
Supporting Information
Dörfler et al. 10.1073/pnas.1212134110
SI Text
The supporting information is organized as follows.
In SI Preliminaries and Notation, we introduce some notation

and recall some preliminaries.
SI Mathematical Models and Synchronization Notions provides

a description of the considered coupled oscillator model, in-
cluding a detailed modeling of a mechanical analog and a few
power network models. Furthermore, we state our definition of
synchronization and compare various synchronization conditions
proposed for oscillator networks.
SI Mathematical Analysis of Synchronization provides a rigorous

mathematical analysis of synchronization, which leads to the syn-
chronization conditions proposed in the main text. Throughout our
analysis, we provide various examples illustrating certain theoretical
concepts and results, and we also compare our results with existing
results in the synchronization and power network literature.
SI Robust Synchronization in Presence of Uncertainty extends

our synchronization condition to the case where the network
parameters can vary within prescribed upper and lower bounds.
This parameter-varying approach can account for modeling un-
certainties or unmodeled dynamics.
SI Statistical Synchronization Assessment provides a detailed ac-

count of our Monte Carlo simulation studies and the complex
Kuramoto network studies. Throughout this section, we also recall
the basics of probability estimation by Monte Carlo methods that
allow us to establish a statistical synchronization result in a math-
ematically rigorous way.
Finally, the subsection on Synchronization Assessment for Power

Networks describes the detailed simulation setup for the random-
ized Institute of Electrical and Electronics Engineers (IEEE) test
systems, provides the simulation data used for the dynamic IEEE
Reliability Test System 96 (RTS 96) power network simulations,
illustrates a dynamic bifurcation scenario in the RTS 96 power
network, and describes extensions of the results in the main text
to variable load demands and load voltages.

SI Preliminaries and Notation
Vectors and Functions. Let 1n and 0n be the n-dimensional vector
of unit and zero entries, and let 1⊥n be the orthogonal comple-
ment of 1n in Rn, that is, 1⊥n ≜ fx∈Rn : x⊥ 1ng. Let eni be the ith
canonical basis vector of Rn, that is, the ith entry of eni is 1 and all
other entries are 0. Let 1n×n = 1n · 1Tn be the ðn× nÞ matrix of unit
entries. Given an n-tuple ðx1; . . . ; xnÞ, let x∈Rn be the associated
vector. For an ordered index set I of cardinality jIj and a 1D array
fxigi∈I , we define diagðfxigi∈I Þ∈RjIj× jIj to be the associated
diagonal matrix. For x∈Rn, we define the vector-valued func-
tions sinðxÞ= ðsinðx1Þ; . . . ; sinðxnÞÞ and arcsinðxÞ= ðarcsinðx1Þ; . . . ;
arcsinðxnÞÞ, where the arcsin function is defined for the branch
½−π=2; π=2�. For a set X ⊂Rn and a matrix A∈Rm× n, let AX =
fy∈Rm : y = Ax;  x∈Xg.
Geometry on n-Torus. The set S1 denotes the unit circle, an angle
is a point θ∈S1, and an arc is a connected subset of S1. The
geodesic distance between two angles θ1,θ2 ∈S1 is the minimum
of the counterclockwise and clockwise arc lengths connecting
θ1 and θ2. With slight abuse of notation, let jθ1 − θ2j denote the
geodesic distance between two angles θ1; θ2 ∈ S1. Finally, the n-torus,
the product set Tn = S1 ×⋯× S1, is the direct sum of n unit circles.

Algebraic Graph Theory. Given an undirected, connected, and
weighted graph GðV; E;AÞ induced by the symmetrical, irreduc-
ible, and nonnegative adjacency matrix A∈Rn× n, the Laplacian

matrix L∈Rn× n is defined by L= diag
�fPn

j=1aijgni=1
�
−A. If a

number ℓ∈ f1; . . . ; jEjg and an arbitrary direction are assigned to
each edge fi; jg∈ E, the (oriented) incidence matrix B∈Rn× jEj

is defined component-wise as Bkℓ = 1 if node k is the sink node
of edge ℓ and as Bkℓ = − 1 if node k is the source node of edge ℓ;
all other elements are 0. For x∈Rn, the vector BTx has com-
ponents xi − xj for any oriented edge from j to i, that is, BT maps
node variables xi and xj to incremental edge variables xi − xj. If
diagðfaijgfi;jg∈EÞ is the diagonal matrix of nonzero edge weights,
L=B diagðfaijgfi;jg∈EÞBT . For a vector x∈Rn, the incremental
norm kxkE;∞ ≜maxfi;jg∈Ejxi − xjj used in the main text can be ex-
pressed via the incidence matrix B as kxkE;∞ = kBTxk∞. If the graph
is connected, KerðBTÞ=KerðLÞ= spanð1nÞ, all n− 1 remaining ei-
genvalues of L are real and strictly positive, and the second smallest
eigenvalue λ2ðLÞ is called the algebraic connectivity. The orthogonal
vector spaces KerðBÞ and KerðBÞ⊥ = ImðBTÞ are spanned by
vectors associated with cycles and cut-sets in the graph (e.g.,
ref. 1, section 4; ref. 2). In the following, we refer to KerðBÞ and
ImðBTÞ as the cycle space and the cut-set space, respectively.

Laplacian Inverses. Because the Laplacian matrix L is singular,
we will frequently use its Moore–Penrose pseudo inverse L†. If
U ∈Rn× n is an orthonormal matrix of eigenvectors of L, the
singular value decomposition of L is L=U diagðf0; λ2; . . . ; λngÞUT

and its Moore–Penrose pseudo inverse L† is given by L† =U
diagðf0; 1=λ2; . . . ; 1=λngÞUT . We will frequently use the identity
L ·L† =L† ·L= In − 1

n 1n× n, which follows directly from the singular
value decomposition. We also define the effective resistance be-
tween nodes i and j by Rij =L†

ii +L†
jj − 2L†

ij. We refer to the study
by Dörfler and Bullo (3) for further information on Laplacian
inverses and on the resistance distance.

SI Mathematical Models and Synchronization Notions
In this section, we introduce the mathematical model of coupled
phase oscillators considered in this article, present some syn-
chronization notions, and give a detailed account of the literature
on synchronization of coupled phase oscillators.

General Coupled Oscillator Model.Consider a weighted, undirected,
and connected graph GðV; E;AÞ with n nodes V = f1; . . . ; ng,
partitioned node set V =V1 ∪V2, and edge set E induced by the
adjacency matrix A∈Rn× n. We assume that the graph G has no
self-loops fi; ig (i.e., aii = 0 for all i∈V). Associated with this
graph, consider the following model of jV1j≥ 0 second-order
Newtonian and jV2j≥ 0 first-order kinematic phase oscillators:

Mi €θi +Diθ_i = ωi −
Xn
j= 1

aij sin
�
θi − θj

�
; i∈V1

Diθ_i = ωi −
Xn
j= 1

aij sin
�
θi − θj

�
; i∈V2;

[S1]

where θi ∈S1 and θ_i ∈R1 are the phase and frequency of oscil-
lator i∈V, ωi ∈R1 and Di > 0 are the natural frequency and
damping coefficient of oscillator i∈V, and Mi > 0 is the inertial
constant of oscillator i∈V1. The coupled oscillator model [S1]
evolves on Tn ×RjV1j and features an important symmetry, namely,
the rotational invariance of the angular variable θ. The interest-
ing dynamics of the coupled oscillator model [S1] arise from
a competition between each oscillator’s tendency to align with
its natural frequency ωi and the synchronization-enforcing cou-
pling aijsinðθi − θjÞ with its neighbors.
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As discussed in the main text, the coupled oscillator model
[S1] unifies various models proposed in the literature. For ex-
ample, for the parameters V1 = and Di = 1 for all i∈V2, it
reduces to the celebrated Kuramoto model (4, 5)

_θi =ωi −
Xn
j=1

aij sin
�
θi − θj

�
; i∈ f1; . . . ; ng: [S2]

We refer to specific reviews (6–10) for various theoretical results
on the Kuramoto model [S2] and further synchronization ap-
plications in natural sciences, technology, and social networks.
Here, we present a detailed modeling of the spring oscillator net-
work used as a mechanical analog in the main text and present a
few power network models, which can be described by the coupled
oscillator model [S1].

Mechanical Spring Network. Consider the spring network illus-
trated in Fig. S1 consisting of a group of n particles constrained to
rotate around a circle with unit radius. For simplicity, we assume
that the particles are allowed to move freely on the circle and
exchange their order without collisions.
Each particle is characterized by its phase angle θi ∈ S1 and

frequency θ_i ∈R, and its inertial and damping coefficients are
Mi > 0 and Di > 0, respectively. The external forces and torques
acting on each particle are (i) a viscous damping forceDiθ_i opposing
the direction of motion, (ii) a nonconservative force ωi ∈R along
the direction of motion depicting a preferred natural rotation fre-
quency, and (iii) an elastic restoring torque between interacting
particles i and j coupled by an ideal elastic spring with stiffness aij > 0
and zero rest length. The topology of the spring network is described
by the weighted, undirected, and connected graph GðV; E;AÞ.
To compute the elastic torque between the particles, we param-

etrize the position of each particle i by the unit vector pi =
½cosðθiÞ; sinðθiÞ�T ∈ S1 ⊂R2. The elastic Hookean energy stored
in the springs is the function E : Tn →R given up to an additive
constant by

EðθÞ=
X
fi;jg∈E

aij
2

�� pi−pj��22
=
X
fi;jg∈E

aij
�
1− cosðθiÞcos

�
θj
�
− sinðθiÞsin

�
θj
��

=
X
fi;jg∈E

aij
�
1− cos

�
θi − θj

��
;

where we used the trigonometric identity cosðα− βÞ= cos α cos β+
sin α sin β in the last equality. Hence, we obtain the restoring tor-
que acting on particle i as

TiðθÞ= −
∂
∂θi

EðθÞ= −
Xn
j=1

aij sin
�
θi − θj

�
:

Therefore, the network of spring-interconnected particles
depicted in Fig. S1 obeys the dynamics

Mi €θi +Diθ_i = ωi −
Xn
j=1

aij sin
�
θi − θj

�
; i∈ f1; . . . ; ng: [S3]

In conclusion, the spring network in Fig. S1 is a mechanical
analog of the coupled oscillator model [S1] with V2 = .

Power Network Model. The coupled oscillator model [S1] also in-
cludesavarietyofpowernetworkmodels.Webrieflypresentdifferent
power networkmodels compatible with the coupled oscillator model
[S1] and refer to work by Sauer and Pai (ref. 11, chapter 7) for a de-
tailed derivation from a higher order first-principle model.
Consider a connected power network with generators V1 and

load buses V2. The network is described by the symmetrical nodal

admittance matrix Y ∈ℂn×n (augmented with the generator
transient reactances). If the network is lossless and the voltage
levels jVij at all nodes i∈V1 ∪V2 are constant, the maximum
real-power transfer between any two nodes i; j∈V1 ∪V2 is aij =
jVij · jVjj · IðYijÞ, where IðYijÞ denotes the susceptance of the
transmission line fi; jg∈ E. With this notation, the swing dynamics
of generator i are given by

Mi €θi +Diθ_i =Pm;i −
Xn
j=1

aij sin
�
θi − θj

�
; i∈V1; [S4]

where θi ∈ S1 and θ_i ∈R1 are the generator rotor angle and
frequency; θj ∈ S1 for j∈V2 are the voltage phase angles at the
load buses; and Pm;i > 0, Mi > 0, and Di > 0 are the mechanical
power input from the prime mover, the generator inertia constant,
and the damping coefficient, respectively.
For the load buses V2, we consider the following three load

models illustrated in Fig. S2.

1) PV buses with frequency-dependent loads: All load buses are
PV buses, that is, the active power demand Pl;i and the voltage
magnitude jVij are specified for each bus. The real power drawn
by load i consists of a constant term Pl;i > 0 and a frequency-
dependent term Diθ_i with Di > 0, as illustrated in Fig. S2A. The
resulting real-power balance equation is

Diθ_i +Pl;i = −
Xn
j=1

aij sin
�
θi − θj

�
; i∈V2: [S5]

The dynamics [S4 and S5] are known as the structure-preserving
power network model (12) and equal the coupled oscillator
model [S1] for ωi =Pm;i, i∈V1, and ωi = −Pl;i, i∈V2.

2) PV buses with constant power loads: All load buses are PV
buses, each load features a constant real-power demand Pl; i > 0,
and the load damping in [S5] is neglected, that is, Di = 0 in [S5].
The corresponding circuit-theoretical model is shown in Fig.
S2B. If the angular distances jθiðtÞ− θjðtÞj< π=2 are bounded
for each transmission line fi; jg∈ E (this condition will be pre-
cisely established in the next section), the resulting differen-
tial-algebraic system has the same local stability properties as
the dynamics [S4 and S5]; see ref. 13. Hence, all our results
also apply locally to the structure-preserving power network
model [S4 and S5] with zero load damping Di = 0 for i∈V2.

3) Constant current and constant admittance loads: If each load
i∈V2 is modeled as a constant current demand Ii and an (in-
ductive) admittance Yi;shunt to ground as illustrated in Fig. S2C,
the linear current-balance equations are I =YV , where I ∈ℂn

and V ∈ℂn are the vectors of nodal current injections and
voltages. After elimination of the bus variables Vi, i∈V2,
through Kron reduction [S3], the resulting dynamics assume
the form [S3] known as the (lossless) network-reduced power
system model (14, 15). We refer to the studies by Dörfler
and Bullo (3) and Sauer and Pai (11) for a detailed derivation
of the network-reduced model.

The above model [S4 and S5] is valid for an AC grid with a
synchronous generator and load models 1–3. We remark that
synchronous motor loads also assume the form [S4] with
Pm;i < 0 (16), and a first-principle modeling of a DC power source
connected to an AC grid via a droop-controlled inverter also re-
sults in [S5] (further details are provided in ref. 17).

Remark 1 (Voltage Dynamics). To conclude this modeling section, we
want to state a word of caution regarding the load models.
The PV load models [S1 and S2] assume constant voltage

magnitudes jVij at the loads. Under normal operating conditions,
the assumption of constant voltage magnitudes is well justified
because voltage magnitudes are controlled at the generators and the
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active power flow aijsinðθi − θjÞ= jVij · jVjj · IðYijÞ · sinðθi − θjÞ be-
tween two nodes i; j∈V1∪ V2 is primarily governed by the angular
difference θi − θj and not by the voltage magnitudes jVij; jVjj. The
latter assumption is known as the “decoupling assumption” in the
power systems community. Whereas the model in [S4 and S5] is well-
adopted for power systems stability studies, the assumption of constant
load voltage magnitudes ceases to hold in a heavily stressed grid (near
a bifurcation point), where additional dynamic phenomena can occur,
such as voltage collapse at the loads (18). In short, the coupling weights
aij are not necessarily constant.
Likewise, if the shunt admittance loads in the load model [S3]

are not constant (e.g., constant power loads can be transformed to
voltage-dependent shunt admittances), the Kron reduction process may
be ill-posed or the admittance matrix of the network-reduced model
depends on the load voltages. In the latter case, the coupling weights aij
are again not constant but depend on the load voltages.
To account explicitly for such unmodeled voltage dynamics af-

fecting the coupling weights aij, we study the coupled oscillator
model [S1] with interval-valued parameters in SI Robust Synchro-
nization in the Presence of Uncertainty.

Synchronization Notions. The following subsets of the n-torus Tn

are essential for the synchronization problem: For γ ∈ ½0; π=2½, let
ΔGðγÞ⊂Tn be the closed set of angle arrays ðθ1; . . . ; θnÞ with the
property jθi − θjj≤ γ for fi; jg∈ E. Also, let ΔGðγÞ be the interior
of ΔGðγÞ.
Definition 1. A solution ðθ; θ_Þ : R≥0 → ðTn;RjV1jÞ to the coupled
oscillator model [S1] is said to be synchronized if θ0 ∈ ΔGðγÞ and
there exists ωsync ∈R1 such that θðtÞ= θ0 +ωsync1ntðmod 2πÞ and
θ_ðtÞ=ωsync1jV1j for all t≥ 0.
In other words, here, synchronized trajectories have the prop-

erties of frequency synchronization and phase cohesiveness, that
is, all oscillators rotate with the same synchronization frequency
ωsync, and all their phases belong to the set ΔGðγÞ. For a power
network model [S4 and S5], the notion of phase cohesiveness is
equivalent to bounded flows jaijsinðθi − θjÞj≤ aijsinðγÞ for all
transmission lines fi; jg∈ E.
For the coupled oscillator model [S1], the explicit synchro-

nization frequency is given by ωsync ≜
Pn

i=1ωi=
Pn

i=1Di (a detailed
derivation is provided in ref. 9). By transforming to a rotating frame
with frequency ωsync and by replacing ωi by ωi −Diωsync, we
obtain ωsync = 0 (or, equivalently, ω∈ 1⊥n ) corresponding to
balanced power injections

P
i∈V1

Pm;i =
P

i∈V2
Pl;i in power net-

work applications. Hence, without loss of generality, we assume
that ω∈ 1⊥n such that ωsync = 0.
Given a point r∈ S1 and an angle s∈ ½0; 2π�, let rotsðrÞ∈S1

be the rotation of r counterclockwise by the angle s. For
ðr1; . . . ; rnÞ∈Tn, define the equivalence class

½ðr1; . . . ; rnÞ�= fðrotsðr1Þ; . . . ; rotsðrnÞÞ∈Tnjs∈ ½0; 2π�g:
Clearly, if ðr1; . . . ; rnÞ∈ΔGðγÞ, then ½ðr1; . . . ; rnÞ�⊂ΔGðγÞ.
Definition 2. Given θ∈ΔGðγÞ for some γ ∈ ½0; π=2½, the set
ð½θ�; 0jV1jÞ⊂Tn ×RjV1 j is a synchronization manifold of the coupled
oscillator model [S1].
Note that a synchronized solution takes value in a synchroni-

zation manifold due to rotational symmetry. For two first-order
oscillators [S2], the state space T2, the set ΔGðπ=2Þ, and the
synchronization manifold ½θ*� associated with an angle array
θ* = ðθ*1; θ*2Þ∈T2 are illustrated in Fig. S3.

Existing Synchronization Conditions. The coupled oscillator dy-
namics [S1], and the Kuramoto dynamics [S2] for that matter,
feature (i) the synchronizing effect of the coupling described by
the weighted edges of the graph GðV; E;AÞ and (ii) the de-
synchronizing effect of the dissimilar natural frequencies
ω∈ 1⊥n at the nodes. Loosely speaking, synchronization occurs

when the coupling dominates the dissimilarity. Various con-
ditions are proposed in the power systems and synchronization
literature to quantify this tradeoff between coupling and dissimi-
larity. The coupling is typically quantified by the algebraic con-
nectivity λ2ðLÞ (15, 19–23) or by the weighted nodal degree
degi ≜

Pn
j=1aij (3, 15, 24–26), and the dissimilarity is quantified

by either absolute norms kωkp or incremental (relative) norms
kBTωkp, where, typically, p∈ f2;∞g. Sometimes, these conditions
can be evaluated only numerically because they are state-dependent
(19, 24) or arise from a nontrivial linearization process, such as the
Master stability function formalism (22, 23, 27). In general, con-
cise and accurate results are only known for specific topologies,
such as complete graphs (9, 28), linear chains (29, 30), and com-
plete bipartite graphs (31) with uniform weights.
For arbitrary coupling topologies, only sufficient conditions are

known (15, 19, 20, 24), as well as numerical investigations for
random networks (21, 32–34). To best of our knowledge, the
sharpest and provably correct synchronization conditions for ar-
bitrary topologies assume the form λ2ðLÞ>

�P
fi;jg∈Ejωi −ωjj2

�
1=2

(ref. 10, theorem 4.7). For arbitrary undirected, connected,
and weighted graphsGðV; E;AÞ, simulation studies indicate that the
known sufficient conditions (15, 19, 20, 24) are conservative esti-
mates on the threshold from incoherence to synchrony, and every
review article on synchronization concludes with the open problem
of finding sharp synchronization conditions (6, 7, 9, 22, 23, 35).

Mathematical Analysis of Synchronization
This section presents our analysis of the synchronization problem
in the coupled oscillator model [S1].

Algebraic Approach to Synchronization. Here, we present a pre-
viously unexplored analysis approach that reduces the synchro-
nization problem to an equivalent algebraic problem that reveals
the crucial role of cycles and cut-sets in the graph topology. In
a first analysis step, we reduce the synchronization problem for
the coupled oscillator model [S1] to a simpler problem, namely,
stability of a first-order model. It turns out that existence and
local exponential stability of synchronized solutions of the cou-
pled oscillator model [S1] can be entirely described by means of
the first-order Kuramoto model [S2].

Lemma 1 (Synchronization Equivalence). Consider the coupled os-
cillator model [S1] and the Kuramoto model [S2]. The following
statements are equivalent for any γ ∈ ½0; π=2½ and any synchro-
nization manifold ð½θ�; 0jV1jÞ⊂ΔGðγÞ×RjV1j:

i) ½θ� is a locally exponentially stable synchronization manifold of
the Kuramoto model [S2].

ii) ð½θ�; 0jV1jÞ is a locally exponentially stable synchronization mani-
fold of the coupled oscillator model [S1].

If the equivalent statements (i) and (ii) are true, then locally
near their respective synchronization manifolds, the coupled
oscillator model [S1] and the Kuramoto model [S2], together
with the frequency dynamics d

dtθ
_= −M−1Dθ_, are topologically

conjugate.
Loosely speaking, the topological conjugacy result means that

the trajectories of the two plots in Fig. S4 can be continuously
deformed to match each other while preserving parameterization of
time. Lemma 1 is illustrated in Fig. S4, and its proof can be found
in the study by Dörfler and Bullo (ref. 9, theorems 5.1 and 5.3).
By Lemma 1, the local synchronization problem for the cou-

pled oscillator model [S1] reduces to the synchronization
problem for the first-order Kuramoto model [S2]. Henceforth, we
restrict ourselves to the Kuramoto model [S2]. The following
result is known in the synchronization literature (15, 20) as well
as in power systems, where the saturation of a transmission line
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corresponds to a singularity of the load flow Jacobian, resulting
in a saddle-node bifurcation (12, 13, 18, 19, 24, 36–42).

Lemma 2 (Stable Synchronization in (ΔGπ=2)). Consider the Kuramoto
model [S2] with a connected graph GðV; E;AÞ, and let γ ∈
½0; π=2½.
The following statements hold:

1) Jacobian: The Jacobian of the Kuramoto model evaluated at
θ∈Tn is given by

JðθÞ= −B diag
��

aijcos
�
θi − θj

��
fi;jg∈E

�
BT :

2) Stability: If there exists an equilibrium point θ* ∈ΔGðγÞ, it be-
longs to a locally exponentially stable equilibrium manifold
½θ*�∈ΔGðγÞ.

3) Uniqueness: This equilibrium manifold is unique in ΔGðπ=2Þ.
Proof: Because we have that ∂

∂θi ðωi −
Pn

k=1aik sinðθi − θkÞÞ=
−
Pn

k=1aik cosðθi − θkÞ and ∂
∂θj ðωi −

Pn
k=1aik sinðθi − θkÞÞ= aij

cosðθi − θjÞ, the negative Jacobian of the right-hand side of the
Kuramoto model [S2] equals the Laplacian matrix of
the connected graph GðV; E; ~AÞ, where ~aij = aijcosðθi − θjÞ.
Equivalently, in compact notation, the Jacobian is given by
JðθÞ= −B diagðfaijcosðθi−θjÞgfi;jg∈EÞBT . This completes the
proof of statement 1.
The Jacobian JðθÞ evaluated at an equilibrium point θ* ∈ΔGðγÞ

is negative semidefinite with rank n− 1. Its nullspace is 1n and
arises from the rotational symmetry of the right-hand side of the
Kuramoto model [S2] (an illustration is provided in Fig. S3).
Consequently, the equilibrium point θ* ∈ΔGðγÞ is locally (trans-
versally) exponentially stable. Moreover, the corresponding equi-
librium manifold ½θ*�∈ΔGðγÞ is locally exponentially stable. This
completes the proof of statement 2.
To prove statement 3, we denote the right-hand side of [S2]

by f : Tn →Rn, where f is defined component-wise by

fiðθÞ=ωi −
Xn
j=1

aijsin
�
θi − θj

�
; i∈ f1; . . . ; ng:

In ref. 39 (corollary 1), it is shown that f −ω is a one-to-one
function on ΔGðπ=2Þ modulo rotational symmetry, that is, for
θ1 ∈ΔGðπ=2Þ and θ2 ∈ΔGðπ=2Þ, we have that f ðθ1Þ = f ðθ2Þ if and
only if ½θ1�= ½θ2�. This proves uniqueness of the equilibrium
manifold in ΔGðπ=2Þ. ■
By Lemma 2, the problem of finding a locally stable syn-

chronization manifold reduces to that of finding a fixed point
θ* ∈ΔGðγÞ for some γ ∈ ½0; π=2½. The fixed-point equations of
the Kuramoto model [S2] read as follows:

ωi =
Xn
j=1

aijsin
�
θi − θj

�
; i∈ f1; . . . ; ng: [S6]

In a compact notation, the fixed-point equations [S6] are

ω=B diag
��

aij
�
fi;jg∈E

�
sin
�
BTθ

�
: [S7]

The following conditions show that the natural frequenciesω have
to be absolutely and incrementally bounded and the nodal degree
has to be sufficiently large such that fixed points of [S6] exist.

Lemma 3 (Necessary Synchronization Conditions). Consider the
Kuramoto model [S2] with graph GðV; E;AÞ and ω∈ 1⊥n . Let
γ ∈ ½0; π=2½, and define the weighted nodal degree degi ≜

Pn
j=1aij

for each node i∈ f1; . . . ; ng.

The following statements hold:

1) Absolute boundedness: If there exists a synchronized solution
θ∈ΔGðγÞ,

degi sinðγÞ≥ jωij for all i∈ f1; . . . ; ng: [S8]

2) Incremental boundedness: If there exists a synchronized solu-
tion θ∈ΔGðγÞ,�

degi + degj
�
sinðγÞ≥ jωi −ωjj for all fi; jg∈ E: [S9]

Proof: The first condition arises because sinðθi − θjÞ∈
½−sinðγÞ; sinðγÞ� for θ∈ΔGðγÞ, and the fixed-point equation
[S6] has no solution if condition [S8] is not satisfied.
Alternatively, because ω∈ 1⊥n , multiplication of the fixed-point

equation [S7] by the vector ðeni − enj Þ∈ 1⊥n for fi; jg∈ E or,
equivalently, subtraction of the ith and jth fixed-point equation
[S6] yields the following equation for all fi; jg∈ E:

ωi −ωj =
Xn
k=1

�
aik sinðθi − θkÞ− ajk sin

�
θj − θk

��
: [S10]

Again, [S10] has no solution in ΔGðγÞ if condition [S9] is not
satisfied. ■
In the following, we aim to find sufficient and sharp conditions

under which the fixed-point equation [S7] admits a solution
θ* ∈ΔGðγÞ. We resort to a rather straightforward solution ansatz.
By formally replacing each term sinðθi − θjÞ in the fixed-point
equations [S7] by an auxiliary scalar variable ψ ij, the fixed-
point equation [S7] is equivalently written as

ω=B diag
��

aij
�
fi;jg∈E

�
ψ ; [S11]

ψ = sin
�
BTθ

�
; [S12]

where ψ ∈RjEj is a vector with elements ψ ij. We will refer to
[S11] as the auxiliary fixed-point equation and characterize its
properties in the following theorem.

Theorem 1 (Properties of the Fixed-Point Equations). Consider the
Kuramoto model [S2] with graph GðV; E;AÞ and ω∈ 1⊥n , its fixed
point equation [S7], and the auxiliary fixed-point equation [S11].
The following statements hold:

1) Exact solution: Every solution of the auxiliary fixed-point equa-
tion [S11] is of the form

ψ =BTL†ω+ψhom; [S13]

where the homogeneous solution ψhom ∈RjEj satisfies
diagðfaijgfi;jg∈EÞ ψhom ∈KerðBÞ.

2) Exact synchronization condition: Let γ ∈ ½0; π=2½. The following
three statements are equivalent:

(i) There exists a solution θ* ∈ΔGðγÞ to the fixed-point equation
[S7].

(ii) There exists a solution θ∈ΔGðγÞ to

BTL†ω+ψhom = sin
�
BTθ

�
[S14]

for some ψhom ∈ diagðf1=aijgfi; jg∈EÞkerðBÞ.
(iii) There exists a solution ψ ∈RjEjto the auxiliary fixed-point equa-

tion [S11] of the form [S13] satisfying the norm constraint
kψk∞ ≤ sinðγÞ and the cycle constraint arcsinðψÞ∈ ImðBTÞ.
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If the three equivalent statements (i) to (iii) are true, we have the
identities BTθ* =BTθ= arcsinðψÞ. Additionally, ½θ*�∈ΔGðγÞ is a
locally exponentially stable synchronization manifold.
Proof: Statement 1. Every solution ψ ∈RjEj to the auxiliary fixed-
point equation [S11] is of the form ψ =ψhom +ψpt, where ψhom is
the homogeneous solution and ψpt is a particular solution. The
homogeneous solution satisfies B diagðfaijgfi;jg∈EÞψhom = 0n. One
can easily verify that ψpt = BTL†ω is a particular solu-
tion,‡ because B diagðfaijgfi; jg∈EÞψpt = B diagðfaijgfi; jg∈EÞBTL†ω=
LL†ω =

�
In − 1

n 1n× n
�
ω=ω:

Statement 2. Equivalence ½ðiÞ⇔ðiiÞ�:
If there exists a solution θ* of the fixed-point equation [S7], θ*

can be equivalently obtained from [S12], together with the so-
lution [S13] of the auxiliary equation [S11]. These two equations
directly give [S14].
Equivalence ½ðiiÞ⇔ðiiiÞ�:
For θ* ∈ΔGðγÞ, we have from [S14] that kψk∞ ≤ sinðγÞ and

arcsinðψÞ=BTθ*, that is, arcsinðψÞ∈ ImðBTÞ. Conversely, if the
norm constraint kψk∞ ≤ sinðγÞ and the cycle constraint arcsinðψÞ∈
ImðBTÞ are met, [S14] is solvable in ΔGðγÞ, that is, there
is θ* ∈ΔGðγÞ such that arcsinðψÞ=BTθ*. The local exponential
stability of the associated synchronization manifold ½θ*� follows
then directly from Lemma 2. ■
The particular solution BTL†ω to the auxiliary fixed-point

equation [S11] lives in the cut-set space KerðBÞ⊥, and the
homogeneous solution ψhom lives in the weighted cycle space
ψhom ∈ diagðf1=aijgfi;jg∈EÞKerðBÞ. As a consequence, by statement
(iii) of Theorem 1, for each cycle in the graph, we obtain one
degree of freedom in choosing the homogeneous solution ψhom
as well as one nonlinear constraint cTarcsinðψÞ= 0, where
c∈ kerðBÞ is a signed path vector corresponding to the cycle.

Remark 2 (Comments on Necessity). The cycle space KerðBÞ of the
graph serves as a degree of freedom to find a minimum ∞-norm
solution ψ* to [S11] via

minψ∈RjEj kψk∞subject to ω=B diag
��

aij
�
fi;jg∈E

�
ψ : [S15]

By Theorem 1, such a minimum ∞-norm solution ψ* necessarily
satisfies kψ*k∞ ≤ sinðγÞ such that an equilibrium θ* ∈ΔGðγÞ exists.
Hence, the condition kψ*k∞ ≤ sinðγÞ is an optimal necessary syn-
chronization condition.
The optimization problem [S15], the minimum ∞-norm solu-

tion to an underdetermined and consistent system of linear
equations, is well studied in the context of kinematically re-
dundant manipulators. Its solution is known to be nonunique
and contained in a disconnected solution space (43, 44). Un-
fortunately, there is no “a priori” analytical formula to construct
a minimum ∞-norm solution, but the optimization problem is
computationally tractable via its dual problem maxu∈RnuTω
subject to kdiagðfaijgfi;jg∈ EÞBTuk1 = 1.

Synchronization Assessment for Specific Networks. In this section,
we seek to establish that the condition��BTL†ω

��
∞ =

��L†ω
��
E;∞ < 1 [S16]

is sufficient for the existence of locally exponentially stable equi-
libria in ΔGðπ=2Þ. More generally, for a given level of phase
cohesiveness γ ∈ ½0; π=2½, we seek to establish that the condition��BTL†ω

��
∞ =

��L†ω
��
E;∞ ≤ sinðγÞ [S17]

is sufficient for the existence of locally exponentially stable equi-
libria in ΔGðγÞ. Because the right-hand side of [S17] is a concave
function of γ ∈ ½0; π=2½ that achieves its supremum value at
γ* = π=2, it follows that condition [S17] implies [S16].
In the main text, we provide a detailed interpretation of the

synchronization conditions [S16 and S17] from various prac-
tical perspectives. Before continuing our theoretical analysis, we
provide two further abstract but insightful perspectives on the
conditions [S16 and S17].

Remark 3 (Interpretation of the Synchronization Condition). Graph-
theoretical interpretation. With regard to the exact and state-de-
pendent norm and cycle conditions in statement (iii) of Theorem 1,
the proposed condition [S17] is simply a norm constraint on the
network parameters in cut-set space ImðBTÞ of the graph topology,
and cycle components are discarded.
Circuit-theoretical interpretation. In a circuit or power network, the
variable ω∈Rn corresponds to nodal power injections. Let x∈RjEj

satisfy Bx=ω; x then corresponds to equivalent power injections
along lines fi; jg∈ E.§ Condition [S16] can then be rewritten as
kBTL†Bxk∞ < 1. The matrix BTL†B∈RjEj× jEj has elements
ðe in − e jnÞTL†ðe kn − e ℓnÞ for fi; jg; fk; ℓg∈ E, its diagonal elements are
the effective resistances Rij, and its off-diagonal elements are the
network distribution (sensitivity) factors (ref. 45, appendix 11A).
Hence, from a circuit-theoretical perspective, condition [S16] re-
stricts the pairwise effective resistances and the routing of power
through the network similar to the resistive synchronization con-
ditions developed elsewhere (3, 24, 25).
As it turns out, the exact state-dependent synchronization

conditions in Theorem 1 can be easily evaluated for the sparsest
(acyclic) and densest (homogeneous) topologies and for “worst-
case” (cut-set inducing) and “best-case” (identical) natural fre-
quencies. For all these cases, the scalar condition [S17] is
sharp. To quantify a “sharp” condition in the following theorem,
we distinguish between exact (necessary and sufficient) conditions
and tight conditions, which are sufficient in general and become
necessary over a set of parametric realizations.

Theorem 2 (Synchronization Condition for Extremal Network Topologies
and Parameters). Consider the Kuramoto model [S2] with con-
nected graph GðV; E;AÞ and ω∈ 1⊥n . Consider the inequality
condition [S17] for γ ∈ ½0; π=2½.
The following statements hold:

G1) Exact synchronization condition for acyclic graphs: Assume
that GðV; E;AÞ is acyclic. There exists a locally exponentially
stable equilibrium θ* ∈ΔGðγÞ if and only if condition [S17]
holds. Moreover, in this case, we have that BTθ* =
arcsinðBTL†ωÞ∈ΔGðγÞ.

G2) Tight synchronization condition for homogeneous graphs:
Assume that GðV; E;AÞ is a homogeneous graph, that is, there is
K > 0 such that aij =K for all distinct i; j∈ f1; . . . ; ng. Consider
a compact interval Ω⊂R, and let Ω= ðΩ1; . . . ;ΩnÞ⊂Rn be the
set of all vectors with components Ωi ∈Ω for all i∈ f1; . . . ; ng.
For all ω∈Ω, there exists a locally exponentially stable equilib-
rium θ* ∈ΔGðγÞ if and only if condition [S17] holds.

G3) Exact synchronization condition for cut-set inducing natural
frequencies: Let Ω1;Ω2 ∈R, and let Ω= ðΩ1; . . . ;ΩnÞ⊂Rn

‡Likewise, it can also be shown that (B diag({aij}{i,j }∈E))
†ω and diag({aij}{i,j }∈E)

−1B†ω are
other possible particular solutions. All these solutions differ only by the addition of
a homogeneous solution. Each one can be interpreted as the solution to a weighted
least-squares problem (43). Further solutions can also be constructed in a graph-theoret-
ical way by spanning-tree decomposition (2). Our specific choice ψpt =BTL†ω has the
property that ψpt ∈ Im(BT) lives in the cut-set space, and it is the most useful particular
solution with which to proceed with our synchronization analysis. §Notice that x is not uniquely determined if the circuit features loops.
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be the set of bipolar vectors with components Ωi ∈ fΩ1;Ω2g
for i∈ f1; . . . ; ng. For all ω∈LΩ, there exists a locally expo-
nentially stable equilibrium θ* ∈ΔGðγÞ if and only if condi-
tion [S17] holds. Moreover, Ω induces a cut-set: If
jΩ2 −Ω1j= sinðγÞ, for any particular Ω* ∈Ω and ω=LΩ*,
we obtain the equilibrium θ* ∈ΔGðγÞ satisfying BTθ* =
arcsinðBTΩ*Þ, that is, for all fi; jg∈ E, jθ*i − θ*j j= 0 if
Ω*

i =Ω*
j and jθ*i − θ*j j= γ if Ω*

i ≠Ω*
j .

G4) Asymptotic correctness: In the limit kBTL†ωk∞ → 0, that is,
for identical natural frequencies and/or asymptotically strong
network coupling, there is a locally exponentially stable equilib-
rium θ* satisfying

lim
kBTL†ωk∞→0

�
BTθ*

�
i

ðarcsinðBTL†ωÞÞi
= 1; i∈ f1; . . . ; jEjg:

Proof: Statement G1. For an acyclic graph, we have that KerðBÞ= .
According to Theorem 1, there exists an equilibrium θ* ∈ΔGðγÞ if
and only if condition [S17] is satisfied. In this case, we obtain
BTθ* = arcsinðBTL†ωÞ. This completes the proof of statement G1.
Statement G2. In the homogeneous case, we have that
L=KðnIn − 1n×nÞ and L† = 1

Kn

�
In − 1

n 1n× n
�
(ref. 3, lemma 3.13).

Thus, the inequality condition [S17] can be equivalently rewritten
as sinðγÞ≥ kBTL† ·ωk∞ = 1

Kn kBTωk∞. According to Dörfler and
Bullo (ref. 9, theorem 4.1), the Kuramoto model [S2] with ho-
mogeneous coupling aij =K features an exponentially stable
equilibrium θ* ∈ΔGðγÞ, γ ∈ ½0; π=2½, for all ω∈Ω if and only
if the condition K > kBTωk∞=n is satisfied. This concludes the
proof of statement G2.
Statement G3. For notational convenience, let c≜Ω1 −Ω2. Then,
for any Ω* ∈Ω and for ω=LΩ*, we have that BTL†ω=
BTL†LΩ* =BTΩ* is a vector with components f−c; 0; + cg.
Now, consider the solution ψ =BTL†ω=BTΩ* to the auxiliary
fixed-point equation [S11], and notice that arcsinðψÞ=
arcsinðBTΩ*Þ has components f−arcsinðcÞ; 0; +  arcsinðcÞg. In
particular, we have that arcsinðψÞ∈ ImðBTÞ, and the exact
synchronization condition from Theorem 1 is satisfied if and
only if kψk∞ = c≤ sinðγÞ, which corresponds to condition
[S17]. The cut-set property follows because BTθ* = arcsinðψÞ
has components f−arcsinðcÞ; 0; + arcsinðcÞg= f−γ; 0;+ γg. This
concludes the proof of statement G3.
Statement G4. Because arcsinðxÞ=x= 1+ x2=6+OðxÞ4, we have that
ðarcsinðBTL†ωÞÞi=ðBTL†ωÞi = 1+OððBTL†ωÞ2i Þ for each compo-
nent i∈ f1; . . . ; jEjg. Thus, in the limit BTL†ω→ 0jEj, it follows
that arcsinðBTL†ωÞ∈ ImðBTÞ, and the cycle constraint
arcsinðψÞ= arcsinðBTL†ω+ψhomÞ∈ ImðBTÞ is met with ψhom = 0jEj.
ForBTL†ω→ 0jEj, the norm constraint kBTL†ωk∞ ≤ sinðγÞ is satisfied
as well with γ↘ 0, and we obtain{ for each i∈ f1; . . . ; jEjg that

limBTL†ω→0jEj

�
BTθ*

�
i=
�
arcsin

�
BTL†ω

��
i = 1:

This concludes the proof of statement G4 and Theorem 2. ■
Theorem 1 shows that the solvability of the fixed-point equa-

tion [S17] is inherently related to the cycle constraints. The
following lemma establishes feasibility of a single cycle.

Lemma 4 (Single Cycle Feasibility). Consider the Kuramoto model
[S2] with a cycle graph GðV; E;AÞ and ω∈ 1⊥n . Without loss of
generality, assume that the edges are labeled by fi; i+ 1gðmod nÞ
for i∈ f1; . . . ; ng and KerðBÞ= spanð1nÞ. Define x∈ 1⊥n and y∈Rn

>0

uniquely by x≜BTL†ω and yi ≜ ai;ði+1ÞðmodnÞ > 0 for i∈ f1; . . . ; ng.
Let γ ∈ ½0; π=2½.
The following statements are equivalent:

(i) There exists a locally exponentially stable equilibrium
θ* ∈ΔGðγÞ.

(ii) The function f : ½λmin; λmax�→R with domain boundaries λmin =
max

i∈f1;...;ng
−sinðγÞ− xi

yi
and λmax = min

i∈f1;...;ng
sinðγÞ− xi

yi
, and defined by

f ðλÞ=Pn
i=1arcsinðxi + λyiÞ, satisfies f ðλminÞ< 0< f ðλmaxÞ.

If both equivalent statements (i) and (ii) are true, then BTθ* =
arcsinðx+ λ*yÞ, where λ* ∈ ½λmin; λmax� satisfies f ðλ*Þ= 0.
Proof:According to Theorem 1, there exists a locally exponentially
stable equilibrium θ* ∈ΔGðγÞ if and only if there exists a solution
ψ = x+ λy, λ∈R, to the auxiliary fixed-point equation [S11] sat-
isfying the norm constraint kψk∞ ≤ sinðγÞ and the cycle con-
straint arcsinðψÞ∈ ImðBTÞ.
Equivalently, because KerðBÞ= spanð1nÞ, there is λ∈R sat-

isfying the norm constraint kx+λyk∞ ≤  sinðγÞ <  1 and the cycle
constraint 1Tn arcsinðx+ yλÞ= 0. Equivalently, the function
f ðλÞ= 1Tn arcsinðx+ yλÞ features a zero λ* ∈ ½λmin; λmax� (corre-
sponding to the cycle constraint), where the constraints on λmin
and λmax guarantee the norm constraints xi + yiλmax ≤ sinðγÞ and
xi + yiλmin ≥ − sinðγÞ for all i∈ f1; . . . ; ng. Equivalently, by the
intermediate value theorem and due to continuity and (strict)
monotonicity of the function f, we have that f ðλminÞ< 0< f ðλmaxÞ.
Finally, if λ* ∈ ½λmin; λmax� is found such that f ðλ*Þ= 0, by Theorem 1,
BTθ* = arcsinðψÞ= arcsinðx+ λ*yÞ. ■
Lemma 4 offers a checkable synchronization condition for

cycles, which leads to the following theorem.

Theorem 3 (Synchronization Conditions for Cycle Graphs). Consider
the Kuramoto model [S2] with a cycle graph GðV; E;AÞ and ω∈ 1⊥n .
Consider the inequality condition [S17] for γ ∈ ½0; π=2½.
The following statements hold:

C1) Exact synchronization condition for symmetrical natural
frequencies: Assume that ω∈ 1⊥n is such that BTL†ω is a sym-
metrical vector.jj There is a locally exponentially stable equi-
librium θ* ∈ΔGðγÞ if and only if condition [S17] holds.
Moreover, in this case, BTθ* = arcsinðBTL†ωÞ.

C2) Tight synchronization condition for low-dimensional cycles:
Assume the network contains n∈ f3; 4g oscillators. Consider
a compact interval Ω⊂R, and let Ω= ðΩ1; . . . ;ΩnÞ⊂Rn be the
set of vectors with components Ωi ∈Ω for all i∈ f1; . . . ; ng. For
all ω∈LΩ, there exists a locally exponentially stable equilibrium
θ* ∈ΔGðγÞ if and only if condition [S17] holds.

C3)General cycles and network parameters: In general, for n≥ 5
oscillators, condition [S16] does not guarantee the existence of
an equilibrium θ* ∈ΔGðπ=2Þ. As a sufficient condition, there
exists a locally exponentially stable equilibrium θ* ∈ΔGðγÞ,
γ ∈ ½0; π=2½, if
��BTL†ω

��
∞ ≤

minfi;jg∈Eaij
maxfi;jg∈Eaij +minfi;jg∈Eaij

· sinðγÞ: [S18]

Proof. To prove the statements of Theorem 3 and to show the
existence of an equilibrium θ* ∈ΔGðγÞ, we invoke the equivalent
formulation via the function f ðλÞ as constructed in Lemma 4. In
particular, we seek to prove the following statement:
Let λmin =maxi∈f1;...;ng

−sinðγÞ− xi
yi

and λmax =mini∈f1;...;ng
sinðγÞ− xi

yi
.

The function f : ½λmin; λmax�→R defined by f ðλÞ=Pn
i=1

{The limit kBTL†ωk∞ → 0 implies that the resulting equilibrium θ* ∈ΔGð0Þ corresponds to
phase synchronization θi = θj for all i,j ∈ {1, . . . ,n}. The converse statement θ* ∈ΔG(0) ⇒
ω= 0n is also true, and its proof can be found in the paper by Dörfler and Bullo (ref. 9,
theorem 5.5).

jjA vector x ∈ 1n
⊥ is symmetrical if its histogram is symmetrical, that is, up to permutation

of its elements, x is of the form x = [−c,+c]T for n even and some vector c∈Rn/2 and
x = [−c,0,+c]T for n odd and some c∈R(n−1)/2.
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arcsinðxi + λyiÞ satisfies f ðλminÞ< 0< f ðλmaxÞ (equivalently, there is
λ* ∈ ½λmin; λmax� such that f ðλ*Þ= 0) if and only if the condition
kxk∞ = kBTL†ωk∞ ≤ sinðγÞ is satisfied.
Statement C1. For a symmetrical vector x=BTL†ω, all odd mo-
ments about the (zero) mean vanish, that is,

Pn
i=1x

2p+1
i = 0

for p∈ℕ0. Because the Taylor series of the arcsin about zero
features only odd powers, we have f ð0Þ=Pn

i=1arcsinðxiÞ=
Pn

i=1P∞
p=0

ð2pÞ!
22pðp!Þ2ð2p+ 1Þ x

2p+1
i = 0. Statement C1 follows then immedi-

ately from Lemma 4.
Statement C2. By statement C1, statement C2 is true if BTL†ω is
symmetrical. Statement C2 can then be proved in a combinato-
rial fashion by considering all deviations from symmetry arising
for three or four oscillators. To continue, recall that arcsinðxÞ is
a superadditive function for x∈ ½0; 1� and a subadditive function
for x∈ ½−1; 0�, that is, arcsinðxÞ+ arcsinðyÞ< arcsinðx+ yÞ for
x; y> 0 and x+ y≤ 1, arcsinðxÞ+ arcsinðyÞ> arcsinðx+ yÞ for
x; y< 0 and x+ y≥ − 1, and arcsinðxÞ+ arcsinðyÞ= arcsinðx+ yÞ
for x= y= 0. We now consider each case n∈ f3; 4g separately.

Proof of sufficiency for n = 3: Assume that kxk∞ ≤ sinðγÞ. Because
the case f ðλ= 0Þ= 1TnarcsinðxÞ= 0 for a symmetrical vector x∈R3

is already proved, we consider now the asymmetrical case
f ðλ= 0Þ= 1Tn arcsinðxÞ> 0 [the proof of the case 1Tn arcsinðxÞ< 0 is
analogous]. Necessarily, it follows that at least two elements of x
are negative. If one element of x is 0, say x1 = 0, we fall back into
the symmetrical case x2 = − x3; on the other hand, if only one
element is negative, say x1 < 0 and x2; x3 > 0, we arrive at a contra-
diction f ðλ= 0Þ=Pn

i=1arcsinðxiÞ= − arcsinðx2 + x3Þ+ arcsinðx2Þ+
arcsinðx3Þ< 0 due to superadditivity and because x1 = − x2 − x3.
Hence, without loss of generality, let x= ½a+b; − a; − b�T , where
a; b> 0. By assumption, kxk∞ ≤ sinðγÞ. It follows that a+ b≤ sinðγÞ,
a< sinðγÞ, b< sinðγÞ, and λmin =maxi∈f1;...;ng

−sinðγÞ− xi
yi

< 0.

Due to superadditivity, f ðλ= 0Þ= 1Tn arcsinðxÞ= arcsinða+ bÞ−
ðarcsinðaÞ+ arcsinðbÞÞ> 0. Now, we evaluate f ðλÞ at the lower end
of its domain ½λmin; λmax� and obtain

f ðλminÞ= arcsinða+ b+ y1λminÞ+ arcsinð−a+ y2λminÞ
+ arcsinð−b+ y3λminÞ:

[S19]

By the definition of λmin, at least one summand on the right-
hand side of [S19] equals −γ. Furthermore, notice that the sec-
ond and third summands are negative and that the first summand
satisfies arcsinða+ b+ y1λminÞ≥ − γ. If arcsinða+ b+ y1λminÞ= − γ,
clearly, f ðλminÞ< 0. In the other case, arcsinða+ b+ y1λminÞ> − γ,
it follows that

f ðλminÞ< arcsinða+ b+ y1λminÞ− γ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<0

+ maxfarcsinð−a+ y2λminÞ; arcsinð−b+ y3λminÞg< 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<0

:

Because f ðλminÞ< 0< f ð0Þ≤ f ðλmaxÞ, it follows from Lemma 4
that there exists a stable equilibrium θ* ∈ΔGðγÞ. The sufficiency
is proved for n= 3.

Proof of sufficiency for n = 4: Assume that kxk∞ ≤ sinðγÞ. Without
loss of generality, let argmaxif1;...;4gfjxijg be a singleton (other-
wise, x is necessarily symmetrical) and let x∈ 1⊥n be such that
f ðλ= 0Þ= 1Tn arcsinðxÞ> 0 (the proof of the case 1Tn arcsinðxÞ< 0
is analogous). Necessarily, it follows that at least two elements of
x are negative. If only one element of x is negative, say x1 < 0, and
x2; x3; x4 ≥ 0, we arrive at a contradiction because f ðλ= 0Þ=Pn

i=1arcsinðxiÞ= − arcsinðx2 + x3 + x4Þ+ arcsinðx2Þ+ arcsinðx3Þ+
arcsinðx4Þ is 0 only in the symmetrical case (e.g., x2 = x3 =
0< x4 = − x1) and is strictly negative otherwise (due to super-

additivity). If exactly one element of x is positive (and three are
nonpositive), say x= ½a+b+c; − a; − b; − c�T for a; b; c≥ 0 and
a+ b+ c= kxk∞ ≤ sinðγÞ, an analogous reasoning to the case
n= 3 leads to f ðλminÞ< 0.
It remains to consider the case of two positive and two negative

entries. Without loss of generality, let x1 ≥ x2 > 0> x3 ≥ x4, where
x1 ≠ − x4 and x2 ≠ − x3 (this is the symmetrical case),

Pn
i=1xi = 0,

and kxk∞ ≤ sinðγÞ by assumption. It follows that λmin =
maxi∈f1;...;ng

−sinðγÞ− xi
yi

≤ 0. Because f ðλ= 0Þ= 1Tn arcsinðxÞ> 0 and
1Tn x= 0, it follows from superadditivity that kxk∞ =maxfx1; x2g,
and the set argmaxfx1; x2g must be a singleton (otherwise, we
arrive again at a contradiction or at the symmetrical case).
Suppose that kxk∞ =maxfx1; x2g= x1; then, necessarily jx2j< jx3j≤
jx4j< jx1j≤ sinðγÞ. It follows that λmin < 0.
Again, we evaluate the sum f ðλminÞ=

P4
i=1arcsinðxi + yiλminÞ.

Note that the last two summands, arcsinðx3 + y3λminÞ and
arcsinðx4 + y4λminÞ, are negative (because 0> x3 ≥ x4 and λmin < 0)
and the first two summands satisfy minfarcsinðx1 + y1λminÞ;
arcsinðx2 + y2λminÞg≥ − γ. If minfarcsinðx1 + y1λminÞ; arcsinðx2 +
y2λminÞg= − γ, we have

f ðλminÞ= arcsinðx3 + y3λminÞ+ arcsinðx4 + y4λminÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<0

+ ð−γ +maxfarcsinðx1 + y1λminÞ; arcsinðx2 + y2λminÞgÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<0

< 0:

In the case thatminfarcsinðx1 + y1λminÞ; arcsinðx2 + y2λminÞg>− γ,
we obtain mini∈f3;4gfarcsinðxi + yiλminÞg= − γ and

f ðλminÞ< arcsinðx1 + y1λminÞ+ arcsinðx2 + y2λminÞ− γ
+ max

i∈f3;4g
farcsinðxi + yiλminÞg:

Because jx2j< jx3j≤ jx4j< jx1j≤ sinðγÞ, it readily follows that
arcsinðx1 + y1λminÞ− γ < 0 and arcsinðx2 + y2λminÞ+maxi∈f3;4g
farcsinðxi + yiλminÞg< 0. We conclude that f ðλminÞ< 0. Because
f ðλminÞ< 0< f ð0Þ≤ f ðλmaxÞ, it follows from Lemma 4 that there
exists a stable equilibrium θ* ∈ΔGðγÞ. The sufficiency is proved
for n= 4.

Proof of necessity for n∈ f3; 4g: We prove the necessity by con-
tradiction. Consider a compact cube Q= ½−c;+c�jEj ⊂RjEj, where
c> 0 satisfies c> sinðγÞ. Assume that for every x∈ 1⊥n , even those
satisfying kxk∞ ≥ c, there exists λ∈R such that the cycle constraint
1Tn arcsinðx+ λyÞ= 0 and the norm constraint kx+ λyk∞ ≤ sinðγÞ are
simultaneously satisfied. For the sake of contradiction, con-
sider now the symmetrical case, where x∈ 1⊥n has components
xi ∈ f−c; + c; 0g. As proved in statement C1, λ* = 0 uniquely
solves the cycle constraint equation 0= f ðλ* = 0Þ=Pn

i=1
arcsinðxi + λ*yÞ=Pn

i=1arcsinð± cÞ for any value of c∈ ½0; 1�.
However, the norm constraint kx+λ*yk∞ = kxk∞ ≤ sinðγÞ can be
satisfied only if kxk∞ ≤ sinðγÞ< c. We arrive at a contradiction
because we assumed kxk∞ ≥ c> sinðγÞ.
We conclude that if x=BTL†ω is bounded within a compact

cube Q= ½−c;+c�jEj⊂RjEj with c≤ sinðγÞ, the condition [S17] is
also necessary for synchronization of all considered parametric
realizations of BTL†ω within this compact cube Q. For the
compact set Ω=Ωn⊂Rn, it follows that the image BTL† ·LΩ=
BTΩ equals the compact cube Q= ½−ðmaxω∈Ωω−minω∈ΩωÞ;+
ðmaxω∈Ωω−minω∈ΩωÞ�jEj. Hence, the condition [S17] is nec-
essary for synchronization of all considered parametric real-
izations of ω in the compact set LΩ. This concludes the proof
of statement C2.
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Statement C3.To prove the first part of statement C3, we construct
an explicit counterexample. Consider a cycle of length n≥ 5 with
unit-weighed edges ai;i+1 = 1, and let

ω= α ·


1+

1
n− 3

0 −2 1−
1

n− 3
0n− 4

�T
;

where α∈ ½0; 1�. For α< 1, these parameters satisfy the necessary
conditions [S8 and S9]. For the given parameters, we obtain the
nonsymmetrical vector x=BTL†ω given by

x=BTL†ω= α ·


−1 −1 1

1
n− 3

1ðn− 3Þ

�T
: [S20]

Notice that kxk∞ = α< 1, x is nonsymmetrical and x is the min-
imum ∞-norm vector ψ = x+ λ1n for λ∈R.
In the following, we will show that there exists no equilibrium

in limγ↑π=2ΔGðγÞ=ΔGðπ=2Þ. Consider the function f ðλÞ= arcsin
ð1Tn x+ λ1nÞ whose domain is centered symmetrically around 0, that
is, λmax = − λmin = limγ↑π=2ðsinðγÞ− αÞ= 1− α. Note that the do-
main of f vanishes as α ↑ 1. For n→∞, we have that limn→∞f ð0Þ=
−arcsinðαÞ+ limn→∞ðn− 3Þ · arcsinðα=ðn− 3ÞÞ= − arcsinðαÞ+ α.
Hence, because n→∞ and α ↑ 1, we obtain f ð0Þ= − π

2+ 1< 0.
Due to continuity of f with respect to α, n, and λ, we conclude that
for n≥ 5 sufficiently large and α< 1 sufficiently large, there is no λ*

such that f ðλ*Þ= 0. Hence, the condition kxk∞ = kBTL†ωk∞ < 1
does generally not guarantee the existence of θ* ∈ΔGðπ=2Þ⊃
ΔGðπ=2Þ. A second numerical counterexample will be constructed
in the example below.
A sufficient condition for the existence of an equilibrium

θ* ∈ΔGðγÞ is xi + λminyi ≤ 0≤ xi + λmaxyi for each i∈ f1; . . . ; ng,
which is equivalent to condition [S18] Indeed, if condition [S18]
holds, we obtain f ðλminÞ=

Pn
i=1arcsinðxi + λminyiÞ as a sum of

nonpositive terms and f ðλmaxÞ=
Pn

i=1arcsinðxi + λmaxyiÞ as a sum
of nonnegative terms. Because 1Tn x= 0 and generally x≠ 0n
(otherwise we fall back into the symmetrical case), at least one
xi is strictly negative and at least one xi is strictly positive, and
it follows that f ðλminÞ< 0< f ðλmaxÞ. Statement C3 follows then
immediately from Lemma 4. This concludes the proof. ■
In the following, define a patched network fGðV; E;AÞ;ωg as

a collection of subgraphs and natural frequencies ω∈ 1⊥n , where
(i) each subgraph is connected; (ii) in each subgraph, one of the
conditions G1, G2, G3, G4, C1, or C2 is satisfied; (iii) the sub-
graphs are connected to one another through edges fi; jg∈ E
satisfying kðejEji − ejEjj ÞTL†ωk∞ ≤ sinðγÞ; and (iv) the set of cycles in
the overall graph GðV; E;AÞ is equal to the union of the cycles
of all subgraphs. Because a patched network satisfies the syn-
chronization condition [S17], as well the norm and cycle con-
straints, we can state the following result.

Corollary 1 (Synchronization Condition for a Patched Network).
Consider the Kuramoto model [S2] with a patched network
fGðV; E;AÞ;ωg, and let γ ∈ ½0; π=2½. There is a locally exponentially
stable equilibrium θ* ∈ΔGðγÞ if condition [S17] holds.

Example 1 (Numerical Cyclic Counterexample and Its Intuition). In
the proof of Theorem 3, we provided an analytical counterexample
demonstrating that condition [S17] is not sufficiently tight for syn-
chronization in sufficiently large cyclic networks. Here, we provide
an additional numerical counterexample. Consider a cycle family of
length n= 5+ 3 · p, where p∈ℕ0 is a nonnegative integer. Without
loss of generality, assume that the edges are labeled by
fi; i+ 1gðmod nÞ for i∈ f1; . . . ; ng such that KerðBÞ= spanð1nÞ.
Assume that all edges are unit-weighed ai;i+1 ðmod nÞ = 1 for
i∈ f1; . . . ; ng. Consider α∈ ½0; 1½, and let

ω= α · ½−1=2 2 0p+ 1 3=2 02p+ 1 �T :

For n= 5 ðp= 1Þ, the graph and the network parameters are il-
lustrated in Fig. S5. For the given network parameters, we obtain the
nonsymmetrical vector BTL†ω given by

BTL†ω= α ·
�
1 −1 −1ðn− 2Þ=3 1=2 · 12ðn− 2Þ=3

T
:

Analogous to the example provided in the proof of Theorem 3,
kBTL†ωk∞ = α and BTL†ω is the minimum ∞-norm vector
BTL†ω+ λ1n for λ∈R. In the limit α↑1, the necessary condition
[S8] is satisfied with equality. In Fig. S5, for α↑1, we have that
ω2 = 2, and the necessary condition [S8] reads as a12 + a23 =
jω2j= 2; the corresponding equilibrium equation sinðθ1 − θ2Þ+
sinðθ3 − θ2Þ= 2 can be satisfied only if θ1 − θ2 = π=2 and θ3 − θ2 =
π=2. Thus, with two fixed-edge differences, there is no more “wiggle
room” to compensate for the effects of ωi, i∈ f1; 3; 4; 5g. As
a consequence, there is no equilibrium θ* ∈ΔGðπ=2Þ for α= 1 or,
equivalently, kBTL†ωk∞ = 1. Due to continuity of the equations
[S6] with respect to α, we conclude that for α< 1 sufficiently
large, there is no equilibrium either. Numerical investigations
show that this conclusion is true, especially for very large cycles. For
the extreme case p= 107, we obtain the critical threshold α≈ 0:9475,
where θ* ∈ΔGðπ=2Þ ceases to exist.
Notice that both the counterexample used in the proof of

Theorem 3 and the one provided in Example 1 are at the
boundary of the admissible parameter space, where the nec-
essary condition [S8] is marginally satisfied. In the next sec-
tion, we establish that such “degenerate” counterexamples
almost never occur for generic network topologies and pa-
rameters.
To conclude this section, we remark that the main technical

difficulty in proving sufficiency of the condition [S17] for arbitrary
graphs is the compact state space Tn and the nonmonotone si-
nusoidal coupling among the oscillators. Indeed, if the state
space was Rn and if the oscillators were coupled via non-
decreasing and odd functions, the synchronization problem
would be simplified tremendously and the counterexamples in
the proof of Theorem 3 and in Example 1 would not occur [an
elegant analysis based on optimization theory is presented by
Bürger et al. (46)].

Robust Synchronization in the Presence of Uncertainty
To evaluate the synchronization condition [S17], all network
parameters aij and ωi need to be known exactly. In many appli-
cations, this global knowledge is an unrealistic assumption and
the network parameters may be uncertain, or even not constant
over time. For instance, in power networks, the load and gen-
eration profiles Pm;i and Pl;i, as well as the voltage magnitudes
jVij, may be known only with a certain degree of accuracy; they
have underlying unmodeled (or even unknown) dynamics; and
they can be regarded as constant only over short time intervals.
Hence, the associated natural frequencies ωi and the coupling
weights aij = jVij · jVjj · IðYijÞ are known only within certain
ranges, and a synchronization test should be robust with respect
to parametric variations.
In the following, we take parametric uncertainties into account

and extend the synchronization condition [S17] to interval-valued
network parameters. We consider a set of interval-valued natural
frequencies defined by

Ω=
�
ω∈ 1⊥n : ωi ≤ωi ≤ωi ∀ i∈ f1; . . . ; ng�;
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that is, for a vector ω∈Ω, each entry is subject to upper and
lower bounds. Accordingly, consider a set of edge weights defined
by the interval-valued adjacency matrix**

A=
�
A∈Rn× n : 0< aij ≤ aij = aji ≤ aij ∀fi; jg∈ E;  

aij = aji = 0∀ fi; jg∉ E
�
:

Notice that both Ω and A are convex sets and simply hyper-
cubes in the vector spaces 1⊥n and Rn× n. We define the associated
discrete sets of vertices of Ω and A by

vertðΩÞ= �
ω∈ 1⊥n : ωi ∈

�
ωi ;ωi

�
∀ i ∈ f1; . . . ; ng�

vertðAÞ= �
A∈Rn× n : aij = aji ∈

�
aij ; aij

�
∀ fi; jg∈ E

aij = aji = 0 ∀fi; jg∉ E�:
Accordingly, consider the associated interval-valued Laplacian

L=

8<:L∈Rn× n : L= diag

0@(Xn
j=1

aij

)n

i=1

1A−A; A∈A
9=;

and its discrete vertex set

vertðLÞ=
(
L∈Rn× n : L= diag

 (Xn
j=1

aij

)n
i=1

!
−A; A∈ vertðAÞ

)
:

In the following, denote the convex hull of a set S by convðSÞ. By
construction, we have that Ω= convðvertðΩÞÞ, A= convðvertðAÞÞ,
and L= convðvertðLÞÞ.
Next, we consider a connected interval-valued network

fGðV; E;AÞ;ωg with A∈A and ω∈Ω. Consider the associated
interval-valued Laplacian equation

Lx=ω; [S21]

where x∈ 1⊥n is a variable and L∈L and ω∈Ω are parameters.
The set of solutions x∈X to [S21] is given by

X =
�
x∈ 1⊥n : x=L†ω;L∈L;ω∈Ω

�
:

Accordingly, define the associated discrete vertex set

vertðXÞ=�x∈ 1⊥n : x=L†ω;L∈ vertðLÞ;ω∈ vertðΩÞ�:
The following lemma for interval-valued linear systems is

known for nonsingular and interval-valued M-matrices (47) and
circuit-tableau matrices (48, 49). To best of our knowledge, this
result is unknown for Laplacian matrices (corresponding to
singular M-matrices or circuit-tableau matrices).

Lemma 5 (Interval-Valued Laplacian Equations). Consider the in-
terval-valued Laplacian equation [S21]. The set of solutions X is
contained in the convex hull of its vertex set vertðXÞ, that is,
convðXÞ= convðvertðXÞÞ.

Proof: We first analyze the interval-valued Laplacian equation
[S21] for the case that Ω is a singleton, that is, we consider
a fixed value of ω∈ 1⊥n and parametric variations of L∈L. Ac-
cording to Dörfler and Bullo (ref. 3, lemma III.9), we have for
any Laplacian L corresponding to a connected, undirected, and
weighted graph and for any arbitrary constant δ≠ 0 that

ðL+ ðδ=nÞ1n× nÞ−1 =L† + ð1=δnÞ1n×n:

Consequently, for any L∈L and ω∈ 1⊥n , we have that

x= L†ω=
�
L† +

�
1=δn

�
1n× n

�
ω

= ðL+ ðδ=nÞ1n× nÞ−1ω

=

 X
fi;jg∈ E

aij
�
eni − enj

�
·
�
eni − enj

�T
+ ðδ=nÞ1n1Tn

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

=Q

−1

ω:

Thus, x∈ 1⊥n is the solution to the equation Qx=ω, where Q
is a regular interval-valued matrix, and in each parametric vari-
ation 0< aij ≤ aij = aji ≤ aij, fi; jg ∈  E enters additively via a
rank-one matrix. Hence, the regularity assumptions of the in-
terval-valued analyses in the study by Brayton et al. (ref. 48,
theorem 1) and Dreyer (ref. 49, theorem 4.2) are satisfied, and
we conclude that convðXÞ= convðvertðXÞÞ.
Next, consider the case that L is a singleton, that is, we consider

only variations of ω∈Ω. Recall that L† is a Laplacian matrix cor-
responding to a connected, undirected, and weighted graph (3) with
weights ~aij = ~aji. In general, these edge weights ~aij can be negative. In
the interest of space, we restrict ourselves to nonnegative weights
~aij = ~aji ≥ 0 here, but the following reasoning can be easily adapted
to negative edge weights. Hence, for any ω∈Ω, we obtain

x=L†ω=

266664
Xn
j=1

~a1j
�
ω1 −ωj

�
⋮Xn

j=1

~anj
�
ωn −ωj

�
3777756

266664
Xn
j=1

~a1j
�
ω1 − ωj

�
⋮Xn

j=1

~anj
�
ωn − ωj

�
377775;

x=L†ω=

266664
Xn
j=1

~a1j
�
ω1 −ωj

�
⋮Xn

j=1

~anj
�
ωn −ωj

�
377775c

266664
Xn
j=1

~a1j
�
ω1 −ωj

�
⋮Xn

j=1

~anj
�
ωn −ωj

�
377775;

where 6 and c denote the component-wise inequalities. This
direct inspection shows that for fixed L, we have that convðXÞ=
convðvertðXÞÞ, that is, the extremal values of the solution x are
achieved for extremal parameters ω∈ vertðΩÞ.
Because the parametric variations L∈L and ω∈Ω are in-

dependent of each other, the lemma follows. ■
We obtain the following corollary to Lemma 5.

Corollary 2 (Extremal Solutions for Extremal Parameters).Consider the
interval-valuedLaplacian equation [S21] and let c∈Rn.Then, extremal
values for cTx= cTL†ω are obtained for extremal parameters, that is,

max
L∈L;ω∈Ω

cTL†ω= max
L∈vertðLÞ;ω∈vertðΩÞ

cTL†ω;

min
L∈L;ω∈Ω

cTL†ω= min
L∈vertðLÞ;ω∈vertðΩÞ

cTL†ω:

**The following analysis can be easily extended to the case of zero edge weights implying
a nonconstant edge set E as long as the associated graph remains connected. Because
the resulting notation is cumbersome and the combinatorial insights are not very
surprising, we omit it here.
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Proof: The proof is based on the analysis by Brayton et al. (ref. 48,
theorem 2). We prove only the maximizing case here. The proof
for the minimizing case can be obtained analogously.
Because the sets L and Ω are compact and cTL†ω is a contin-

uous function†† of ω∈Ω and L∈L, the function cTL†ω attains its
maximum for some ω* ∈Ω and L* ∈L.
By Lemma 5, there exist matrices L1; . . . ;LjEj ∈ vertðLÞ, vectors

v1; . . . ; vn ∈ vertðΩÞ, and nonnegative numbers λ1; . . . ; λjEj; μ1; . . . ;
μn with

PjEj
i=1λi = 1 and

Pn
j=1μj = 1 such that ðL*Þ† =PjEj

i=1 λiL
†
i and

ω* =
Pn

j=1μjvj. It follows that

cTðL*Þ†ω* = cT
 XjEj

i=1

λiL†
i

!Xn
j=1

μjvj

=
XjEj
i=1

Xn
j=1

λiμj
�
cTL†

i vj
�

≤ max
i∈f1;...;jEjg;j∈f1;...;ng

cTL†
i vj;

because any weighted average of numbers is bounded from above
by the largest of the numbers. Thus, maxL∈L;ω∈ΩcTL†ω is attained
at a vertex of the parameter space. ■
We are now ready to state the main result of this section.

Specifically, if we can guarantee the synchronization condition
[S17] for extremal parameters, we can guarantee synchronization
for all parametric variations, and vice versa.

Theorem 4 (Robust Synchronization). Consider a connected network
fGðV; E;AÞ;ωg with interval-valued weights A∈A and natural
frequencies ω∈Ω. Let L be the associated set of interval-valued
Laplacian matrices, and let γ ∈ ½0; π=2½.
The following statements are equivalent:

1) Parametric synchronization condition:��BTL†ω
��
∞ ≤ sinðγÞ ∀ L∈L; ω∈Ω [S22]

2) Worst-case synchronization condition:

max
L∈vertðLÞ;ω∈vertðΩÞ

��BTL†ω
��
∞ ≤ sinðγÞ [S23]

Proof: The kth row of BT reads as bTk = eni − enj , where fi; jg∈ E.
Thus, condition [S22] is true if and only if

sinðγÞ≥ max
L∈L;ω∈Ω

��BTL†ω
��
∞ = max

k
max

L∈L;ω∈Ω
��bTk L†ω

��
= max

k
max

L∈vertðLÞ;ω∈vertðΩÞ

��bTk L†ω
��

= max
L∈vertðLÞ;ω∈vertðΩÞ

��BTL†ω
��
∞;

where the second equality follows from Corollary 2. The latter
statement is equivalent to condition [S23]. ■
The robust synchronization condition [S23] in Theorem 4 is

exact, but its evaluation is computationally expensive because
all vertices of the parameter-space need to be sampled in a
combinatorial way. We found that randomized Monte Carlo
sampling methods or simplex-type algorithms perform well in
practice and quickly deliver an accurate estimate of the quantity

maxL∈vertðLÞ;ω∈vertðΩÞkBTL†ωk∞. For certain topologies, such as
acyclic ones, it is also possible to determine analytically the
maximizing vertices beforehand, and the combinatorial condition
[S23] reduces to a scalar one. In the subsection on Synchronization
Assessment for Power Networks, Theorem 4 is illustrated with dif-
ferent examples.

Statistical Synchronization Assessment
After having established that the synchronization condition [S17]
is necessary and sufficient for particular network topologies and
parameters, we now validate both its correctness and its accuracy
for arbitrary networks.

Statistical Assessment of Correctness. Extensive simulation studies
lead us to the conclusion that condition [S17] is correct in
general and guarantees the existence of a stable equilibrium
θ* ∈ΔGðγÞ. To validate this hypothesis, we invoke probability esti-
mation through Monte Carlo techniques; see ref. 50, section 9 and
ref. 51, section 3 for a comprehensive review.
We consider the following nominal random networks

fGðV; E;AÞ;ωg parametrized by the number n≥ 2 of nodes, the
width α> 0 of the sampling region for each natural frequency
ωi, i∈ f1; . . . ; ng, and a connected random graph model
RGMðpÞ=GðV; EðpÞÞ with node set V = f1; . . . ; ng and edge set
E = EðpÞ induced by a coupling parameter p∈ ½0; 1�. In particular,
given the four parameters (n, RGM, p, α), a nominal random
network is constructed as follows:

(i) Network topology: To construct the network topology, we
consider three different one-parameter families of random
graph models RGMðpÞ= GðV; EðpÞÞ, each parameterized
by the number of nodes n≥ 2 and a coupling parameter
p∈ ½0; 1�. Specifically, we consider (a) an Erdös–Rényi ran-
dom graph model (RGM = ERG) with probability p of con-
necting two nodes, (b) a random geometric graph model
(RGM = RGG) with sampling region ½0; 1�2 ⊂R2 and con-
nectivity radius p, and (c) a Watts–Strogatz small world net-
work (RGM = SMN) (52) with initial coupling of each node
to its two nearest neighbors and rewiring probability p. If, for
a given n≥ 2 and p∈ ½0; 1�, the realization of an RGM is not
connected, this realization is discarded and a new realization
is constructed.

(ii) Coupling weights: For a given random graph GðV; EðpÞÞ, for
each edge fi; jg∈ EðpÞ, the coupling weight aij = aji > 0 is
sampled from a uniform distribution supported on the in-
terval ½1; 10�.

(iii) Natural frequencies: For a given n≥ 2 and α> 0, the natural
frequencies ω∈ 1⊥n are constructed in two steps. In a first
step, n real numbers qi, i∈ f1; . . . ; ng, are sampled from a
uniform distribution supported on ½−α; + α�, where α> 0.
In a second step, by subtracting the average

Pn
i=1qi=n, we

define ωi = qi −
Pn

i=1qi=n for i∈ f1; . . . ; ng and obtain
ω= ðω1; . . . ;ωnÞ∈ 1⊥n .

(iv) Parametric realizations: We consider 40 realizations of the
parameter 4-tuple (n, RGM, p, α) covering a wide range of
network sizes n, coupling parameters p, and natural frequen-
cies ω, which are listed in the first column of Table S1. The
choices of α in these 40 cases is such that‡‡ the resulting
equilibrium angles θ* satisfy, on average, maxfi;jg∈Ejθ*i −
θ*j j≈ π=3.

††Continuity of L†ω with respect to the weights aij follows because L†ω = Q−1ω, Q is
a continuous function of aij, and the inverse of a matrix is a continuous function of
its elements.

‡‡For a fixed, weighted graph GðV; E;A), the feasibility of [S7] and the properties of its
solution θ* are entirely determined by the remaining parameter α> 0. If α is
chosen too large, there exists no solution θ* of the form max{i,j }∈E jθ*i− θ*jj≤ π=2. Like-
wise, if α is chosen too small, ω∈ 1n

⊥ will be nearly the zero vector and we fall into
the case G4 of Theorem 2, that is, the angles are perfectly aligned. To strike a balance
between these extreme cases, we choose α such that the samples yield, on average,
max{i,j }∈E jθ*i− θ*jj≈ π=3.
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For each of the 40 parametric realizations in statement (iv),
we generate 30,000 nominal models of ω∈ 1⊥n and GðV; E;AÞ
(conditioned on connectivity) as detailed in statements (i)–(iii)
above, each satisfying kBTL†ωk∞ < 1. If a sample does not
satisfy kBTL†ωk∞ < 1, it is discarded and a new sample is gen-
erated. Hence, we obtain 1:2 · 106 nominal random networks
fGðV; E;AÞ;ωg, each with a connected graph GðV; E;AÞ and
ω∈ 1⊥n satisfying BTL†ω∞ ≤ sinðγÞ for some γ < π=2.
For each case and each instance, we numerically solve [S7] with

an accuracy of 10−6 and test the hypothesis

H :
��BTL†ω

��
∞ ≤ sinðγÞ ⇒ ∃ θ* ∈ΔGðγÞ

with an accuracy of 10−4. The results are reported in Table S1,
together with the empirical probability that the hypothesis H is
true for a set of parameters (n, RGM, p, α). Given a set of
parameters (n, RGM, p, α) and 30,000 samples, the empirical
probability is calculated as

dProbðn;RGM;p;αÞ =
number of samples satisfyingðH is trueÞ

30; 000
:

Given an accuracy level of e ∈ �0; 1½ and a confidence level of
η∈ �0; 1½, we ask for the number of samples N such that the
true probability Probðn;RGM;p;αÞðH is trueÞ equals the empiri-
cal probability dProbðn;RGM;p;αÞ with a confidence level greater
than 1− η and accuracy of at least e, that is,

Prob
���Probðn;RGM;p;αÞðH is trueÞ− dProbðn;RGM;p;αÞj< e

�
> 1− η:

By the Chernoff–Hoeffding bound (ref. 50, equation 9.14; ref.
53, theorem 1), the number of samples N for a given accuracy e
and confidence η is given as

N ≥
1
2e2

log
2
η
: [S24]

For e= η= 0:01, inequality [S24] is satisfied for N ≥ 26; 492
samples. By invoking the Chernoff–Hoeffding bound [S24], our
simulations studies establish the following statement:
With a 99% confidence level, there is at least 99% accuracy that

the hypothesis H is true with a probability of 99.97% for a nominal
network constructed as in statements (i)–(iv) above.
In particular, for a nominal network with parameters (n, RGM,

p, α) constructed as in statements (i)–(iv) above, with a 99% con-
fidence level, there is at least 99% accuracy that the probability
Probðn;RGM;p;αÞ(H is true) equals the empirical probabilitydProbðn;RGM;p;αÞ, as listed in Table S1, that is,

Prob
���Probðn;RGM;p;αÞðH is trueÞ− dProbðn;RGM;p;αÞ

��< 0:01
�
> 0:99:

It can be seen in Table S1 that the hypothesis H is always true
for large and dense networks, whereas for small and sparsely
connected networks, the hypothesisH can marginally fail with an
error of order Oð10−4Þ. Thus, for these cases, a tighter condition
of the form kBTL†ωk∞ ≤ sinðγÞ−Oð10−4Þ is required to establish
the existence of θ* ∈ΔGðγÞ. These results strongly suggest that
degenerate topologies and parameters (e.g., the large and isolated
cycles used in the proof of Theorem 3 and in Example 1) are more
likely to occur in small networks.

Statistical Assessment of Accuracy. As established in the previous
section, the synchronization condition [S17] is a scalar synchro-

nization test with predictive power for almost all network to-
pologies and parameters. This remarkable fact is difficult to
establish via statistical studies in the vast parameter space. Be-
cause we proved in statement G4 of Theorem 2 that condition
[S17] is exact for sufficiently small pairwise phase cohesiveness
jθi − θjj � 1 (or, equivalently, for sufficiently identical natural
frequencies ωi and sufficiently strong coupling), we investigate
the other extreme maxfi;jg∈Ejθi − θjj= π=2. To test the corre-
sponding synchronization condition [S16] in a low-dimensional
parameter space, we consider a complex network of Kuramoto
oscillators

_θi =ωi −K ·
Xn
j=1

aijsin
�
θi − θj

�
; i∈ f1; . . . ; ng; [S25]

where K > 0 is the coupling gain among the oscillators and the
coupling weights are assumed to be unit-weighted, that is,
aij = aji = 1 for all fi; jg∈ E. If L is the unweighted Laplacian
matrix, condition [S16] reads as K >Kcritical ≜ kL†ωkE;∞. Of
course, the condition K >Kcritical is only sufficient, and synchro-
nization may occur for a smaller value of K than Kcritical. To test
the accuracy of the condition K >Kcritical, we numerically found
the smallest value of K leading to synchrony for various network
sizes, connected RGMs, and sample distributions of the natural
frequencies. Here, we discuss in detail the construction of the
random network topologies and parameters leading to the data
displayed in Fig. 3.
We consider the following nominal random networks

fGðV; E;AÞ;ωg parametrized by the number of nodes n∈
f10; 20; 40; 160g, the sampling distribution for the natural
frequencies ω∈ 1⊥n , and a connected RGMðpÞ=GðV; EðpÞÞ
with node set V = f1; . . . ; ng and edge set E = EðpÞ induced by
a coupling parameter, p∈ ½0; 1�. In particular, given the four
parameters (n, RGM, p, α), a nominal random network is
constructed as follows:

(i) Network topology and weights: To construct the network to-
pology, we consider three different one-parameter families of
RGMðpÞ=GðV; EðpÞÞ, each parameterized by the number of
nodes n and a coupling parameter p∈ ½0; 1�. Specifically, we
consider (a) an ERG (RGM = ERG) with probability p of
connecting two nodes, (b) a RGG (RGM = RGG) with
sampling region ½0; 1�2 ⊂ R2 and connectivity radius p, and
(c) a Watts–Strogatz SMN (RGM = SMN) (52) with initial
coupling of each node to its two nearest neighbors and re-
wiring probability p. If, for a given n and p ∈  ½0; 1�, the
realization of an RGM is not connected, this realization is
discarded and new realization is constructed. All nonzero
coupling weights are set to 1, that is, aij = aji = 1 for fi; jg∈ E.

(ii) Natural frequencies: For a given network size n and sampling
distribution, the natural frequencies ω∈ 1⊥n are constructed
in three steps. In a first step, the sampling distribution of the
natural frequencies is chosen. For classic Kuramoto oscillators
with uniform coupling aij =K=n for distinct i; j∈ f1; . . . ; ng,
we know that the two extreme sampling distributions (with
bounded support) are the bipolar (discrete) and uniform (flat)
distribution leading to the largest critical coupling and smallest
critical coupling, respectively (9). Here, we choose a uniform
sampling distribution (SD = uniform) supported on ½−1; + 1�
or a bipolar discrete sampling distribution (SD = bipolar)
supported on f−1; + 1g. In a second step, n real numbers
qi, i∈ f1; . . . ; ng, are sampled from the sampling distribu-
tion. In a third step, by subtracting the average

Pn
i=1qi=n,

we define ωi = qi −
Pn

i=1qi=n for i∈ f1; . . . ; ng and obtain
ω= ðω1; . . . ;ωnÞ∈ 1⊥n.

(iii) Parametric realizations: We consider 600 realizations of pa-
rameter 4-tuple (n, RGM, p, α) covering a wide range of
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network sizes n, coupling parameters p, and natural frequen-
cies ω. All 600 realizations are shown in Fig. 3.

For each of the 600 parametric realizations in statement (iii),
we generate 100 nominal models of ω∈ 1⊥n and GðV; E;AÞ
(conditioned on connectivity) as detailed in statements (i) and
(ii) above. Hence, we obtain 60,000 nominal random networks
fGðV; E;AÞ;ωg, each with a connected graph GðV; E;AÞ and
natural frequencies ω∈ 1⊥n . For each sample network, we
consider the complex Kuramoto model [S25] and numerically
find the smallest value of K leading to synchrony with cohesive
phases satisfying maxfi;jg∈Ejθi − θjj= π=2. The critical value of
K is found iteratively by integrating the Kuramoto dynamics
[S25] and decreasing K if the steady-state θ* satisfies
maxfi;jg∈Ejθ*i − θ*j j< π=2 and increasing K otherwise. We repeat
this iteration until a steady-state θ* is found satisfying
maxfi;jg∈Ejθi − θjj= π=2 with an accuracy of 10−3. Our findings
are reported in Fig. 3, where each data point corresponds to
the sample mean of 100 nominal models with the same pa-
rameter 4-tuple (n, RGM, p, α).

Synchronization Assessment for Power Networks. We envision that
our proposed condition [S17] can be applied to assess synchro-
nization and robustness quickly in power networks under volatile
operating conditions. Because real-world power networks are
carefully engineered systems with particular network topologies
and parameters, they cannot be reduced to the standard topo-
logical RGMs (54), and we do not extrapolate the statistical
results from the previous section to power grids. Rather, we
consider 10 widely established and commonly studied IEEE
power network test cases provided by Zimmerman et al. (55) and
Grigg et al. (56) to validate the correctness and the predictive
power of our synchronization condition [S17].

Statistical Synchronization Assessment for IEEE Systems.We validate
the synchronization condition [S17] in a smart power grid sce-
nario subject to fluctuations in load and generation and
equipped with fast-ramping generation and controllable de-
mand. Here, we report the detailed simulation setup leading to
the results shown in Table 1.
The nominal simulation parameters for the 10 IEEE test cases

can be found in the studies by Zimmerman et al. (55) and Grigg
et al. (56). Under nominal operating conditions, the power
generation is optimized to meet the forecast demand while
obeying the AC power flow laws and respecting the thermal limits
of each transmission line. Thermal limit constraints are precisely
equivalent to phase cohesiveness requirements, that is, for each
line fi; jg, the angular distance jθi − θjj needs to be bounded such
that the corresponding power flow aij sinðθi − θjÞ is bounded. Here,
we found the optimal generator power injections through the
standard optimal power flow solver provided by MATPOWER (55).
To test the synchronization condition [S17] in a volatile smart

grid scenario, we make the following changes to the nominal
IEEE test cases with optimal generation:

(i) Fluctuating loads with stochastic power demand: We assume
fluctuating demand and randomize 50% of all loads (se-
lected independently with identical distribution) to devi-
ate from the forecasted loads with Gaussian statistics (with
nominal power injection as mean and standard deviation
(SD) 0.3 per unit system).

(ii) Renewables with stochastic power generation: We assume that
the grid is penetrated by renewables with severely fluctuating
power outputs, for example, wind or solar farms, and we
randomize 33% of all generating units (selected indepen-
dently with identical distribution) to deviate from the
nominally scheduled generation with Gaussian statistics (with
nominal power injection as mean and SD 0.3 per unit system).

(iii) Fast-ramping generation and controllable loads: Following the
paradigm of smart operation of smart grids (57), the fluctua-
tions can be mitigated by fast-ramping generation, such as fast-
response energy storage, including batteries and flywheels, and
controllable loads, such as large-scale server farms or fleets of
plug-in hybrid electrical vehicles. Here, we assume that the
grid is equipped with 10% fast-ramping generation (10%
of all generators, selected independently with identical distri-
bution) and 10% controllable loads (10% of all loads, selected
independently with identical distribution) and that the power
imbalance (caused by fluctuating demand and generation) is
uniformly dispatched among these adjustable power sources.

For each of the 10 IEEE test cases with optimal generator power
injections, we construct 1,000 random realizations of the scenarios
(i)–(iii) described above. For each realization, we numerically
check for the existence of a solution θ* ∈ΔGðγÞ, γ ∈ ½0; π=2½, to the
AC power flow equations, the right-hand side of the power net-
work dynamics [S4 and S5], given by

Pm;i =
Xn
j=1

aij sin
�
θi − θj

�
; i∈V1

Pl;i = −
Xn
j=1

aij sin
�
θi − θj

�
; i∈V2:

[S26]

The solution to the AC power flow equations [S26] is found
via the AC power flow solver provided by MATPOWER (55).
Notice that, by Lemma 2, if such a solution θ* exists, it is unique
(up to rotational invariance) and also locally exponentially stable
with respect to the power network dynamics [S4 and S5]. Next,
we compare the numerical solution θ* with the results predicted
by our synchronization condition [S17]. As discussed in Remark
3, a physical insightful and computationally efficient way to
evaluate condition [S17] is to solve the sparse and linear DC
power flow equations given by

Pm;i =
Xn
j=1

aij
�
δi − δj

�
; i∈V1

Pl;i = −
Xn
j=1

aij
�
δi − δj

�
; i∈V2:

[S27]

The solution δ* of the DC power flow equations [S27] is de-
fined uniquely up to the usual translational invariance. Given
the solution δ* of the DC power flow equations [S27], the left-
hand side of our synchronization condition [S17] evaluates to
kBTL†ωk∞ = kL†ωkE;∞ =maxfi;jg∈Ejδ*i − δ*j j.
Finally, we compare our prediction with the numerical results.

If kBTL†ωk∞ ≤ sinðγÞ for some γ ∈ ½0; π=2½, condition [S17] pre-
dicts that there exists a stable solution θ∈ΔGðγÞ or, alternatively,
θ∈ΔGðarcsinðkBTL†ωk∞ÞÞ. To validate this hypothesis, we
compare the numerical solution θ* with the AC power flow equa-
tions [S26] with our prediction θ* ∈ΔGðarcsinðkBTL†ωk∞ÞÞ. Our
findings and the detailed statistics are reported in Table 1. It can
be observed that condition [S17] predicts the correct phase co-
hesiveness jθ*i − θ*j j along all transmission lines fi; jg∈ E with
extremely high accuracy even for large-scale networks, such as
the Polish power grid model featuring 2,383 nodes.

Simulation Data for the RTS 96.The RTS 96 is a widely adopted and
relatively large-scale power network test case, which has been
designed as a benchmark model for power flow and stability
studies. The RTS 96 is a multiarea model featuring 40 load buses
and 33 generation buses, as illustrated in Fig. 4. The network
parameters and the dynamic generator parameters can be found
in the study by Grigg et al. (56).
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The quantities aij in the coupled oscillator model [S1] corre-
spond to the product of the voltage magnitudes at buses i and j,
as well to the susceptance of the transmission line connecting
buses i and j. For a given set of power injections at the buses and
branch parameters, the voltage magnitudes and initial phase
angles were calculated using the optimal power flow solver
provided by MATPOWER (55). The quantities ωi, i∈V2, are the
real-power demands at loads, and ωi, i∈V1, are the real-power
injections at the generators, which were found through the
optimal power flow solver provided by MATPOWER (55). We
made the following changes to adapt the detailed RTS 96 model
to the classic structure-preserving power network model [S4 and
S5] describing the generator rotor and voltage phase dynamics.
First, we replaced the synchronous condenser in the original RTS
96 model (56) by a U50 hydrogenerator. Second, because the
numerical values of the damping coefficients Di are not con-
tained in the original RTS 96 description (56), we chose the
following values to be found in ref. 16: For the generator
damping, we chose the uniform damping coefficient Di = 1 per
unit system and for i∈V1, and for the load frequency coefficient,
we chose Di = 0:1 s for i∈V2. Third and finally, we discarded an
optional high-voltage DC link for the branch f113; 316g.
Bifurcation Scenario in the RTS 96. As shown in the main text, an
imbalanced power dispatch in the RTS 96 network, together with
a tripped generator (generator 323) in the southeastern (green)
area, results in a loss of synchrony because the maximal power
transfer is limited due to thermal constraints. This loss of syn-
chrony can be predicted by our synchronization condition [S17]
with extremely high accuracy. In the following, we show that
a similar loss of synchrony occurs, even if the generator 323 is
not disconnected and there are no thermal limit constraints on
the transmission lines. In this case, the loss of synchrony is due to
a saddle-node bifurcation at an interarea angle of π=2, which can
be predicted accurately by condition [S17] as well.
For the following dynamic simulation, we consider again an

imbalanced power dispatch. The demand at each load in the
southeastern (green) area is increased by a uniform amount, and
the resulting power imbalance is compensated for by uniformly
increasing the generation at each generator in the northwestern
(blue) area. The imbalanced power dispatch essentially trans-
forms the RTS 96 into a two-oscillator network, and we observe
the classic loss of synchrony through a saddle-node bifurcation
(9, 18) shown in Figs. S6 and S7. In particular, the network is still
synchronized for a load increase of 141%, resulting in
kL†ωkE;∞ = 0:9995< 1. If the loads are increased by an addi-
tional 10%, resulting in kL†ωkE;∞ = 1:0560> 1, synchroniza-
tion is lost and the areas separate via the transmission lines
f121; 325g and f223; 318g. In summary, this transmission line
scenario nicely illustrates the correctness and the accuracy of the
proposed condition [S16].
We want to make two remarks on this bifurcation scenario and

its extensions to more detailed power network models. As
discussed in Remark 1, the underlying modeling assumption of
constant voltage magnitudes at the loads may not be true near
the bifurcation point, and a higher order model, including volt-
age dynamics and reactive power flow equations, may reveal
different dynamics than the considered model [S4 and S5]. Ad-
ditionally, in real-world power networks, the transmission lines
f121; 325g and f223; 318g would be separated at some smaller
interarea angle γ* � π=2 due to thermal limit constraints on the
transmission lines. This separation at the angle γ* can also be
predicted accurately from condition [S17], as discussed in the
analysis and results in the main text.

Synchronization Assessment in the Presence of Nonconstant Voltages
and Power Demands. As discussed in Remark 1, the underlying
modeling assumption of constant voltage magnitudes at the

loads is idealistic and not always true. For example, if the loads
demand a constant amount of active and reactive power (rather
than demanding constant power and voltage), the load bus vol-
tages have to follow the power demand and the coupling weights
aij = jVij · jVjj · IðYijÞ cannot be regarded as a priori known and
constant parameters. Likewise, the active power demand ωi at
the loads is variable and can only be predicted with a certain
accuracy.
In the following, we overapproximate uncertain parameters

and unmodeled dynamics by the interval-valued parameters
ωi ≤ ωi ≤ ωi and 0< aij ≤ aij ≤ aij, and we apply the analysis de-
veloped in SI Robust Synchronization in Presence of Uncertainty. To
verify the accuracy of the proposed robust synchronization con-
dition [S23], we repeat similar numerical experiments as in the
subsection on Statistical Synchronization Assessment for IEEE
Systems. We consider four representative IEEE test cases of dif-
ferent sizes (nine-bus system by Chow, IEEE 14, IEEE 39 New
England, and IEEE 118) with optimal generator power injections,
and we make the following changes to these nominal test cases:

(i) Fluctuating loads with stochastic active and reactive power de-
mand: We assume fluctuating demand and randomize all
loads to deviate from their nominal values with Gaussian
statistics, with nominal active and reactive power demands
as mean, SD 0.3 (per unit system) for the reactive power
demand, and SD 0.05 (per unit system) for the active power
demand.

(ii) Fast-ramping generation: We assume that the grid is equipped
with 20% fast-ramping generation (20% of all generators,
selected independently with identical distribution) and
the active power imbalance (caused by fluctuating demand)
is uniformly dispatched among these adjustable power
sources. Notice that the fast-ramping generators do not
provide any reactive power support for the fluctuating re-
active power demands at the loads, which results in highly
variable load bus voltages.

For each of the four IEEE test cases, we construct 1,000
random realizations of scenarios (i) and (ii) described above. For
each realization, we numerically check for the existence of a so-
lution θ* ∈ΔGðγÞ, γ ∈ ½0; π=2½ to the active power flow equations
[S26]. Here, the parameters aij = jVij · jVjj · IðYijÞ are found by
solving the reactive power balance equations using MATPOWER
(55). After obtaining all network samples and their solutions, we
construct the left-hand side of our robust synchronization condi-
tion [S23], maxL∈vertðLÞ;ω∈vertðΩÞkBTL†ωk∞. Next, we compare the
numerical solution θ* (obtained for each sample) with the
robust synchronization condition [S23], which predicts that
θ* ∈ΔGðarcsinðmaxL∈vertðLÞ;ω∈vertðΩkBTL†ωk∞ÞÞ. Our findings are
reported are reported in Table S2.
First, observe from Table S2 that the load voltages and power

injections fluctuate severely, and the resulting interval-valued
parameters ωi ≤ωi ≤ωi and 0< aij ≤ aij ≤ aij are allowed to vary
in relatively large domains. Despite these severe uncertainties, it
can be observed that the robust synchronization condition [S23]
still predicts the correct phase cohesiveness jθ*i − θ*j j along all
transmission lines fi; jg∈ E with relatively high accuracy. Of
course, the results in Table S2 are more conservative than
those in Table 1 because condition [S23] is based on an
overapproximation of the detailed power network dynamics, that
is, certain vertices of the set fvertðLÞ; vertðΩÞg do not occur
when numerically solving a detailed power network model, and
they are the dominant source for the accuracy errors in Table S2.
These results show that the robust synchronization condition

[S23] is indeed capable of predicting the solutions to the active
power flow equations [S26] in presence of uncertain voltages
(resulting from the unmodeled reactive power flow equations)
and fluctuating loads. Conversely, if the voltage magnitudes
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jVij are known to vary within reasonable prespecified bounds
(e.g., jVij∈ ½0:95; 1:05�) and the loads are predicted with high

accuracy, condition [S23] delivers accurate results in the pres-
ence of uncertainties.
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Fig. S1. Mechanical analog of the coupled oscillator model [S1].

Fig. S2. Equivalent circuits of the frequency-dependent load model (A), the constant power load model (B), and the constant current and admittance load
model (C).

Fig. S3. Illustration of the state space T2, the set ΔGðπ=2Þ, the synchronization manifold ½θ*� associated with a point θ* = ðθ*1; θ*2Þ∈ΔGðπ=2Þ, the tangent space at
θ*, and the translation vector 12.

Fig. S4. (Left) Plot shows the phase space dynamics of a network of n= 4 second-order oscillators [S3] with V2 = and Kuramoto type coupling aij =K=n for all
distinct i; j∈V1 = f1; . . . ; 4g and for K ∈R. (Right) Plot shows the phase space dynamics corresponding to first-order Kuramoto oscillators [S2], together with the
frequency dynamics d

dtθ
_= −M−1Dθ_. The natural frequencies ωi and the coupling strength K are chosen such that ωsync = 0 and K = 1:1 ·maxi;j∈f1;...;4gjωi −ωj j. From

the same initial configuration θð0Þ (denoted by □), both first- and second-order oscillators converge exponentially to the same synchronized equilibria
(denoted by ○), as predicted by Lemma 1.
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Fig. S5. Cycle graph with n= 5 nodes and a nonsymmetrical choice of ω.

Fig. S6. Time series of the RTS 96 dynamics for a 141% load increase, resulting in kBTL†ωk∞ = kL†ωkE;∞ = 0:9995< 1. Angles θiðtÞ (A), frequencies _θiðtÞ(B), and
angular distances jθiðtÞ− θjðtÞj (C) over transmission lines are depicted, where the red dashed curves correspond to the pairs f121;325g and f223;318g. (Insets)
Power injections ωi (A), the phase space of the generator dynamics ðθðtÞ; θ_ðtÞÞ (B), and the stationary angles θi (C) are shown.

Fig. S7. Time series of the RTS 96 dynamics for a 151% load increase, resulting in kBTL†ωk∞ = kL†ωkE;∞ = 1:0560> 1. Angles θiðtÞ (A), frequencies _θiðtÞ (B), and
angular distances jθiðtÞ− θjðtÞj (C) over transmission lines are depicted, which diverge for the pairs f121; 325g and f223; 318g, shown as red dashed curves. (B
and C, Insets) Long-time dynamics simulated over 100 s are shown.
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Table S1. Results of the Monte Carlo simulations to test the hypothesis H

Nominal random network
parametrized by (n, RGM, p, α)

Failures of hypothesis
H: # (H is not true)

Empirical probability:dProbðn;RGM;p;αÞ, %

(10, ERG, 0.15, 6) 104 99.653
(10, ERG, 0.3, 8) 65 99.783
(10, ERG, 0.5, 14) 15 99.950
(10, ERG, 0.75, 25) 0 100
(20 ERG, 0.15, 10) 80 99.733
(20, ERG, 0.3, 15) 5 99.983
(20, ERG, 0.5, 24) 0 100
(20, ERG, 0.75, 45) 0 100
(30, ERG, 0.15, 13) 22 99.927
(30, ERG, 0.3, 20) 0 100
(30, ERG, 0.5, 37) 0 100
(30, ERG, 0.75, 65) 0 100
(60, ERG, 0.15, 20) 1 99.997
(60, ERG, 0.3, 40) 0 100
(60, ERG, 0.5, 70) 0 100
(60, ERG, 0.75, 125) 0 100
(120, ERG, 0.15, 35) 0 100
(120, ERG, 0.3, 75) 0 100
(120, ERG, 0.5, 130) 0 100
(120, ERG, 0.75, 235) 0 100
(10, RGG, 0.3, 10) 15 99.950
(10, RGG, 0.5, 15) 18 99.940
(20, RGG, 0.3, 10) 23 99.924
(20, RGG, 0.5, 15) 3 99.990
(30, RGG, 0.3, 10) 31 99.897
(30, RGG, 0.5, 15) 1 99.997
(60, RGG, 0.3, 10) 3 99.990
(60, RGG, 0.5, 15) 0 100
(120, RGG, 0.3, 10) 0 100
(120, RGG, 0.5, 15) 0 100
(10, SMN, 0.1, 10) 2 99.994
(10, SMN, 0.2, 10) 0 100
(20, SMN, 0.1, 13) 0 100
(20, SMN, 0.2, 13) 0 100
(30, SMN, 0.1, 10) 0 100
(30, SMN, 0.2, 13) 0 100
(60, SMN, 0.1, 7) 0 100
(60, SMN, 0.2, 7) 0 100
(120, SMN, 0.1, 4) 0 100
(120, SMN, 0.2, 4) 0 100
Over all 1.2 ·106 instances 388 99.968

Overall, 1.2 ·106 instances of {G(V, E, A),ω} were constructed as described in statements (i)–(iv) in Statistical
Assessment of Correctness, each satisfying jjBT L†ωjj∞ < 1. For each instance, the fixed-point equation [S7] was
solved with accuracy 10−6 and failures of the hypothesis H were reported within an accuracy of 10−4 (i.e., failures
of order 10−5 were discarded).

Table S2. Evaluation of the worst-case condition [S23] for four IEEE test cases with fluctuating demand

Randomized test case
(1,000 instances) Correctness*

Accuracy†,
rad

Cohesive phases‡,
rad

Variations in power
demand§, per unit

Variations in
voltages{, per unit

Chow 9 bus system Always true 0.14229 0.15637 0.79891 0.19262
IEEE 14 bus system Always true 0.20416 0.18429 1.0537 0.57177
New England 39 Always true 0.048628 0.1756 0.81972 0.077967
IEEE 118 bus system Always true 0.097533 0.23370 0.37332 0.32301

*Correctness: maxL∈vertðLÞ; ω∈vertðΩÞkBT L†ωk∞ ≤ sinðγÞ⇒maxfi;jg∈E jθ*i − θ*j j≤ γ.
†Accuracy: max1000 iterationsjmaxfi;jg∈E jθ*i − θ*j j− arcsinðmaxL∈vertðLÞ;ω  ∈vertðΩÞkBT L†ωk∞Þj.
‡Phase cohesiveness: max1000 iterationsfmaxfi;jg∈E jθ*i − θ*j jg.
§Variations in power demand: maxi∈V2fmax1000 iteractions Pl;i −max1000 iteractions Pl; ig.
{Variations in load voltages: maxi∈V2fmax1000 iteractionsjVi j−min1000 iteractionsjVi jg.
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