Supporting Information

Kupz et al. 10.1073/pnas.1222047110

Fig. S1. Thy1-expressing natural killer (NK) cells are not T-cell contaminants. (*A* and *B*) Naïve B6 mice were i.v. injected with 1×10^8 cfu heat-killed Salmonella enterica serovar Typhimurium (HKST). IFN- γ secretion by lymphocyte subsets was assessed 2 h later in the spleen. IFN- γ^- and IFN- γ^- NK 1.1⁺ cells were assessed for expression of Thy1 (*B*). Total number of IFN- γ^+ cells among total CD3⁺ and CD3⁻ cells (*A*) and a representative histogram (*B*) are shown. (*C*) Viable single splenocytes from *Rag1/Je^{-/-}* mice were assessed for expression of Thy1 on different NK cells subsets (CD3⁻ NK1.1⁺) defined by the expression of CD27 and CD11b. (*D*) Expression of T-cell receptor (TCR)- β on splenic CD3⁻DX5⁺NK1.1⁺ (*Left*) and CD19⁻CD3⁻CD4⁻CD122⁺ (*Right*) cells in B6 mice in comparison with CD3⁺ cells. (*E*–*G*) In vitro–activated NK cells from B6 mice were assessed for expression of TN1.1, DX5, CD122, and CD3 (*E*), the capacity to produce IFN- γ in vivo after transfer of two times 1 × 10⁶ NK cells into naïve congenic recipients (*F*), and expression of Thy1 (*G*). Individual data points from at least three experiments (*A*) and representative FACS plots (C and *E*) and histograms (*B*–*D* and *G*) from at least two independent experiments are shown.

Fig. S2. Schematic presentation of mutation sites in SL1344 $\Delta edd \, \Delta pfkA \, \Delta pfkB$. Schematic representation of the central carbon metabolism. Sites of mutations to generate SL1344 $\Delta edd \, \Delta pfkA \, \Delta pfkB$ are marked with a black cross.

Table S1.	Overview	of mouse	strains	used in	this	study
-----------	----------	----------	---------	---------	------	-------

Mouse strain	Purpose
C57BL/6	WT
CD45.1 (Ly5.1)	Congenic cell marker
GK1.5Tg (1)	Transgenic expression of anti-GK1.5; CD4 ⁺ T cell deficient
GK1.5/2.43Tg (2)	Transgenic expression of anti-GK1.5 and anti-2.43; CD4 ⁺ and CD8 ⁺ T cell deficient
Rag1/Je ^{-/-} (3)	Deletion of Rag1; T and B cell deficient
Rag2 ^{-/-} γc ^{-/-} (4)	Deletion of Rag2 and common γ chain; lymphocyte deficient; NK cell recipient
<i>IFN-γ^{-/-}</i> (5)	Deletion of IFN- γ ; highly susceptible to STM infection
CD1d ^{-/-} (6)	Deletion of CD1d; NKT cell deficient
μ MT (7)	Disruption of Ig μ chain; B cell deficient
<i>ROR-γt^{-/-}</i> (8)	Deletion of ROR γ t; innate lymphoid cell and Th17 deficient

1. Zhan Y, Corbett AJ, Brady JL, Sutherland RM, Lew AM (2000) CD4 help-independent induction of cytotoxic CD8 cells to allogeneic P815 tumor cells is absolutely dependent on costimulation. J Immunol 165(7):3612–3619.

2. Han WR, et al. (2000) Prolonged allograft survival in anti-CD4 antibody transgenic mice: Lack of residual helper T cells compared with other CD4-deficient mice. *Transplantation* 70(1): 168–174.

3. Mombaerts P, et al. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68(5):869–877.

4. Mazurier F, et al. (1999) A novel immunodeficient mouse model-RAG2 3 X common cytokine receptor γ chain double mutants requiring exogenous cytokine administration for human hematopoietic stem cell engraftment. J IFN Cytokine Res 19(5):533–541.

5. Dalton DK, et al. (1993) Multiple defects of immune cell function in mice with disrupted IFN-γ genes. Science 259(5102):1739–1742.

6. Schofield L, et al. (1999) CD1d-restricted IgG formation to GPI-anchored antigens mediated by NKT cells. Science 283(5399):225–229.

7. Kitamura D, Roes J, Kühn R, Rajewsky K (1991) A B-cell-deficient mouse by targeted disruption of the membrane exon of the Ig mu chain gene. Nature 350(6317):423-426.

8. Eberl G, et al. (2004) An essential function for the nuclear receptor RORyt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5(1):64–73.

Table S2. Monoclonal antibodies used for in vivo cell and cytokine depletion

Antibody	Clone	Injection dose per mouse	Source	
Anti-CD8	2.43	250 μg initially then 200 μg twice weekly	WEHI	
Anti-CD4	GK1.5	250 μ g initially then 200 μ g twice weekly	WEHI	
Anti-Thy1.2	30-H12	250 μ g initially then 200 μ g twice weekly	WEHI	
Anti-IFN-γ	HB-170–15	200 μg weekly	WEHI	
Anti-NK1.1	PK136	250 μ g initially then 200 μ g twice weekly	WEHI	

WEHI, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.

Table S3.	Oligonucleotides	used to	generate	Salmonella	Typhimurium	SL1344	∆edd	∆pfkA
∆pfkB								

Function	Primer name	Sequence (5' to 3')*
kan amplification	kanF	GTGTAGGCTGGAGCTGCTTC
	kanR	CATATGAATATCCTCCTTAG
edd deletion	edd2(ISceI)F	TAGGGATAACAGGGTAATCATCGGAATTCTTCTCTCGC
	edd2KanR	GAAGCAGCTCCAGCCTACACAGTAATGAAGACGTCTGCGGTAC
	edd2KanF	CTAAGGAGGATATTCATATG GGTTTACCATGCGTTTCATC
	edaedd(ISceI)R	TAGGGATAACAGGGTAATGAACAAATTGACGATTCGCCTGC
pfkA deletion	pfkA(IScel)F	TAGGGATAACAGGGTAATGGTGCAGTCATTATTGGATCG
	pfkAKanR	GAAGCAGCTCCAGCCTACACAGACTACCTCTGAACTTTGGAATGC
	pfkAKanF	CTAAGGAGGATATTCATATG ACATCATCGATGCGATTG
	pfkA(IScel)R	TAGGGATAACAGGGTAATCGTCACGACATCGGCTTC
<i>pfkB</i> deletion	pfkB(ISceI)F	TAGGGATAACAGGGTAATGTCCATACCAGGTCATCG
	pfkBKanR	GAAGCAGCTCCAGCCTACACACGTTACCTCCTGTTAGGCTG
	pfkBKanF	CTAAGGAGGATATTCATATG TGTTCTCGTGACGATACC
	pfkB(IScel)R	TAGGGATAACAGGGTAATGGAATGGCACTTATTGTGC

*I-Scel restriction sites are underlined; kan-specific sequences are bold.

PNAS PNAS