
Table S3. Table of kinetic rate constants used in model with references. 

Rate Constant Value Reaction Source 

kass_rea 0.001 Production of ROS Experimental Data 
kass_reb 0.15 Induction of a Simple DSB Experimental Data, [1] 
kass_rec 0.03 Degredation of ROS Experimental Data 
kass_red 0.6 Recruitment of Ku70/80 to sDSB [2] 
kass_ree 0.02 Ku70/80 leaving site of Damage Model constant 
kass_ref 5e-006 Ku70/80 binding to sDSB [3] 
kass_reg 0.5 Ku70/80 dissociation from sDSB [3] 
kass_reh 0.6 Recruitment of DNA-PKcs to sDSB [4] 
kass_rei 0.02 DNA-PKcs leaving site of Damage Model constant 
kass_rej 9e-005 DNA-PKcs binding to Ku70/80-sDSB Complex [4] 
kass_rek 0.3 DNA-PK Autophosphorylation [4] 
kass_rel 0.001 Recruitment of LiIV/XRCC4 to sDSB [5] 
kass_rem 0.2 LiIV/XRCC4 leaving site of Damage Model constant 
kass_ren 0.00035 LiIV/XRCC4 binding to DNA-PK-sDSB Complex [5] 
kass_reo 0.075 Ligation of sDSB and dismantling of Repair 

Complex 
[5] 

kass_rep 0.15 Induction of a Complex DSB Experimental Data, [1] 
kass_req 0.6 Recruitment of Ku70/80 to cDSB [2,6] 
kass_rer 4e-006 Ku70/80 binding to cDSB [3,6] 
kass_res 0.4 Ku70/80 dissociation from cDSB [3] 
kass_ret 0.6 Recruitment of DNA-PKcs to cDSB [4,6] 
kass_reu 7e-005 DNA-PKcs binding to Ku70/80-cDSB Complex [4,6] 
kass_rev 0.3 DNA-PK Autophosphorylation [4,6] 
kass_rew 0.001 Recruitment of LiIV/XRCC4 to cDSB [5] 
kass_rex 0.0002 LiIV/XRCC4 binding to DNA-PK-cDSB Complex [5,6] 
kass_rey 0.075 Ligation of cDSB and dismantling of Repair 

Complex 
[5,6] 

kMRN 0.75 Activation and Binding of ATM and MRN [7,8] 
kass_rez 0.5 H2AX Phosphorylation [9] 
kass_reaa 0.5 H2AX Phosphorylation [9]  
kass_reab 0.5 H2AX Phosphorylation [9] 
kass_reac 0.5 Damage Focus Formation [10] 
kass_read 0.1 Damage Focus Dismantling [10] 
kass_reae 0.5 ATM-MRN Complex binding to Damage Focus [11] 
kass_reaf 0.03 ATM-MRN-Damage Focus Dismantling  [11] 
kass_reaq 0.6 Recruitment of PARP to sDSB [3] 
kass_rear 0.02 PARP leaving site of Damage Model constant 
kass_reas 5e-007 PARP binding to sDSB [3] 
kass_reat 0.02 PARP dissociation from sDSB [3] 
kass_reau 0.005 Recruitment of LiIII/XRCC3 to sDSB [12,13] 
kass_reav 0.02 LiIII/XRCC3 leaving site of Damage Model constant 
kass_reaw 0.00035 LiIII/XRCC3 binding to DNA-PK-sDSB Complex [12,13] 
kass_reax 0.0006 Accurate ligation of sDSB and dismantling of 

Repair Complex 
[1,14] 

kass_reay 0.0009 Inaccurate ligation of sDSB and dismantling of 
Repair Complex 

[1,14] 

kass_reaz 0.6 Recruitment of PARP to cDSB [3] 
kass_reba 4e-007 PARP binding to cDSB [3] 
kass_rebb 0.02 PARP leaving site of Damage [3] 



kass_rebc 0.005 Recruitment of LiIII/XRCC3 to cDSB [12,13] 
kass_rebd 0.0002 LiIII/XRCC3 binding to DNA-PK-cDSB Complex [12,13] 
kass_rebe 0.0006 Accurate ligation of cDSB and dismantling of 

Repair Complex 
[1,14] 

kass_rebf 0.0009 Inaccurate ligation of cDSB and dismantling of 
Repair Complex 

[1,14] 

kdiss_DNAPK 0.02 DNA-PK dissociation from DSB [3,4] 
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