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A. Proof of Eq. 2
The right-hand side of Eq. 1 is additively separable in x. Hence,
the optimal δ may be obtained by solving the subproblem

separately for each x ∈ X.
Eq. S1 may be solved in two steps. First, hold δS(x) fixed and

maximize Eq. S1 with respect to [δT0(x), δT1(x, p), δT1(x, n)]. This
yields Eqs. 2B–2D. Insertion of the maximizing allocations into
Eq. S1 yields the concentrated maximization problem

max
δSðxÞ∈½0;1�

½1− δSðxÞ�½maxfE½yð0;AÞj  x�;E½yð0;BÞj  x�g�
+ δSðxÞΣ fðr  j  xÞ Σ

r∈fp;ng
½maxfE½yð1;AÞj  x; r�;E½yð1;BÞj  x; r�g�:

[S2]

This yields Eq. 2A.

B. Proofs of Eqs. 5–8
First, consider E[y(0, A)jx]. The law of iterated expectations gives
the decomposition

E½yð0;AÞjx�=E½yð0;AÞjx; z= 1�Pðz= 1jxÞ
+E½yð0;AÞjx; z= 0�Pðz= 0jxÞ; [S3]

where P(z = 1jx) is the fraction of the study population that was
tested. The evidence reveals E[y(0, A) jx, z = 0], P(z = 1jx), and
P(z = 0jx). It does not reveal E[y(0, A) jx, z = 1]. When out-
comes are bounded and scaled to lie in the unit interval, E[y(0,
A)jx, z = 1] takes an unknown value in the unit interval. Hence,
the identification region for E[y(0, A) jx] is given in Eq. 5.
Analogous reasoning yields the identification regions for

f(r = njx) and f(r = pjx). Consider the former. A decom-
position analogous to Eq. S3 gives

fðr= njxÞ= fðr= njx; z= 1ÞPðz= 1jxÞ+ fðr= njx; z= 0ÞPðz= 0jxÞ:
[S4]

The evidence reveals the test results of the tested members of the
study population but not the untested ones. Hence, the identi-
fication region for f(r = njx) is given in Eq. 8A.
The derivations for E[y(1, A) jx, n] and E[y(1, B) jx, p] are more

complex because these mean responses condition on a person’s
test result, which is observed only when the person is tested. I
focus on E[y(1, A) jx, n]. The derivation for E[y(1, B) jx, p]
is analogous.
A decomposition analogous to Eq. S3 gives

E½yð1;AÞjx; n�=E½yð1;AÞjx; n; z= 1�Pðz= 1jx; nÞ
+E½ yð1;AÞjx; n; z= 0�Pðz= 0jx; nÞ: [S5]

The evidence reveals E[y(1, A) jx, n, z = 1] but not E[y(1, A) jx,
n, z = 0]. So far the derivation parallels those given earlier.
What makes this case differ is that the evidence is only

partially informative about P(zjx, n). To see what the evidence
does reveal, use Bayes’ Theorem to write

Pðz= 1jx; r= nÞ= fðr= njx; z= 1ÞPðz= 1jxÞ
fðr= njx; z= 1ÞPðz= 1jxÞ+ fðr= njx; z= 0ÞPðz= 0jxÞ

[S6A]

Pðz= 0jx; r= nÞ= fðr= njx; z= 0ÞPðz= 0jxÞ
fðr= njx; z=1ÞPðz=1jxÞ+ fðr= njx; z= 0ÞPðz= 0jxÞ:

[S6B]

Of the quantities on the right-hand side of Eqs. S6A and S6B,
the evidence reveals f(r = n jx, z = 1), P(z = 1 jx), and P(z = 0 jx)
but it is uninformative about f(r = n jx, z = 0). The identifica-
tion region for E[y(1, A) jx, n] is obtained by inserting the ex-
pressions on the right-hand side of Eqs. S6A and S6B into Eq. S5
and letting the two unknown quantities E[y(1, A) jx, n, z = 0] and
f(r = n jx, z = 0) jointly range over the unit square. The result
is Eq. 6.

C. Dominance with Observation of Aggressive Treatment
with Positive Testing as Standard Practice
Partial knowledge may suffice to conclude that an allocation is
dominated. To illustrate, consider the setting in Identification of
Response toTesting andTreatmentWhenATPT Is Standard Practice ,
where the evidence is generated by the aggressive treatment with
positive testing (ATPT) practice. Suppose one thinks it credible to
assume that testing is random and that the test result is a monotone
instrumental variable (MIV). These assumptions in the presence of
some configurations of the evidence imply that aggressive treat-
ment dominates active surveillance regardless of the test result.
However, the same assumptions in the presence of other evidence
yield no conclusion about the better treatment option.
To see this, recall that the assumption of random testing reveals

E[y(1, A)jx, n] and E[y(1, B)jx, p], which equal E[y(1, A) jx, n, z = 1]
and E[y(1, B) jx, p, z = 1] by Eqs. 9B and 9C, respectively. As-
serting Eq. 10 for (s, t) = (1, A) implies that E[y(1, A) jx, p] ≤
E[y(1, A) jx, n], whereas asserting it for (s, t) = (1, B) implies that
E[y(1, B) jx, n] ≥ E[y(1, B) jx, p].
Suppose the evidence shows that patients with positive test

results, who receive aggressive treatment, fare better on average
than those with negative results, who receive active surveillance;
that is, E[y(1, B) jx, p, z = 1] > E[y(1, A) jx, n, z = 1]. Then E[y(1,
B) jx, p] > E[y(1, A) jx, p] and E[y(1, B) jx, n] > E[y(1, A) jx, n].
Thus, aggressive treatment of tested persons is better than active
surveillance regardless of the test result.
On the other hand, no conclusion holds if E[y(1, B) jx, p, z =

1] ≤ E[y(1, A) jx, n, z = 1]. Then the evidence and assumptions
imply that both E[y(1, B) jx, p] and E[y(1, A) jx, p] are no larger

max
½δSðxÞ;δT0ðxÞ;δT1ðx;pÞ;δT1ðx;nÞ�∈½0;1�4

  ½1− δSðxÞ�½1− δT0ðxÞ�E½yð0;AÞj  x�+ ½1− δSðxÞ�δT0ðxÞE½yð0;BÞj  x�

+  Σ
r∈fp;ng

  fðr  j  xÞfδSðxÞ½1− δT1ðx; rÞ�E½yð1;  AÞjx; r�+ δSðxÞδT1ðx; rÞE½yð1;BÞj  x; r�g
[S1]
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than E[y(1, A) jx, n] but they yield no ordering of E[y(1, B) jx, p]
and E[y(1, A) jx, p] relative to one another. Similarly, they yield no
ordering of E[y(1, B) jx, n] and E[y(1, A) jx, n] relative to one
another.
Whatever the evidencemaybe, combining it with themaintained

assumptions does not reveal whether the clinician should order
a diagnostic test. Nor does it reveal whether aggressive treatment is
better than active surveillance when patients are untested. Opti-
mization in these respects requires knowledge of E[y(0, B) jx]. The
evidence and assumptions in the illustration are uninformative
about this quantity.

D. Some Decision Criteria
There is no optimal choice among undominated actions, but de-
cisiontheoristshavenotwantedtoabandonthe ideaofoptimization.
So they have proposed various ways of transforming the unknown
welfare function into a function of actions alone, which can be
optimized. One idea averages the welfare function over the ele-
ments of the state space and maximizes the resulting function. This
yields maximization of expected welfare. Another seeks an action
that, in some sense, works uniformly well over all elements of the
state space. This yields the maximin and minimax-regret criteria.
Thesecriteriayielddifferentprescriptions fordecisionmaking, each
of whichmay be described as “reasonable” but none as “optimal.” I
discuss these criteria in the context of the welfare function in Eq. 1.

Maximization of Expected Welfare.A clinician maximizing expected
welfare places a probability distribution, say π, on the state space.
He then chooses an allocation that maximizes expected welfare.
Thus, the criterion is

max
δ∈Δ

Z
Wðδ; γÞdπ; [S7]

where Δ is the set of undominated allocations.
The solution to Eq. S7 depends on the distribution π placed on

Γ. Thus, maximization of expected welfare is not a single de-
cision criterion but rather a collection of criteria. Decision the-
orists recommend that π should express the decision maker’s
personal beliefs about where γ lies within Γ. Hence, π is called
a subjective probability distribution.
Subjective expected welfare takes a relatively simple form if π

makes fγ(r) statistically independent of Eγ[y(1, A)jr, x] and Eγ[y(1,
B)jr, x] that is, if the decision maker’s beliefs about f(rjx) would not
change given knowledge of E[y(1, A)jr, x] and E[y(1, B)jr, x]. ThenZ

Wðδ; γÞdπ= Σ
x∈X

PðxÞ�½1− δSðxÞ�½1− δT0ðxÞ�Eπ½yð0;AÞjx�
+ ½1− δSðxÞ�δT0ðxÞEπ½yð0;BÞjx�
+ Σ

r∈fp;ng
fπðrjxÞfδSðxÞ½1− δT1ðx; rÞ�Eπ½yð1;AÞjx; r�

+ δSðxÞδT1ðx; rÞEπ½yð1;BÞjx; r�g
�
:

[S8]

Here Eπ[y(0, A)jx] = R
Eγ[y(0, A)jx]dπ denotes the subjective

mean of Eγ[y(0, A) jx] and the other quantities subscripted by π
are defined analogously. The right-hand side of Eq. S8 is the
welfare that allocation δ would yield if the actual values of {E[y
(0, t) jx], E[y (1, t) jx, r], f(rjx), t ∈ {A, B}, r ∈ {n, p}} were {Eπ[y
(0, t) jx], Eπ[y (1, t) jx, r], fπ(rjx), t ∈ {A, B}, r ∈ {n, p}}. Thus,
a clinician maximizing subjective expected welfare chooses the
allocation that would be optimal if each unknown quantity were
to equal its subjective mean.

Maximin Criterion. In the absence of a subjective distribution,
a decision maker must cope with ambiguity. I discuss the two most
prominent suggestions in the literature, the maximin and mini-
max-regret criteria.

A clinician using the maximin criterion chooses an action that
maximizes the minimum welfare that might possibly occur. Heu-
ristically, this criterion operationalizes the medical exhortation to
“do no harm” by choosing an action thatminimizes potential harm.
Formally, for each allocation δ, consider the minimum feasible
value of W(δ, γ), that is, minγ∈Γ W(δ, γ). A maximin rule chooses
an allocation that solves the optimization problem

max
δ∈Δ

min
γ∈Γ

Wðδ; γÞ: [S9]

The minimum welfare expression minγ∈Γ W(δ, γ) takes a rel-
atively simple form in some special cases. Suppose that the cli-
nician knows the distribution f(r jx) of test results, perhaps from
a randomized trial of testing. Also suppose that the state space
is such that it is feasible for all of the unknown mean responses
{E[y(0, t) jx], E[y(1, t) jx, r], t ∈ {A, B}, r ∈ {n, p}} to simulta-
neously take their lowest possible values. Then

min
γ∈Γ

Wðδ; γÞ= Σ
x∈X

pðxÞ�½1− δSðxÞ�½1− δT0ðxÞ�EL½yð0;AÞjx�
+ ½1− δSðxÞ�δT0ðxÞEL½yð0;BÞjx�
+ Σ

r∈fp;ng
fðrjxÞfδSðxÞ½1− δT1ðx; rÞ�EL½yð1;AÞjx; r�

+ δSðxÞδT1ðx; rÞEL½yð1;BÞjx; r�g
�
:

[S10]

Here EL[y(0, A) jx] denotes the lowest possible value of Eγ[y(0,
A) jx] and the other quantities subscripted by L are defined
analogously. The right-hand side of Eq. S10 is the welfare that
allocation δ would yield if the actual values of {E[y(0, t) jx], E[y
(1, t) jx, r], t ∈ {A, B}, r ∈ {n, p}} were {EL[y(0, t) jx], EL[y
(1, t) jx, r], t ∈ {A, B}, r ∈ {n, p}}. Thus, when Eq. S10 holds,
a clinician maximizing minimum welfare chooses the allocation
that would be optimal if each unknown mean response were to
equal its lowest possible value.

Minimax-Regret Criterion. A clinician using the minimax-regret
criterion chooses an allocation that minimizes the maximum loss
to welfare that can possibly result from not knowing the welfare
function. A minimax-regret allocation solves the problem

min
δ∈Δ

max
γ∈Γ

�
max
d∈Δ

Wðd; γÞ−Wðδ; γÞ
�
: [S11]

Here maxd∈Δ W(d, γ) − W(δ, γ) is the regret of allocation δ in
state of nature γ, that is, the welfare loss associated with choice of δ
relative to an action that maximizes welfare in state γ. The actual
state is unknown, so one evaluates δ by its maximum regret over all
states and selects an action that minimizes maximum regret.
The maximin and minimax-regret criteria are sometimes

confused with one another. Comparison of Eqs. S9 and S11
shows that they are generally distinct. Whereas the maximin
criterion considers only the worst outcome that an action may
yield, minimax regret considers both best and worst outcomes.
The two criteria coincide only in special cases. In particular, they
coincide if maxd∈Δ W(d, γ) is constant for all γ ∈ Γ. Then minimax
regret reduces to maximin.
Maximization of expected welfare is equivalent to minimization

of expected regret as opposed to maximum regret. The usual
description of the expected welfare criterion is maxδ∈Δ Eπ[W(δ,
γ)]. The expected regret of allocation δ is Eπ [maxd∈Δ W(d, γ) −
W(δ, γ)] = Eπ [maxd∈Δ W(d, γ)] − Eπ[W(δ, γ)]. The first term
on the right-hand side does not vary with action δ. Hence,
minimization of expected regret is equivalent to maximization of
expected welfare.
Maximum regret is a more complex mathematical expression

than is expected or minimum welfare. Hence, determination of
the minimax-regret allocation may be more difficult than de-
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termination of the allocations that maximize expected or mini-
mum welfare. However, an intriguing finding emerges when the
testing decision is predetermined and the only task is to choose
between treatments A and B.
In this context, ref. 1 shows that the minimax-regret criterion

balances the maximum losses in welfare from making two types
of errors in patient care. A type A error occurs when treatment
A is chosen but is actually inferior to B, and a type B error occurs
when B is chosen but is inferior to A. Balancing the potential
welfare losses minimizes maximum regret. The result turns out

to be a fractional treatment allocation, one that assigns positive
fractions of patients to both treatments.
Put another way, a clinician who uses the minimax-regret cri-

terion to cope with ambiguity diversifies treatment. Diversification
is a common recommendation in financial planning, when an
investor has to allocate an endowment among multiple invest-
ments and is unsure which investment will yield the highest return.
Manski (1) shows that diversification may also be appealing to
a clinician or other planner who treats a population of persons
and does not know the optimal treatment.

1. Manski C (2009) Diversified treatment under ambiguity. Int Econ Rev 50:1013–1041.
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