhe identity matrix.
Similar to the case of electronic GFs, the GF of the central region is

Gph,CC(W) = [(w2 + i5)]l -D-%; — ER] (12)

with 31 /r = DcrycrGpn,r/rRrRD Lo/ re DEING the self energies due to reservoirs. Calculating the broadening of
vibrational modes as

Lpp=—2Im¥; R (13)
the transmission spectrum is obtained from
Toh = T[T LGpn0cTRGY, o) (14)
In both electronic and phononic calculations, the bottleneck is the computdi®ia of the central region, which are
carried out using the recursion scheme.

1.4 Recursion Scheme

Electron and phonon GFs of GNRs as long agnb, consisting of more than 300,000 atoms, are not possible to
compute with direct inversion of the matrices of the central region. Theasmeeruscheme explained below is an
efficient and numerically exact way of handling such large matrices., Mereummarize the decimation of electronic
GFs using nonorthogonal basis sets. Its implementation to phonons is steigiitf. The Hamiltonian and the
overlap matrix of the central region can be written in block tridiagonal fasm a

Hyy Hi 0 ... 0 0
Hgl H22 H23 oo 0 0
0 Hsz Hss ... 0 0
H = . . . : : (15)
0 0 0 ... Hvaan-1 Hyoan
0 0 0 ... Hyn- Hy N
511 512 0 oo 0 0
521 522 523 PN 0 0
0 532 533 oo 0 0
S = . : : (16)
0 0 0 e SN—l,N—l SN—l,N
0 0 0 SN,N—l SN,N
Similarly the retarded GF is written as
G11 ... Gin
G = : : ) a7)
GNl e GN’N



Starting from the second cell, the effective Hamiltonians and the corrdpp@(™) of the (n + 1)st recursion step
are

G = (eSpyamsz— Hq(z?2,n+2)_1a (18)
H{™Y = HY 4 (eSuiinre — H{) )G (eSniopmn — HYY, ), (19)
HY = (eSuitare = Hip )G (eSuirnre = Hyly o), (20)
Hﬁ’féll) = (eSn+2nt1 — Hv(z(EQ,nH)G(n) (eSn+2,n41 — H7(LT-L&-)2,1)7 (21)
Hr(LT5172+2 = Hﬁ%,m + (ESn+2,n+1 — H7(L(—)£2,n+1)G(n) (eSn+1n+2 — Hﬁmﬂ)a (22)
withn =0,..., N — 3. Repeating the decimatiai — 2 times, one arrives at the equivalent GF for the central region

which consists of only71, G1n, Gn1, andGy . For phonons, one sets= (w? 4 i), S = 1 andH — D.

1.5 Thermoelectric Coefficients

Thermoelectric coefficients are defined in the linear response regimethbsiigegral functions

with n being integers. Electric conductance in the linear response regime can be expressgd 43 = e? L, while
the Seebeck coefficient and the electronic contribution to heat condecian

1 Iy
T = —— 24
1 L3
walnT) = 7 (L= 1) (25)
and the thermoelectric figure of merit is
2
ZT = ﬂ (26)
Kel + Kph
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2.1 Phonon Mean-Free-Paths

In Figures 4 and]5 phonon mean free paths with different isotopes and densities are compared for s-GNR and
c-GNR, respectively. We considér= 10% and 50% of'*C isotopes with atomic and precursor distributions. The
details of,, (w) are mainly due to the phonon DOS of the structures. Highly oscillating behaivigy, for c-GNRs

in the entire spectrum and vanishifig, values at certain energies are rooted in the increased number of sitigsilar

in DOS and the energy gaps. For both types of GNRs, precursor dtgiribyield longer,,;, at higher frequencies
for a given isotope density and vice versa at lower frequencies (sei@ghts of Figuré€]5). Since it is mainly the
low frequency modes which contribute thermal conduction, high frequeinenons having longéf,;, with precursor
distribution do not affect the resulting,,, but reduced,,, of low frequency phonons does. Comparison of low
frequency/,,;, of s-GNR and c-GNR at a givedi shows that c-GNR has shortgg, by approximately one order of
magnitude in the average.
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Figure 4. Phonon mean-free-paths for isotopically disordered s-GiRdifferent distributions and densities. The
solid curves stand for atomic distributions, where the dotted lines are founs@ distributions.

2.2 Thermoelectric Coefficients

Investigation of the ballistic regime is a prerequisite for a detailed study of thetgfof nano-structuring on ther-
moelectric transport. In this section we present thermoelectric properte&ofR within the ballistic assumption
for both electrons and phonons; also considering the case whenrmgharescattered by isotopic clusters while the
electrons stay ballistic. Finally the details of TE coefficients are presented wtatterings are included for both
electrons and phonons.

Ballistic Electrons and Phonons— The effect of geometry on TE transport in c-GNR is evident in the ballistic limit
for both electrons and phonons. The power fadtas as high as LW/K? andsp1 /A is lower by more than a factor
of 3 compared to s-GNR, yielding significantly higtT” values (Figurél6) (see also Ref. 6). Phonons being dominant
in k at 4 where ZT is maximized, points to the possibility of significantly high8f" upon phonon engineering,
i.e. inclusion of heavy precursors.

Ballistic Electrons and Non-ballistic Phonons— The merit of isotope engineering is best visible when ballistic
electron assumption is kept and phonons are scattered from heauygmesowithd = 50%. SinceG, S andP remain
the same with those in Figuié 6, ontyand ZT" are shown in Figurgl7. Vast reduction ofat the charge neutrality
point is purely due to the suppression of phonons. It is clear that, théramabort is dominated by electrons for the
whole range of: whereP is appreciably high (see also Figlile 6c). As a restilt,values higher than 3 are calculated
for all T = 300 K, 500 K and 800 K for devices of lengtlis =430 nm, 140 nm and 75 nm. We note that, thése
correspond to the optimum system lengths when electron scatterings amemh¢ti. Figuré B). If allL are set to
5 um and ballistic electron limit is considered, th€" values can be as high as 4.9, 7.2 and 117fet 300 K, 500 K
and 800 K, respectively.

Anderson Disorder — In Figure8, electrical conductan¢e Seebeck coefficierfi, power factorP, thermal con-
ductance per cross sectiefiA and ZT are plotted af” =300, 500 and 800 K for optimal c-GNR lengths that yield
the highestZzT". Optimal L are due to the trade off between increasing thermal resistance andsiegreower factor
with L. ZT is enhanced by a factor of 4 compared to the ballistic limit without isotope engigesnd Anderson
disorder, while it is reduced by 32% when compared to the ballistic electron limit.
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Figure 5: Phonon mean-free-paths of c-GNR for atomic (blue) anduec (red) distributions of isotopes with
densities! = 10% (a) andd = 50% (b). The insets show the lower energy mean-free-paths.
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Figure 6: Electrical conductance (a), Seebeck coefficient (b)epéaetor (c), thermal conductance per cross section
area (d), and TE figure of merit (e) for pristine c-GNR at different terapures;” = 300 K (blue), 500 K (green),
and 800 K (red).
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Figure 7: (a) Thermal conductance/A, and (b) figure of meritZ T, for c-GNR with heavy precursor distribution
(d = 50%) are plotted with assuming ballistic electron transmission at three different tatapes, 7" =300 K (blue),
500 K (green) and 800 K (red) with corresponding system lengtlis €D.43 um, L =0.14m, andL =0.07 um,
respectively. See also Figuigs 6 and 8.
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Figure 8: Electrical conductance (a), Seebeck coefficient (b)epéactor (c), thermal conductance per cross section
area (d), and TE figure of merit (e) for c-GNR with heavy precurgdrs= 50%) and Anderson disorder, =
V12kgT atT = 300 K (blue), 500 K (green) and 800 K (red) are plotted for optimum systemthesy, =0.43m,

L =0.14pm, andL =0.07 zm.
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