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Ground-Based Hydroxy Radical Data Interpolation and
Error Analysis
The Fourier Transform UV-visible Spectrometer (FTUVS)
measures the total hydroxy radical (OH) column from sunrise to
sunset during clear and lightly cloudy days. Because OH varies
substantially during the day, we use daily maximum (max) OH to
eliminate the diurnal variability. Daily max OH is estimated from
the second-order polynomial fit of the diurnal variation pattern
(examples are provided in Fig. S1). The uncertainty of the daily
max estimate is determined by the rmsd of the measured points
from the fit. After screening out bad days due to various reasons
(e.g., weather conditions or instrument alignment only allows
partial day measurements that are not long enough for reliable
diurnal fits), there are about 750 data points. A few longer gaps of
more than 1 mo are due to measurement campaigns for other
species or instrument upgrades. The screened daily max and the
corresponding uncertainty are plotted in Fig. S2A.
To perform fast Fourier transform (FFT) analysis, the gaps in

the time series need to be filled by interpolation. To reduce the
uncertainty due to the day-to-day variability (may originate from
reasons that include the tropospheric OH variability due to
chemical reactions irrelevant for this study, the middle atmo-
spheric OH variability due to short-term solar UV changes, and
instrument noise), we first calculated monthly means for the
months with available OH data (black circles in Fig. S2B). Note
that the mean date of the monthly mean calculation may not be
the middle of the month, depending on the available dates with
OH data. We then use linear interpolation to derive an estimate
of the daily max OH for each day (black lines in Fig. S2B). To
validate this interpolation, we also applied the missing data fill-
ing using kSpectra Toolkit software (www.spectraworks.com/),
which is specialized in finding small signals through advanced
spectral analysis of multivariate time series based on the math-
ematical methods described by Ghil et al. (1). The results are
very similar to the linear interpolation. The estimated un-
certainty (χ2 analysis) of the interpolated data is about 4 × 1012

cm−2. We adopt this uncertainty as the error bar of all our in-
terpolated daily OH max values (light gray shade in Fig. S2C),
although the actual uncertainty of the monthly mean points in
Fig. S2B is smaller.
The FFT smoothing analysis is carried out using the in-

terpolated daily max OH. To avoid an “edge effect” of the trend
analysis, particularly for a signal with a period that is close to the
length of the time series, we extended the OH data (using data in
the adjacent year) at the beginning and the end of the time series
to the closest date when the OH value is similar to the annual
mean of the corresponding year. The extended time series is
shown in blue in Fig. S2C. After the FFT analysis (dashed green
and red lines in Fig. S2C), we truncate the results to exclude the
extensions (solid green and red lines in Fig. S2C).
To evaluate the impact of the uncertainties (within 4 × 1012

cm−2) of the interpolated data on our FFT results, we applied
a Monte Carlo analysis (2). The daily max OH data in Fig. S2C
are allowed to vary randomly and independently within the error
bar range to construct a new dataset for FFT analysis. Such
calculations are repeated 1,000 times. The resulting 2-y FFT
analysis result that represents the OH SC signal varies around
the 10% value (peak-to-valley change in OH) by ±0.5%. Thus,
the impact of the uncertainty in missing data filling on our
analysis is found to be small.

We also applied an independent regression analysis to derive
the SC signal. The long-term Lyman-α index was used as a proxy.
The results are found to be similar to FFT results. During the
regression analysis, an index describing the vertical propagation
of the quasibiennial oscillation in the stratosphere was also con-
sidered and found to be insignificant. The effect of El Niño/La
Niña-Southern Oscillation was also found to be negligible.

Solar Spectral Irradiance Variability and the Related
Debates
The Solar Radiation and Climate Experiment (SORCE) solar
spectral irradiance (SSI) variability used in our modeling study is
constructed using SSI data from the SORCE/Solar Stellar Irra-
diance Comparison Experiment (SOLSTICE) and SORCE/
spectral irradiance monitor (SIM), with the combination cutoff at
a wavelength of 210 nm or 240 nm (in two sets of model runs, as
described in the main text). The SOLSTICE makes daily UV SSI
measurements and compares them with the irradiance from an
ensemble of 18 stable early-type stars. This approach provides
accurate monitoring and calibration of instrument in-flight per-
formance (3). The absolute accuracy for the wavelength region
used in our study is mostly within 3%. The uncertainty of the
corresponding SSI trend analysis is within 2%. SIM SSI meas-
urements have been made with two independent spectrometer
channels with an accuracy of better than 2% (4). Based on the
comparison of data from the two channels, the long-term trend
uncertainty is estimated to be within ∼0.5%, ∼0.2%, and ∼0.05%
in the wavelength regions of 200–300 nm, 300–400 nm, and 400–
1600 nm, respectively. The methods of performing instrument
degradation corrections based on a two-channel comparison and
then extracting long-term SSI variability are described in the
auxiliary materials of a study by Harder et al. (5), and they are
very similar to the methods used for the SORCE/total irradiance
monitor instrument [for total solar irradiance (TSI) measure-
ments; data shown in Fig. 2]. Although the degradation of the
instruments in recent years (mostly since 2009) is a known issue
and the corresponding data correction and calibration have been
an ongoing work during their future version development (http://
lasp.colorado.edu/sorce/data/ssi_data.htm), the SSI variability used
in our study is taken from measurements during 2004–2007 (6)
when instruments had the most reliable performance, and the
data thus have the best quality.
To estimate the SSI variability from solar max to solar mini-

mum (min), we use a scaling factor to extend the SSI variability
from May 2004–November 2007 back to January 2002 (about the
max of SC 23), assuming that SSI in November 2007 is reason-
ably close to that of the solar min (2008–2009):

f ðλÞ= S⊙;λðJan 2002Þ− S⊙;λðNov 2007Þ
S⊙;λðMay 2004Þ− S⊙;λðNov 2007Þ;

where S⊙;λ is the solar irradiance at wavelength λ.
The scaling factor f ðλÞ is estimated using the Mg-II index

variability as a proxy. The results are shown in Fig. 4 (Inset).
Similar combined SORCE SSI variability has been used in

a number of modeling studies (e.g., refs. 7–9) following the first
such study by Haigh et al. (6) in 2010. The decrease in SORCE
SSI (especially SIM data) during 2004–2007 suggests “a four to
six times larger decline in ultraviolet than would have been
predicted on the basis of our previous understanding. This re-
duction was partially compensated in the total solar output by an
increase in radiation at visible wave-lengths” (6). The previously
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well-accepted SSI variability is from the Naval Research Labo-
ratory (NRL) model based on observations of solar parameters
during previous solar cycles (SCs) (10, 11), in which F10.7 serves
as a primary proxy for the SC. The corresponding UV vari-
ability is characterized by the fractional changes from solar max
to solar min, assuming that the spectral variability follows the
phase of F10.7. The NRL model also requires other solar quan-
tities, including the sunspot number and the daily planetary K and
a indices.
The unexplainable large discrepancies between SORCE SSI

and the well-known NRL SSI have sparked investigations from
various perspectives and a continuing debate since 2011. For
example, Fontenla et al. (12) developed an improved solar
physics model (considering more solar parameters during both
“active” and “quiet” periods of the Sun to describe the SSI
variability; more comprehensive than the NRL model) and
generated results that agree better with SORCE SSI. Studies on
atmospheric SC signal in ozone by Merkel et al. (7) show
a comparison of satellite observations with model simulations
and suggest that SORCE solar forcing appears to explain the
observations better. In contrast, an updated study from the NRL
team concluded that “the SORCE SIM observations should be
used with extreme caution in studies of climate and atmospheric
change until additional validation and uncertainty estimates are

available” (13). Moreover, DeLand and Cebula (14) believe “the
most likely explanation for these results (i.e., SORCE SSI de-
creases much faster than previous believed) is an incomplete
characterization of SORCE on-orbit instrument degradation
effects.” This conclusion was primarily based on comprehensive
comparisons between SORCE SSI variability and observations
from previous SCs, assuming that SSI variability during SC 23
has similar behavior to that during previous SCs. However,
the investigations of Lukianova and Mursula (15) showed the
“changed relation between sunspot numbers, solar UV/EUV
radiation, and TSI during the declining phase of SC 23,” sug-
gesting that the declining phase of SC 23 might be substantially
different from those of previous SCs. The SSI debates are still
continuing, and there will be more studies and publications on
the way.
There is no doubt that there are many questions to be an-

swered, and further research and discussions from various per-
spectives are required before a consensus on this issue can be
established in the scientific community. Our study of OH response
to the SC contributes to the continuing discussions by providing
unique and independent evidence from the point of view of the
Earth’s atmosphere and by conducting important sensitivity as-
sessments of the role of solar forcing uncertainty in atmospheric
OH variabilities.
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Fig. S1. Examples of the diurnal variability of Fourier transform UV-visible spectrometer (FTUVS) OH data at the Table Mountain Facility (TMF) during four
seasons. The selected dates are 07/28/2009 (black), 10/31/2009 (red), 02/16/2010 (green), and 05/04/2010 (blue). The scatters show the measured data. The lines
are the polynomial fit of the diurnal variation during each day. This polynomial fit is used to determine the daily max OH abundance at the TMF.

Fig. S2. Time series of daily max Fourier transform UV-visible spectrometer (FTUVS) OH data and the interpolation of missing data. (A) Daily max OH de-
termined by the polynomial fit of the diurnal pattern of each day (Fig. S1). Error bars represent the rms uncertainty of the polynomial fit. (B) Monthly mean of
daily max OH. (C) Monthly mean data in B are linearly interpolated into daily data (blue line) for FFT analysis (red and green lines). The error is estimated using
the Kspectra software.
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Fig. S3. Simulated diurnally averaged OH and other species related to odd-hydrogen (HOx) chemistry and the adopted temperature in the 1D model. T(K)
represents temperature in Kelvin and uses a separate horizontal scale (in blue).

Fig. S4. Trend in H2O and the corresponding OH change from 1D model simulations. The color line shows the trend in H2O based on the stratospheric trend
during 2000–2005 reported by Hurst et al. (1), the mesospheric trend reported by Remsberg (2), and linear interpolation for other altitudes. The black line
shows the 1D model result of OH change in response to the H2O trend. Note that Remsberg (2) also reported an SC-like decadal variability in mesospheric H2O,
which we do not consider as a long-term trend to avoid accounting for the SC response twice. Our 1D model can nicely simulate such an SC-like decadal
variability in mesospheric H2O.
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