GT	Species	Acc. no.	Activity	Source	
UGT74B1	Arabidopsis thaliana	AAC00570	Thiohydroximate glucosyltransferase	1	
UGT74C1	Arabidopsis thaliana	AAD32293	- · · · · · · · · · · · · · · · · · · ·	3	
UGT74D1	Arabidopsis thaliana	AEC08580	Jasmonate glucosyltransferase	2	
UGT74E1	Arabidopsis thaliana	POC7P7	-	3	
UGT74F2	Arabidopsis thaliana	AAB64024	Salicylic acid and anthranilic acid glucosyltransferase	4-6	
UGT75B1	Arabidopsis thaliana	AEE27854	Indole-3-acetic acid glucosyltransferase	29	
UGT75C1	Arabidopsis thaliana	CAB10189	Anthocyanin-5-O-glucosyltransferase	7	
UGT75D1	Arabidopsis thaliana	CAB10333	Flavonoid glucosyltransferase	8	
UGT84A1	Arabidopsis thaliana	AEE83609	Hydroxybenzoate glucosyltransferase	4	
UGT84B1	Arabidopsis thaliana	AAB87119	Indole-3-acetic acid glucosyltransferase	9	
UGT74H5	Avena strigosa	ACD03250	N-methylanthranilate glucosyltransferase	This study	
UGT74H6	Avena strigosa	ACD03261	Benzoic acid glucosyltransferase	This study	
UGT74H7	Avena strigosa	ACD03246	-	This study	
UGT84C2	Avena strigosa	ACD03236	-	This study	
UGT75E2	Avena strigosa	ACD03260	-	This study	
UGT75E3	Avena strigosa	ACD03251	<u>-</u>	This study	
UGT75D1 like6	Brachypodium distachyon	XP_003576359	-	*	
UGT75D1 like5	Brachypodium distachyon	XP_003560621	<u>-</u>	*	
UGT75D1 like4	Brachypodium distachyon	XP_003571494	-	*	
UGT84A2 like	Brachypodium distachyon	XP_003565946	-	*	
Cinnamate-GT like2	Brachypodium distachyon	XP_003567004	-	*	
Cinnamate-GT like1	Brachypodium distachyon	XP_003571042	-	*	
IAA-GT like	Brachypodium distachyon	XP_003559553	-	*	
UGT74F1 like1	Brachypodium distachyon	XP_003578449	-	*	
UGT74F1 like2	Brachypodium distachyon	XP_003576736	-	*	
UGT74F2 like	Brachypodium distachyon	XP_003578448	-	*	
UGT84A9a	Brassica napus	CAS03354	Sinapate glucosyltransferase	10	
CsGT45	Crocus sativus	ACM66950	Flavonoid glucosyltransferase	11	
EpGT-1	Eucalyptus perriniana	BAD90934	Monoterpene glucosyltransferase	12	
EpGT-2	Eucalyptus perriniana	BAD90935	Monoterpene glucosyltransferase	12	
5GT-A	Eustoma grandiflorum	BAF49285	Anthocyanin 5-O-glucosyltransferase	13	
FaGT2	Fragaria x ananassa	Q66PF4	Cinnamate glucosyltransferase	14	
5GT7	Gentiana triflora	BAG32255	Anthocyanin 5-O-glucosyltransferase	15	
HGT8	Glandularia x hybrida	BAA36423	Anthocyanin 5-O-glucosyltransferase	16	
GgSGT	Gomphrena globosa	BAG14302	Sinapate glucosyltransferase	17	
ant5GT	Iris hollandica	BAD06874	Anthocyanin 5-O-glucosyltransferase	18	
HCA1GT-1	Lobelia erinus	BAF99686	Hydroxycinnamate-O-glucosyltransferase	19	
SAGTase	Nicotiana tabacum	AAF61647	Salicylic acid glucosyltransferase	21	
Os11g0145200	Oryza sativa	NP_001065729	-	*	
Os02g0203300	Oryza sativa	NP_001046237	-	*	

Supplementary Table 1. Group L UGTs included in phylogenetic analysis

Supplementary Table 1 continued...

Os01g0686300	Oryza sativa	NP_001043905	-	*
Os01g0686200	Oryza sativa	NP_001043904	-	*
Os03g0693600	Oryza sativa	NP_001050964	-	*
Os09g0518000	Oryza sativa	NP_001063684	-	*
Os09g0518200	Oryza sativa	NP_001063685	-	*
Pf3R4	Perilla frutescens	BAA36421	Anthocyanin 5-O-glucosyltransferase	16
F7GT	Pyrus comunnis	AAY27090	Flavonoid 7-O-glucosyltransferase	22
GAGT	Solanum lycopersicum	CAI62049	Gentisic acid xylosyltransferase	20
UGT74M1	Vaccaria hispanica	ABK76266	glucosyltransferase Resveratrol/hydroxycinnamic acid O-	24
ResOGT	Vitis labrusca	ABH03018	glucosyltransferase	25
IAGLU	Zea mays	NP_001150551	Indole-3-acetate beta-glucosyltransferase	26, 27
IAGT	Zea mays	NP_001150551	-	26
UGT2	Crocus sativus	AAP94878	Crocetin glucosyltransferase	28

*Predicted by automated computational analysis

References

- 1. Grubb, C. D., Zipp, B. J., Ludwig-Muller, J., Masuno, M. N., Molinski, T. F., and Abel, S. (2004) *Plant J* **40**, 893-908
- 2. Song, J. T., Koo, Y. J., Seo, H. S., Kim, M. C., Choi, Y. D., and Kim, J. H. (2008) *Phytochemistry* **69**, 1128-1134
- 3. Li, Y., Baldauf, S., Lim, E. K., and Bowles, D. J. (2001) J Biol Chem 276, 4338-4343
- 4. Lim, E. K., Doucet, C. J., Li, Y., Elias, L., Worrall, D., Spencer, S. P., Ross, J., and Bowles, D. J. (2002) *J Biol Chem* 277, 586-592
- 5. Quiel, J. A., and Bender, J. (2003) J Biol Chem 278, 6275-6281
- 6. Dean, J. V., and Delaney, S. P. (2008) *Physiologia plantarum* **132**, 417-425
- 7. Gachon, C. M., Langlois-Meurinne, M., Henry, Y., and Saindrenan, P. (2005) *Plant Mol Biol* 58, 229-245
- 8. Messner, B., Thulke, O., Schäffner, A. R., (2005) *Planta* **217**, 138-146
- 9. Jackson, R. G., Lim, E. K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D. A., and Bowles, D. J. (2001) *j Biol Chem* **276**, 138-146
- 10. Mittasch, J., Mikolajewski, S., Breuer, F., Strack, D., and Milkowski, C. (2010) *Theor Appl Genet* **276**, 138-146
- 11. Moraga, A. R., Mozos, A. T., Ahrazem, O., and Gomez-Gomez, L. (2009) BMC Plant Biol 9, 109
- 12. Nagashima, S., Tomo, S. and Yoshikawa, T. (2005) NCBI direct submission
- 13. Noda, N., Kanno, Y. and Suzuki, M. (2002) NCBI direct submission
- 14. Landmann, C., Fink, B., and Schwab, W. (2007) Planta 226, 417-428
- 15. Nakatsuka, T., Sato, K., Takahashi, H., Yamamura, S. and Nishihara, M. (2008) *J Exp Bot* **59**, 1241-1252
- 16. Yamazaki, M., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T. and Saito, K. (1999) *J Biol Chem* **274**, 7405-7411
- 17. Matsuba, Y., Okuda, Y., Abe, Y., Kitamura, Y., Terasaka, K., Mizukami, H., Kamakura, H., Kawahara, N.,Goda, Y., Sasaki, N. and Ozeki, Y. (2008) *Plant Biotechnol* **25**, 369-375

- 18. Imayama, T., Yoshihara, N., Fukuchi-Mizutani, M., Tanaka, Y., Ino, I. and Yabuya, T. (2004) *Plant Sci* **167**, 1243-1248
- 19. Noda, N., Kazauma, K. and Suzuki, M. (2005) NCBI direct submission
- 20. Tarraga, S., Lison, P.Lopez-Gresa, M. P., Torres, C., Rodrigo, I., Belles, J. M., and Conejero, V. (2010) *J Exp Bot* **61**, 4325-4338
- 21. Lee, H. I., and Raskin, I. (1999) J Biol Chem 274, 36637-36642
- 22. Gosch, C., Halbwirth, H. and Stich, K. (2005) Trees 21, 521-529
- 23. Richman, A., Swanson, A., Humphrey, T., Chapman, R., McGarvey, B., Pocs, R., and Brandle, J. (2005) *Plant J* **41**, 56-57
- 24. Meesapyodsuk, D., Balsevich, J., Reed, D. W., and Covello, P. S. (2007) *Plant Physiol* **143**, 959-969
- 25. Hall, D., De Luca, V., (2007) Plant J 49, 579-591
- Alexandrov, N. N., Brover, V. V., Freidin, S., Troukhan, M. E., Tatarinova, T. V., Zhang, H., Swaller, T. J., Lu, Y. P., Bouck, J., Flavell, R. B., and Feldmann, K. A. (2009) *Plant Mol Biol* 69, 179-194
- 27. Szerszen, J. B. Szczyglowski, K., and Bandurski, R. S. (1994) Science 265, 1699-1701
- 28. Moraga, A. R., Nohales, P. F., Perez, J. A., and Gomez-Gomez, L. (2004) Planta 219, 955-966
- 29. Jackson, R. G., Lim, E. K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D. A. & Bowles, D. J. (2007) *J Biol Chem* **276**, 4350-4356

Primer no.	DNA template	Oligonucleotide primer sequence $(5' \rightarrow 3')$					
For His ₆ tags:							
1	UGT74H5	GG <u>AATTCCATATG</u> GGGGGCTGAGTGGGAG					
2	UGT74H5	GG <u>AATTCCATATG</u> TCA TGCATCTAACCCCAC					
3	UGT74H7	GG <u>AATTCCATATG</u> GGGGCTGAGCCGGGCCACGTA					
4	UGT74H7	GG <u>AATTCCATATG</u> CTAGATTTGTTTGGGCTGAGTTG					
5	UGT74H6	GG <u>AATTCCATATG</u> GGGGGCTGAGCCGGGCCACGTA					
6	UGT74H6	GG <u>AATTCCATATG</u> TCAGATGATTAATTTCTGGGATTTTC					
For native	e protein:						
7	UGT74H5	T <u>TCATAT</u> GGGGGGCTGAGTGGGAG					
8	UGT74H5	A <u>GGAATC</u> CATATGTCA TGCATCTAACCCCAC					
9	UGT74H7	T <u>TCATATG</u> GGGGCTGAGCCGGGCCACGTA					
10	UGT74H7	C <u>TGAATT</u> CCATATGCTAGATTTGTTTGGGCTGAGTTG					
11	UGT74H6	T <u>ACATAT</u> GGGGGGCTGAGCCGGGCCACGTA					
12	UGT74H6	G <u>GAATTC</u> TCAGATGATTAATTTCTGGGATTTTC					

Supplementary Table 2. Oligonucleotide primer sequences

Supplementary Figure 1A. HPLC analysis of glucosylated products following assays with purified recombinant UGT74H5. Reactions were performed in 5 mM UDP-Dglucose, pH 6.8 at 30°C for 30 minutes with 100 µM benzoic acid (a), anthranilic acid (b), N-methylanthranilic acid (c) or salicylic acid (d). Reactions were analysed by reversed phase HPLC using a LUNA 5-µm C18 column (150 x 4.6 mm, Phenomenex) with a linear gradient of acetonitrile in water for (10-40)% anthranilate and N-10-60% methylanthranilate; for salicylic acid and benzoic acid). The retention times of the glucose conjugates were (a) 11.6 min; (b) 9.2 min; (c) 11.8 min; (d) 12.1 min. Detection wavelengths (WVL) are indicated.

Supplementary 1B. HPLC Figure analysis for assays of purified recombinant UGT74H5 with N-methylanthranilate. Reactions were performed with 0.5 mM UDP-D-glucose, 0.2 mM Nmethylanthranilic acid at pH 7.5, 30°C for 30 minutes. Controls include assays with inactivated enzyme (a), minus Nmethylanthranilic acid (b) and minus UDP-D-glucose (c); (d) reaction with active enzyme. Samples were analysed as Supplementary Figure for 1A. The retention times (R_t) of N-methylanthranilic *N*-methylanthraniloyl-β-Dacid and glucopyranose were 16.5 min and 11.8 min, respectively. The detection wavelength (WVL) is indicated.

Supplementary Figure 2.

Alignment of amino acid sequences of UGT74H5 and two other closely related GTs expressed in oat roots (UGT74H6 and UGT74H7). Identical amino acids are highlighted in black and similar amino acids in grey. The PSPG box (a conserved region corresponding to the UDP-D-glucose binding domain; Hughes and Hughes, 1994; *DNA Seq* 5: 41-49) is underlined.

Supplementary Figure 3. Analysis of the three purified His_6 -tagged oat glycosyltransferases following expression in *E. coli*. Proteins were run on a 4-12% SDS-PAGE gradient gel and detected by staining with Coomassie brilliant blue (left) or by Western blot analysis using polyclonal antisera raised against UGT74H5 (right).

Supplementary Figure 4B. Enzyme kinetics for UGT74H6. Plots of the product formation rates as a function of substrate concentration (1: *N*-methylanthranilic acid, 2: benzoic acid, 3: anthranilic acid, 4: salicylic acid).

Supplementary Figure 4C. Enzyme kinetics for UGT74H7. Plots of the product formation rates as a function of substrate concentration (1: benzoic acid, 2: anthranilic acid).

		<u></u>	10 · · I · · · ·	1 · · · ·	20 1 · · · ·	1	30 • 1 • • • •	1 · · ·	+0 · · · ·	· [· · ·	50 · I · · ·		
UGT74H7 UGT74H6	1 1	MG AEPGH MG AEPGH	VYCD I HV VYCD I HV	LVLPY LVLPY	/PLQGH /PLQGH	INPM INPM	LQ F AKR LQ F AKR	LAR TO	QTHIG QTHIG	SCCC- SCCCCC	VR GGG VR	CTLAVTF CTLAVTF	56 60
UGT74H5	1	MG AE <u>WIP</u> H	WS - D I HV	LLLPY	(PMQGH	INPM	LQFCKR	<u> </u>	<u>HIG</u>	- • •	VR	CTLA <mark>I</mark> TF	50
			70 · · · · · ·	1	80 • I • • • •	1	90 · · · · ·	1	100 · · · ·		. 110 .	12 · · · · ·	0
UGT74H7 UGT74H6	57 61	YLLGQCQ YLLGQCO	DPCPGAV	'HLAEI 'HLAEI	SDGFDI	R AG F I R AG F I	LEVGDV LEVGDV	'AAYL. 'AAYL.	AQLES. AOLES.	AGSRTI AGSRTI	LDELL LDELL	RS EAEKO RS EAEKO	116 120
UGT74H5	51	YLL <mark>R</mark> QCQ	DPCPGAV	HLVEI	SDGFD	S AG F	EVGDV	AAYL.	AGMES.	AGSRT	LDELL	RS EAEKO	110
			130 · · · · · ·	1	140 · · · · ·	1	150 · · · · ·	1	140 • • • •		170 · · · ·	18 • • • • •	0
UGT74H7	117	RKVCAVV	YDS FLQP	WAPPV	ARRHG	AACV	SFFTQA	PAVN	LAYAHI	HARGG	GTGGR	LEGLPAC	176
UGT74H5 UGT74H5	111	RKVCAVV R <mark>PIH</mark> AVV	YDSFLQP YD <mark>A</mark> FLQP	WVPRV	ARKHG AR <mark>L</mark> HG	AAC VS	SFFTQA	AVN	VAYSRI	R	V <mark>G</mark> KI	EEGLPAC	165
		<u></u>	190 · · · · · ·	1	200 · I · · · ·	1	210 · I · · · ·	1	220 · I · · ·		230 · I · · ·	24 · · · · ·	0
UGT74H7 UGT74H6	177 181	FEHEDLP FEHEDLP	TFLTMPD	DCPPY	LEMLLI	ROHVO ROHVO	GLD AVD GLD AVD	HVLVI	NSFHE NSFHE	LOPLES LOPLES	S D YMA S D YMA	S KWG AK 1 S KWG AK 1	236 240
UGT74H5	166	FE <mark>A</mark> ED LP	TFLT <mark>D</mark> P-	LPY	QDMLL	SQFV	GLDAVD	HVLVI	NSFHE	LQPQE	S AYME	S TWG AK	222
			250 · · I · · · ·	1	240 	1	270 · · · · ·	1	280 · · · ·		290 · · · ·	30	0
UGT74H7	237	VGPTVPS	AYLDKRI	PDDVS	YGFHL	YTPT	TATTTA	WLD A	OPPRS	VAYVS	FGSMA	APGPEQN	296
UG174H6 UGT74H5	241 223	VGPTVPS	AYLDKRI	TDD VS	YGFHL YGFHL	Y T P I Y T P <mark>M</mark>	TATTA TATT <mark>K</mark> A	WLD A WLD A	QPPRS Q <mark>PPR</mark> S'	VAYVS. V <mark>T</mark> YVSI	F G S MA F G S MA	TPGP TEN	282
			310		320		330		340		350	34	0
UGT74H7	297	AEMAEGL	HSSGKAF	LWVVF	RAS EASI	KIPDO	GFSE <mark>K</mark> V	GTRG	LVVPW	VAQLE	V L AH S	AVGC FV1	356
UGT74H6 UGT74H5	301 283	AEMAEG L AEMAEG L	HS SGKAF HS SGK <mark>AF</mark>	LWVVF	RAS E T SI RAS EASI	KIPDO K <mark>IPD</mark> O	G F S ER V <mark>G F Q</mark> ER V	GTRG G <mark>G</mark> RG	LVVPW LVV <mark>T</mark> W	V A Q L E ' V A Q L E '	V L AH S V L AH <mark>G</mark>	AVGC FV1 A <mark>II</mark> GC FV1	360 342
			370	1	380	1	390	1	400 · · · · ·		410 · 1 · · · ·	42	0
UGT74H7	357	HCGWN S T	MEALGAG	LPMVA	VPQWSI	DOPTI	NAKYVE	DVWC	VG VR A	RRDPE	AGVVR	REEVERG	416
UG174H6 UGT74H5	361 343	HCGWN S I HCGWN S T	MEALGAG MEALGAG	V PMVA V PMVA	AVPQWS1 AVPQWS1	DQPTI DQPTI	NAK YVE NAK <mark>F</mark> VE	D VWC	VG VR AI VG VR AI	R R D P E R R D P E	GVVR	REEVERC	420
			430		440		+50		+ 60		+70	48	Ð
UGT74H7	417	VK EVMG A	DKQYARN	ASDWE	KEKAVR	SMCQ	GG S S 🖻 K	I T E	FLHAL	RSRI	KS QK S	TQPKQI -	473
UGT74H6	421 402	VK EVMG A	DKQYARN DK-YACN	AS DWF	KEKAVR: KEK <mark>SK</mark> R	S MC Q (GG S S D K GG S S D N	NITE: NITE:	FLHAL FL <mark>O</mark> AL	VVGSRI R-RSRI	KSOKL KSYEA	II KPIEPLI	475
00174110									 				
UGT74H7	473	· · · · I	73										
UGT74H6	475	47	75 64										
UG1/4H5	400	YGLDA 40	J4										

Supplementary Figure 5. LC-MS/MS analysis of trypsin-digested protein from oat roots (excised following SDS-PAGE) reveals protein fragments corresponding to UGT74H5 (shown in red).