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Supporting Methods

1. Equivalence between penalized and Bayesian regressions

We show the equivalence first for the Ridge Regression (RR) and then for LASSO. The same
steps can be used to derive the Bayesian equivalents of other methods, such as Bridge

regression. The solution to the optimization problem of the RR is
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Multiplying the objective function by -1/2 and switching from minimization to maximization

preserves the solution, therefore:
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Further, dividing the objective function by any positive constant preserves the solution;

therefore for any o > 0 we have,

RS S S s Sl

Moreover, for any positive value of 02 such that A = 020/;2 we have:
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Finally, applying any monotonic transformation to the objective function also preserves the

solution, therefore:
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The first term in the above expression, is proportional to a Gaussian likelihood for data (y;) with

mean u + E’f \x; 8, and residual variance ¢*. And the second term is proportional to a
j= A

Gaussian prior for marker effects with mean equal to zero and variance a/i,. Specifically, the

solution to RR optimization problem is equivalent to the posterior mode of the following

Bayesian model:
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A similar reasoning can be used to show the equivalence for the LASSO and in general

for Bridge regression. For the LASSO, we replace the penalty Eil B} with E;‘/j ; therefore
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As with the RR, the first term is proportional to the following Gaussian likelihood. The second
term is proportional to the product of p IID Double-Exponential, or Laplace, priors densities for

marker effects.

2. On the joint density of genetic values of genotyped and un-genotyped individuals

In this section we consider the problem of deriving the joint density of genetic values when
some individuals (set 1) were not genotyped and others (set 2) were genotyped. We show that
the joint density of the genetic values of these two sets of individuals, denoted as g, and g, ,

respectively, in the RR-BLUP model is a mixture of multivariate normal densities.

When all individuals are genotyped. Following standard assumptions, the marginal

distribution of genomic values in RR-BLUP is as follows:
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where, X, and X, are matrices of marker genotypes and ¢ is a variance parameter and MVN

X,.X, . o’ =MWV0 XX XX, o’ [1]
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denotes a multivariate normal density.

When some individuals are not genotyped. Consider the case where only individuals in

set 2 are genotyped. In this case, we need to derive the joint density of genetic values given X,
, pedigree relationships (denoted as P) and ¢ that is, p(gl,g2|X2,P,aj ) To derive this

density we first augment the probability model by introducing X, and subsequently

integrating it out:
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The first density on the right-hand side is simply the MVN density of expression [1]. The
second component of the right-hand side, p(Xl|X2,P) gives the probability density function of
the unknown-genotypes given the observed genotypes and the pedigree. This is the density we
would use, for instance, in pedigree-based imputation algorithms. For every realization of X,

we have a peculiar MVN with a particular co-variance structure (see right-hand side of
expression [2]). Therefore, we conclude that the joint density of genetic values is a mixture of

scaled-multivariate normal densities.
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Existing proposals for joint analysis of genotyped and un-genotyped individuals (e.g.,
CHRISTENSEN and LUND 2010; AGUILAR et al. 2010) assume that the joint density of genetic values
of these two groups of individuals is MVN. In light of the above-results, these methods should

be considered linear approximation to a non-linear problem.
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