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The Pseudomonas phaseolicola bacteriophage 06 incorporated labeled UTP
into an acid-insoluble precipitate. Incorporation was dependent on the presence
of manganese acetate, ATP, GTP, CTP, and a short heat treatment of the phage;
the reaction was stimulated by NH,Cl. The substitution of 14C-ATP, -CTP or
-GTP for UTP, together with the appropriate unlabeled ribonucleoside triphos-
phates, disclosed that CMP was incorporated to the greatest extent followed by
GMP, UMP, and AMP. Radioactive RNAs formed by the reaction were resistant
to RNases A and T, in high salt but susceptible to these nucleases in low salt.
The labeled RNA co-sedimented and co-electrophoresed with X6 double-stranded
(ds) RNA. However, the distribution of the radioactivity into the three ds-RNA
components varied depending on the "4C-ribonucleoside triphosphate used in the
reaction. The incorporation of UMP was primarily into the two smaller ds-RNA
segments, GMP primarily into the large ds-RNA segment, and CMP and AMP
were about equally distributed into all three ds-RNA segments.

Double-stranded RNA (dsRNA) containing
viruses such as wound tumor, reovirus, cyto-
plasmic polyhedrosis, and a virus-like particle
from Penicillium stoloniferum have been re-
ported to contain RNA polymerase activity (2,
4, 6, 11-14, 21-23, 26). Recently it was reported
that a large-particle fraction obtained from
reovirus-infected L cells contained two RNA
polymerases; one enzyme was designated tran-
scriptase and synthesized a single-stranded
RNA (ssRNA), while the second enzyme was
designated replicase and mediated the synthe-
sis of a dsRNA (16-18, 28).

Previously, we reported the isolation of a
lipid-containing bacteriophage, k6, whose host
is Pseudomonas phaseolicola (24). The phage
genome consists of three components of dsRNA
(Semancik, Vidaver, and Van Etten, Abstr.
Annu. Meet., Amer. Soc. Microbiol. p. 220,
1972; Semancik, Vidaver, and Van Etten, J.
Mol. Biol., in press). The present report de-
scribes the characteristics of an RNA polymer-
ase associated with phage 06. The radioactive
product formed with the enzyme co-sedimented
and co-electrophoresed with native X6 dsRNA.
Portions of these results have been published in
abstract (Van Etten, Vidaver, Koski, and Se-
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mancik, Abstr. Annu. Meet., Amer. Soc. Micro-
biol. p. 235, 1973).

MATERIALS AND METHODS

Materials. Tritiated UTP and the '4C-ribonucleo-
side triphosphates were obtained from New England
Nuclear Corp.; unlabeled ribonucleoside triphos-
phates and RNase A were obtained from Sigma
Chemical Co. Rifampin, a-amanitin, and actinomycin
D were purchased from Calbiochem, Henley and Co.,
and Merck and Co., respectively. Tobacco rattle virus
(TRV) RNA (20) and brome mosaic virus (BMV) RNA
(7) were prepared in our laboratory.

Phage 06 was isolated from lysates 160 min after
infection at a phage-to-bacterium ratio of 5:1. The
phage was purified after DNase treatment and con-
centration with polyethylene glycol by equilibrium
centrifugation in CsCl as described previously (24).
The phage 06 band from the CsCl gradient was diluted
fourfold with 0.01 M potassium phosphate (pH 7.1),
pelleted by centrifugation, resuspended in the phos-
phate buffer, and stored in portions at -70 C. Anti-
serum to phage 06 was prepared as described pre-
viously (25).
RNA polymerase assay. The standard reaction

mixture consisted of 70 mM N,N-bis (2-hydroxy-
ethyl) glycine (Bicine), pH 8.5; 13 mM manganese
acetate; 83 mM NH4Cl; 0.67 mM each of ATP, CTP,
and GTP; 2 ACi of 'H-UTP (22.2 Ci/mmol); and 0.3
A,6,, units of the phage preparation in a total volume
of 0.3 ml. This amount of phage contained 47 mg of
protein. The reaction mixtures were incubated at
37 C. At various time intervals, 0.05-ml samples were
removed, applied to filter paper disks, and quickly
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dried, and trichloroacetic acid-insoluble radioactivity
was determined as described by Bollum (5). In some
experiments, 0.1 MCi of 14C-ATP, 14C-UTP, 14C-GTP,
or 14C-CTP, together with the appropriate unlabeled
ribonucleoside triphosphates, were substituted for the
3H-UTP. The results are expressed as pico-moles of
ribonucleoside monophosphate incorporated per mil-
ligram of virus protein per 10 min of incubation time.
The values given were corrected for a zero time
reaction.

Association of the enzyme activity with phage.
The purified phage was recentrifuged to equilibrium
(105,000 x g for 16 h) in CsCl gradients (30% [wt/vol])
with a fixed angle rotor (Spinco Ti50, Beckman
Instruments Co.) or centrifuged at 70,000 x g for 75
min in 10 to 35% (wt/vol) linear sucrose gradient
columns in a Spinco SW27 rotor. Fractions were
collected and assayed for infectivity (24), for enzyme
activity, and for A,.,. Prior to the assay for enzyme
activity, the samples were dialyzed overnight against
0.01 M potassium phosphate, pH 7.1.
Analyses of the polymerase product. Radioactive

RNA, synthesized in the standard reaction, was
isolated by the single phase phenol procedure of
Diener and Schneider (10). The RNA was analyzed on
linear log sucrose density gradient columns (8) with
the sucrose dissolved in 0.3 M NaCl and 0.03 M so-
dium citrate, pH 7.0 (2 x SSC), or by polyacrylamide
gel electrophoresis. In some instances the radioactive
RNA was incubated with RNase A (10 ,g/ml) at 37 C
for 30 min in 0.01 x or 2 x SSC prior to analysis. After
centrifugation of the sucrose density gradients on a
Spinco SW41 rotor for 9 h at 190,000 x g at 14 C, the
gradient columns were scanned photometrically with
an ISCO model 222 Density Gradient Fractionator
(Instrumentation Specialties Co.), and 0.33-ml frac-
tions were collected, diluted with 2 ml of water, and
counted in 15 ml of counting solution. The counting
solution was composed of 536 ml of toluene; 464 ml of
Triton X-100, 4.44 g of 2,5-diphenyloxazole, and 81
mg of 1, 4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene.

Gel electrophoresis was performed in 2.4% polya-
crylamide with 0.5% agarose in 0.04 M Tris; 0.033 M
sodium acetate; 0.001 M sodium EDTA, and 0.2%
sodium lauryl sulfate, (pH 7.2) (3). After subjecting
the 6-mm diameter gels to pre-electrophoresis for 3 h
at 5 mA per gel, 0.05-ml samples in 10% sucrose were
applied and subjected to electrophoresis at room tem-
perature for 10 h at 5 mA per gel. The gels were
scanned at A,.. with a Gilford model 2410 linear trans-
port system (Gilford Instruments), which was coupled
to a Beckman DU spectrophotometer. After scanning,
the gels were frozen with solid CO, and sliced into
1-mm sections. The radioactive material was eluted
from the gel slices (27), and the samples were counted
in 10 ml of counting solution. The counting solution
was composed of 1 liter of toluene, 4 g of 2, 5-diphenyl-
oxazole, and 50 mg of 1, 4-bis-2-(4 methyl-5-phenylox-
azolyl)-benzene.

Other determinations. Possible interconversion of
ribonucleoside triphosphates by phage 06 was tested
by hydrolyzing the 14C-RNA synthesized from each of
the "C-ribonucleoside triphosphates in 1 M KOH for
18 h at 37 C. The hydrolysates were subjected to

high-voltage electrophoresis on Whatman 3 MM
paper for 10 h at 1000 V in 0.2 M sodium acetate
buffer (pH 3.8) (9). The paper was dried, and the
ribonucleoside monophosphates were observed with a
UV lamp. The paper was then cut into small sections,
and the radioactivity was determined.
The presence of RNase activity in the phage was

determined by incubating the phage with fungal
'4C-ribosomal RNA at 37 C, and the acid-precipitable
radioactivity was measured over a period of 60 min
(5). The amount of protein present in the phage
preparations was determined by the method of Lowry
et al. (15) with bovine albumin as a standard.

RESULTS
Properties of phage '6 RNA polymerase.

Preliminary experiments indicated that the
RNA polymerase activity associated with the
phage 06 preparations was low and inconsist-
ent. Because the lipid envelope of the virion
might reduce substrate permeability, the phage
was subjected to short treatments with organic
solvents and detergents (chloroform, ethyl
ether, freon, Triton X-100, sodium lauryl sul-
fate, sodium deoxycholate, and Igepon T-73) in
order to disrupt the lipid envelope and possibly
stimulate enzyme activity. However, none of
these treatments consistently enhanced enzyme
activity although in some individual experi-
ments the treatments were stimulatory. Since
RNA polymerase activity was markedly stimu-
lated in reovirus by short heat treatments (6),
similar treatments were applied to phage 46. A
short heat treatment followed by quick chilling
in an ice bath, markedly enhanced activity
(Table 1). The highest enzyme activity was
obtained with a treatment at 60 C for 10 s.
However, the optimum temperature and length
of the heat treatment varied slightly with differ-
ent phage 06 preparations; thus the optimum
heat treatment was always established for each

TABLE 1. Effect of short heat treatments on RNA
polymerase activity in phage )6

Temperature Length of treat- 3H-UMP incorpo-
ment (s) rated"

22 - 6.2
50 10 15.5
50 20 59.4
50 30 83.9
60 5 29.3
60 10 176.4
60 20 60.8
70 5 144.8
70 10 30.6
80 5 4.4
80 10 4.0

aPicomoles incorporated per
protein per 10 min.

milligram of phage
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preparation. All subsequent experiments were
conducted with heat-treated phage.
The general characteristics of the phage i6

RNA polymerase reaction are reported in Table
2. The reaction was dependent on the presence
of ribonucleoside triphosphates, manganese
acetate, and was stimulated by NH4Cl. The
reaction was insensitive to chloramphenicol and
the antibiotics rifampicin, actinomycin D, and
a-amanitin, which inhibit DNA-directed RNA
synthesis. The addition of 2-mercaptoethanol or
dithiothreitol had no effect on enzyme activity.
A number of buffers at several pH values were
tested; the highest activity was obtained with
Bicine (pH 8.5). The effect of manganese and
magnesium ion concentrations on the reaction
are shown in Fig. 1A. In all experiments, man-
ganese acetate was more effective than magne-
sium acetate. A concentration of 75 to 100 mM
NH4Cl stimulated enzyme activity about two-
fold (Fig. 1B); NH4Cl could not be replaced
with NaCl or KCI.
The reaction was dependent on phage 06

concentration (Fig. 2). The time course of the
reaction is demonstrated in Fig. 3A; the incor-
poration of 3H-UMP was linear for about 10 min
after which incorporation reached a plateau.
The limiting factor was the concentration of
phage since the addition of more phage at 20
min resulted in additional 3H-UMP incorpo-
ration (Fig. 3B). The addition of phage k6
dsRNA or BMV RNA (ssRNA) had no effect on
3H-UMP incorporation. The addition of RNase
to the standard assay mixture at the start of the
reaction resulted in about a 75% decrease in the
3H-UMP incorporated; however, the addition of

TABLE 2. Characteristics of 3H-UMP incorporation
by phage q6

3H-UMP %ofthe
Additions or omissions incorpo- control

rateda cotl

Complete system 592 100
-ATP 65 11
-GTP 30 5
- CTP 347 59
-ATP,GTP,CTP 30 5
-Phage 06 0 0
-Heat treatment of phage 06 21 3.5
-Manganese acetate 13 2.2
- NH4C1 249 42
+a-amanitin (10g) 623 105
+Actinomycin D (10 ,g) 548 93
+Rifamycin SV (10 Mg) 564 95
+Rifampicin (10 Mg) 564 95
+Chloramphenicol (10 ug) 524 88

aPicomoles incorporated per milligram of phage
protein per 10 min.

CATION CONCENTRATION (m mola) CONCENTRATION NH4CI (mrnolar)

FIG. 1. The effect of manganese acetate and mag-
nesium acetate (A) and NH4CI concentrations (B) on
3H-UMP incorporation by phage 06.
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FIG. 2. Effect of increasing concentrations ofphage
,06 on 3H-UMP incorporation.

RNase at the conclusion of the assay had no
effect on the amount of radioactivity previously
incorporated (Table 3). Separate experiments
established that phage 06 contained negligible
RNase activity. The incorporation of 3H-UMP
was severely inhibited by pyrophosphate,
whereas orthophosphate had no effect on the
reaction (Table 3). Incorporation of 3H-UMP
into RNA did not occur if the ribonucleoside
triphosphates were replaced with ribonucleo-
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FIG. 3. Time course of incorporation of 3H-UMP
into RNA. A, Standard reaction; B, an additional 0.3
A260 of heat treated-phage 06 was added at 20 min (t) .

TABLE 3. Effect of RNase and phosphate on
3H-UMP incorporation by phage 46

'H-UMPConditions incorporateda

Control 793
5 ,ug per assay of RN ase added at 186

0 time'
5 Ag per assay of RNase added at 804

20 min' C

+5 mM orthophosphage 844
+ 25 mM orthophosphage 660
+5 mM pyrophosphate 243
+ 10mM pyrophosphate 19
+25 mM pyrophosphate 10

a Picomoles incorporated per milligram of phage
protein per 10 min.

b RNase added directly to the reaction mixture.
c The reaction was measured an additional 30 min

after the addition of RNase.

side diphosphates. The phage retained some
enzyme activity, even after repeated heat treat-
ments and freezings (Table 4).
Association of the enzyme activity with the

phage particle. Confirmation of the association
of the RNA polymerase with phage 06 presents
a special problem since it has a lipid envelope
which is essential for infection (24); it is possible
that the RNA polymerase activity is a host
enzyme which is associated with this envelope.
To test this possibility, unheated phage was
recentrifuged to equilibrium in CsCl, the gradi-
ent was fractionated, and the samples were
assayed for infectivity, enzyme activity after
heat treatment, and A260. The region of max-
imum A2,0, infectivity, and enzyme activity in
the gradient were identical (Fig. 4A). However,
enzyme activity was also detected in less dense

regions of the gradient. This enzyme activity
may be due to the partial disruption of the
phage envelope by the CsCl and subsequent
release of the enzyme, because we have noted
previously that CsCl causes a decrease in infec-
tivity of the phage (24). The CsCl-purified
phage was also centrifuged in a linear 10 to 35%
(wt/vol) sucrose density gradient; the region of
maximum A2,0, infectivity, and enzyme activity
were identical (Fig. 4b). Experiments to deter-
mine if the radioactivity incorporated in the
assay mixture was associated with the phage
particle could not be conducted since the short
heat treatment used to stimulate enzyme activ-
ity caused the virion to dissociate into many
fragments which sedimented slowly in a sucrose
density gradient (Fig. 5A and B).
The effect of several concentrations of phage

06 antiserum on RNA polymerase activity is
reported in Table 5. If antiserum was added
prior to heat treatment of the phage, it severely
inhibited enzyme activity. If phage were sub-
jected to the heat treatment before addition of
antiserum, there was no inhibition of enzyme
activity. These results can be explained if the
antiserum only reacted with the surface anti-
gens of the phage and if it prevented the
dissociation of the phage during the heat treat-
ment. In a separate experiment, the phage was
incubated with antiserum, subjected to the heat
treatment, incubated under assay conditions,
and analyzed on sucrose density gradients.
After this series of treatments, the virion did not
dissociate (Fig. 5C), whereas it did dissociate
after the heat treatment without antiserum
(Fig. 5B). In contrast, if the enzyme was present
inside the virion, the heat treatment would
dissociate the phage and allow the enzyme to
function in the presence of the antiserum.
Phage 066 purified by two consecutive centrif-

ugations on sucrose density gradients (24) also

TABLE 4. Effect of repeated heat and freezing
treatments on phage 06 RNA polymerase activity

Treatmenta 'H-UMP
incorporated"

None 7.4
Heat, fast cool 518
Heat, slow cool 458
Heat, freeze 325
Heat, freeze, heat, fast cool 518
Heat, freeze (4 times); last step 333
was a heat treatment

a Heat treatments were at 60 C for 10 s; fast cooling
consisted of puting the tube in ice; freezing was done
in liquid N,.

0Picomoles incorporated per milligram of phage
protein per 10 min.
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FIG. 4. A, Equilibrium centrifugation of phage 06 on a CsCI gradient; B, rate sedimation of phage 06 in a 10
to 35% linear sucrose gradient. After fractionation, the gradients were assayed for infectivity (0), A,260 (0), and
the incorporation of 3H-UMP into RNA (A) as described in Materials and Methods.

contained replicase activity. Therefore, these
observations would suggest that the enzyme is
enclosed inside the phage.
Analysis of the RNA polymerase product.

To determine if 3H-UMP was incorporated into
ss- or dsRNA, the radioactive RNA was isolated
and incubated with 10 ,g of RNase/ml in 2 x
SSC for 30 min at 37 C. The radioactive RNA as
well as 06 dsRNA was unaffected, whereas,
TRV ssRNA was degraded by this treatment
(Fig. 6). If the 3H-RNA was incubated with
RNase in 0.1 x SSC, both the A260 and the
radioactivity were degraded. Therefore, it was
concluded that 3H-UMP was incorporated into
a dsRNA.
As reported previously the phage 06 genome

consists of three distinct dsRNA components
with molecular weights of 2.2 x 106, 2.8 x 106,
and 4.5 x 106 (Semancik, Vidaver, and Van
Etten, Abstr. Annu. Meet. Amer. Soc. Microbi-
ol., p. 220, 1972; Semancik, Vidaver, and Van
Etten, J. Mol. Biol. in press). The data in Fig. 6
suggest that most of the 3H-UMP incorporated
by the enzyme was associated with the two
smaller RNA segments. This observation was
verified by co-electrophoresis of the 3H-RNA
together with unlabeled 06 dsRNA on polya-
crylamide gels (Fig. 7).
To determine if incorporation from each of

the four ribonucleoside triphosphates was pre-
dominantly into the two smaller RNA compo-
nents or if this were a property peculiar to UTP,
radioactive RNAs were synthesized under the
normal conditions except that "4C-ATP, '4C-
GTP, "4C-CTP, or 14C-UTP was substituted for

3H-UTP. Each of the four ribonucleoside tri-
phosphates was incorporated into RNA by the
phage enzyme (Table 6). However, the degree of
incorporation varied depending upon the ribo-
nucleoside triphosphate; CMP incorporation
was highest followed by GMP, UMP, and AMP.
The incorporation of CMP was 5- to 10-fold
higher than AMP incorporation. Maximum in-
corporation of each ribonucleoside monophos-
phate was dependent on the simultaneous pres-
ence of the other three ribonucleoside triphos-
phates. In certain instances, however, one of the
three ribonucleoside triphosphates could be
omitted without completely inhibiting the reac-
tion. For example, the absence of CTP from the
reaction mixture reduced AMP incorporation
into RNA by only 25% or UMP incorporation by
63%; the absence of ATP reduced GMP incorpo-
ration by 37% (Table 6). At present we have no
explanation for this observation although a
similar phenomenon was reported in RNA po-
lymerase (replicase) studies with the large-par-
ticle fraction of reovirus-infected L cells (26).

Electrophoresis of the 14C-RNAs synthesized
from each of the 14C-ribonucleoside triphos-
phates on polyacrylamide gels produced a sur-
prising result. The incorporation of CMP (Fig.
8D) and AMP (Fig. 8B) were distributed among
the three RNA segments at about the same ratio
as the A260 of the three segments. In contrast,
incorporation of GMP (Fig. 8C) was predomi-
nantly into the largest RNA component, and, as
mentioned previously, the incorporation of
UMP (Fig. 8A) was predominantly into the two
smaller RNA components. When each of the

10-
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FIG. 5. Centrifugation of 150 Asg of phage 06 on 10
to 35% (wt/vol) linear sucrose gradients for 75 min at
70,000 x g at 4 C in an SW27 rotor. The phage was

heated in the presence and absence of phage 46 anti-
serum for 30 s at 50 C and quickly cooled prior to
layering on the gradients. A, Untreated 06; B, heated
406; C, 46 added to 06 antiserum (diluted 1:50) prior
to the heat treatment. If the b6 antiserum was added
to 46 after the heat treatment, the profile was identi-
cal to B.

"4C-RNAs were treated with RNase in 0.1 x
SSC or 2 x SSC and then analyzed on sucrose

density gradients, the results indicated that all
four radioactive RNAs were resistant to RNase
in high salt but susceptible in low salt. Intercon-
version of the ribonucleoside triphosphates by
the phage did not occur since paper electropho-
resis of alkaline hydrolysates of each of the
14C-RNAs resulted in more than 95% of the
radioactive counts appearing in the appropriate
"4C-ribonucleoside monophosphate precursor
regions.

DISCUSSION
This report presents evidence that an enzyme

is associated with bacteriophage q6 which med-

iates the incorporation of ribonucleoside tri-
phosphates into dsRNA. In many respects the
enzyme resembles the RNA replicase associated
with the large-particle fraction obtained from
reovirus-infected L cells (16-18, 28). These
similarities include: (i) the kinetics of the reac-
tion, (ii) the stimulation of the reaction by
manganese ion much more than by magnesium
ion, (iii) the incorporation of ribonucleoside
monophosphate into dsRNA, and (iv) the lack
of stimulation of the reaction by the addition of
free ss- or dsRNA. As a result of these similari-
ties, we have tentatively assigned the name
RNA replicase to the enzyme.

Analogies drawn from evidence available on
the replication of reovirus dsRNA (1, 16, 17, 19)
would suggest that the enzyme is completing
one complementary strand of the dsRNA. The
existence of a small single-stranded region (tail)
in 06 dsRNA is supported by two experiments.
First, if RNase was added to the assay mixture
prior to the start of the reaction, the amount of
ribonucleoside monophosphate otherwise incor-
porated was severely reduced (Table 3). Second,
incubation of 32P-dsRNA (prepared from ly-
sates grown in the presence of H332PO4) with
RNase A and RNase T,, prior to layering on
linear log sucrose density gradients, resulted in
the release of approximately 2 to 3% of the 32p
counts; thus a total 06 RNA extract contains an
RNase-susceptible region in 2 x SSC of 2 to 3%,
possibly as single-stranded tails (manuscript in
preparation). However, it is not known if the
value of 2 to 3% is valid for all k6 dsRNA
molecules or if some molecules are completely
double stranded and others have a correspond-
ingly larger single-stranded tail. It is curious
that the pattern of radioactivity incorporated
into the three dsRNA components is dependent
on the ribonucleoside monophosphate incorpo-
rated. If the assumption that the enzyme is

TABLE 5. Effect of phage 46 antiserum on 46 RNA
polymerase activity

Treatment Antiserum 'H-UMP
dilution incorporated0

Control 746

+Antiserum before the 1:50 44
heat treatment 1:200 36

1:500 269
1:1000 243

+Antiserum after the 1:50 801
heat treatment 1:200 689

1:1000 828

aPicomoles incorporated per milligram of phage
protein per 10 min.
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FIG. 6. Co-sedimentation of 3H-RNA synthesized by phage 06 from 3H-UTP together with 06 dsRNA
(components at fractions 12 to 20) and TRV ssRNA (components at fractions 24 and 30) in linear log sucrose
density gradients equilibrated with 2 x SSC. A, Untreated; B, sample incubated with 10 gg of RNase per ml in
2 x SSC prior to placing on the gradient. The A 254 is represented by the solid line and the counts per minute by
the dashed line.
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FIG. 7. Polyacrylamide gel co-electrophoresis of
the 3H-RNA synthesized from 3H-UTP by phage 16
RNA polymerase together with 16 dsRNA. Solid line
is A2,0. dashed line is counts per minute. Migration
proceeded from left to right.

completing a complementary strand is valid
and if the direction of synthesis is from 5' to 3',
these results would suggest that the 5' end(s) of
the three RNA segments have different base
sequences.
The biological significance, if any, of the

enzyme in the phage particle is not known. The
enzyme could either be an integral part of the
phage and consequently be required for the

TABLE 6. Incorporation of '4C-ribonucleoside
monophosphates into RNA by phage q6 RNA

polymerase

14C-ribonucleoside monophosphate

Assay mixture incorporateda

UTP ATP GTP CTP

Complete 319 219 503 1,555
-UTP 78 136 411
-ATP 37 316 373
-GTP 51 129 265
- CTP 117 165 88
- 3 ribonucleoside 37 34 47 32
triphosphates -

aPicomoles incorporated
protein per 10 min.

per milligram of phage

next cycle of infection or it might have com-
pleted its biological functions by the time the
phage is released from the host. With regard to
the former possibility the enzyme may have to
complete short single-stranded "tail" regions of
the dsRNA before successful phage infection
can occur. Experiments to determine if repli-
case activity is essential for phage infection
have been inconclusive. For example, we tried
to obtain conditions which resulted in a loss in
replicase activity without producing a corre-
sponding loss in infectivity. However, condi-
tions such as incubation of the phage at various
temperatures for various periods of time always
resulted in a more rapid decrease in infectivity
than in enzyme activity.
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FRACTION NO

FIG. 8. Polyacrylamide gel electrophoresis of the
14C-RNA synthesized from '4C-UTP (A), '4C-ATP
(B), 14C-GTP (C), and 14C-CTP (D) by phage ,6 RNA
polymerase. Migration proceeded from left to right.

In summary, an enzyme which mediates the
incorporation of ribonucleoside monophos-
phates into dsRNA is associated with phage 06.
The location of the enzyme in the phage and the
biological function of the enzyme are unknown.
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