1	Detection of putatively thermophilic anaerobic methanotrophs (ANMEs) in diffuse
2	hydrothermal vent fluids
3	
4	Alexander Y. Merkel ^a #, Julie A. Huber ^b , Nikolay A. Chernyh ^a ,
5	Elizaveta A. Bonch-Osmolovskaya ^a , Alexander V. Lebedinsky ^a
6	
7	Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospekt 60-Letiya
8	Oktyabrya 7/2, 117312 Moscow, Russia, ^a and Josephine Bay Paul Center, Marine Biological
9	Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA ^b
10	
11	SUPPLEMENTAL MATERIAL
12	
13	
14	
15	
16	
17	
18	
19	
20	

Figure S1. (Left) Locations of the Endeavour Segment and Axial Volcano hydrothermal vent sites on the Juan de Fuca Ridge in the northeastern Pacific Ocean (map courtesy of NEPTUNE Canada, NOAA, and NASA). Reprinted from (1). (Right) Map of the Mariana Arc and five volcanoes where vent fluids were collected (Map courtesy of R. Embley and S. Merle, NOAA/PMEL.). Reprinted from (2).

26

27

Figure S2. Dendrogram showing the phylogenetic position of the deduced amino acid sequences of mcrA genes retrieved from the FS625 sample (GenBank: HQ635702 and HQ635704) (1) among other McrA sequences. The tree was constructed in the ARB software package (3) using maximumlikelihood (PHYML) algorithm and non-parametric bootstrap analysis. The percent bootstrap values are based on 100 replicates and are indicated at the nodes with \geq 50% bootstrap support. Bar=10% estimated sequence divergence.

37 **Table S1.** Description of all diffuse vent fluid samples screened with newly designed primer pair

38 targeting ANME-1 16S rRNA genes

							PCR result
Sample	Site	Vent	Year	T _{max} (°C)	T _{avg} (°C)	Vol. (ml)	
A1-Sx10	Axial	Marker 33 dome	2007	18.4	14.7	2568	-
A1-Sx12	Axial	The Spot near Vixen	2007	30.8	30	3556	-
A1-Sx13	Axial	Bag City @ market	2007	13.7	13.2	3153	-
A1-Sx15	Axial	Cloud Pit	2007	6.5	6.8	3005	-
A2-Sx10	Axial	Shepherd	2007	27.9	25	3049	-
A2-Sx13	Axial	T&S @ Chasm	2007	78.8	75.9	2808	-
A3-Sx10	Axial	Zen Garden	2007	25.7	23.7	3403	-
A3-Sx11	Axial	Zen Garden	2007	7.7	7.2	2903	-
A3-Sx13	Axial	Forum cold	2007	6.1	5.7	2046	-
A4-Sx11	Axial	Marker 113	2007	31.1	30.7	2600	-
A4-SX12	Axial	Marker 113	2007	31.5	31.3	2617	-
A5-Sx15	Axial	Gollum @ Ashes	2007	22.3	21.7	2554	-
A6-Sx15	Axial	Notdeadyet @ Cobb	2007	33.6	24.3	2547	-
FS600	Axial	Gollum	2008	23.3	20.5	4550	-
FS601	Axial	Marshmallow	2008	88	84.9	2026	-
FS608	Axial	Marker 33	2008	20.4	19.7	4048	-
FS609	Axial	Cloud	2008	6.9	6.7	2027	-
FS610	Axial	Near Vixen	2008	24.1	23.5	1268	-
FS611	Axial	Bag City	2008	11.4	11.2	1612	+
FS612	Axial	Marker 113	2008	24.8	23	4001	-

FS616	Axial	Village	2008	18.5	15.4	2002	-
FS617	Axial	Hermosa	2008	34.4	32.9	632	-
FS619	Axial	9m	2008	35.9	29.7	2001	-
FS624	Endeavour	Salut LT	2008	49.9	33.7	2007	-
FS625	Endeavour	Easter Island	2008	22.1	17.8	2015	+
FS627	Endeavour	S&M LT, east side	2008	52.4	43.4	4010	-
FS630	Endeavour	Lobo LT	2008	28.7	22.7	2105	-
FS632	Endeavour	Hulk LT	2008	33.7	24.8	4030	-
FS634	Endeavour	Grotto LT	2008	19.8	18.1	1999	-
FS635	Endeavour	Cathedral LT	2008	24.6	22	1500	-
FS639	Endeavour	Cauldron LT	2008	45.3	38.8	1500	-
FS640	Endeavour	Cuchalainn LT	2008	293.4	31.5	1496	-
FS642	Endeavour	background: 1750-1500m	2008	2.6	2.4	1500	-
FS724	Endeavour	Fairy Castle	2009	31.9	28.9	2527	-
FS725	Endeavour	Boardwalk	2009	18.2	16.4	1070	+
FS643	Endeavour	Boardwalk LT	2008	23.2	21.1	1500	-
FS645	Endeavour	Godzilla LT	2008	35.1	29	3964	-
FS431	Forecast	Snail Scrum	2006	16.0	6.0	2050	-
FS432	Forecast	Homer Vent	2006	19.0	6.5	2015	-
FS445	NW Rota- 1	Brimstone	2006	27.9	19.7	3004	-
FS446	NW Rota- 1	Iceberg	2006	53.8	48.0	3007	-
FS447	NW Rota- 1	Sandy Saddle	2006	35.6	29.0	1960	-
FS448	NW Rota- 1	Fault Shrimp	2006	25.9	25.0	3010	+
FS449	NW Rota- 1	Scarp Top	2006	17.6	15.1	2000	-
A1-Sx10	Axial	Marker 33 dome	2007	18.4	14.7	2568	-

A1-Sx12	Axial	The Spot near Vixen	2007	30.8	30	3556	-
A1-Sx13	Axial	Bag City @ market	2007	13.7	13.2	3153	-
A1-Sx15	Axial	Cloud Pit	2007	6.5	6.8	3005	-
A2-Sx10	Axial	Shepherd	2007	27.9	25	3049	-
A2-Sx13	Axial	T&S @ Chasm	2007	78.8	75.9	2808	-

39 Note. The samples were screened for ANME-1 phylotypes using ANME-1-25(F) – ARCH-915(R)
40 (4) primer pair.

41

42 **Table S2.** Archaeal isolates with unreported temperature optima that have a 16S rRNA gene G+C

Organism	Accession in RDP (in GenBank)	Culmination of taxonomic lineage in GenBank document	Isolation source	Reference	P _{GC} , mol%
haloarchaeon_str. T1.6	S000433079 (AJ270240)	Halobacteriales	solution- mined brine	5	60.1
halophilic archaeon MK206-1	S002949589 (AB638840)	Halobacteriales	no data	6	60.3
haloarchaeon str. T4.2	S000433070 (AJ270231)	Halobacteriales	solution- mined brine	5	60.8
Halobacteriales_archaeon YIM 93590	S002447619 (JF449412)	Halobacteriales	no data	7	63.6

43 content (P_{GC}) above 60 mol% and are not affiliated with known thermophilic genera

44 Notes: The table is based on analysis of the 16S rRNA genes of archaeal isolates available from the

45 RDP database (Release 10, Update 28, Jan 12, 2012; 2202 sequences with length >1200 nt).

- 46 **Table S3**. G+C content of 16S rRNA gene sequences (P_{GC}) representing ANME microorganisms
- 47 that were detected in or enriched from various hydrothermal-associated environments with
- 48 indication of corresponding *in situ* or incubation temperatures.

						1
Accession number	Silva taxonomy	Our Taxonomy (only in case of ANME-1 cluster) ¹	Taxonomy in original article	P _{GC}	<i>In situ</i> or incubation temperature	Ref.
AF419638	ANME-2c	-	ANME-2c	55.3	2°C to 57°C	8
AF419647	ANME-2c	-	ANME-2c	55.4	nd	8
AF419650	ANME-2c	-	ANME-2c	54.8	nd	8
AF419644	ANME-2c	-	ANME-2c	55.3	2°C to 57°C	8
AF419624	ANME-1a	ANME-1a	ANME-1a	56.0	2°C to 74°C	8
AF419625	ANME-1a	ANME-1a	ANME-1a	56.4	2°C to 74°C	8
AF419626	ANME-1a	ANME-1AT	ANME-1a	57.5	2°C to 74°C	8
AF419649	ANME-1a	ANME-1AT	ANME-1a	57.6	nd	8
AF419652	na ²	ANME-1AT	ANME-1a	57.1	nd	8
AF419654	ANME-1a	ANME-1AT	ANME-1a	57.1	nd	8
AF419627	ANME-1	ANME-1AT	ANME-1a	58.3	2°C to 74°C	8
AF419630	ANME-1	ANME-1GBa	ANME-1b	63.1	2°C to 74°C	8
AF419655	ANME-1	ANME-1GBa	ANME-1b	62.8	nd	8
AF419631	ANME-1	ANME-1GBa	ANME-1b	62.7	2°C to 74°C	8
AF419632	ANME-1	ANME-1GBa	ANME-1b	62.5	2°C to 74°C	8
AF419638	ANME-2c	-	ANME-2c	55.3	2°C to 57°C	8
AY299516	ANME-3	-	ANME-3	52.8	20°C to 100°C	9
AY299515	ANME-3	-	ANME-3	53.0	20°C to 100°C	9
AY760632	ANME-1b	ANME-1a	ANME-1a	54.1	7°C to 60°C	9
DQ270605	Unclassified	ANME-1a	ANME-1a	53.2	7°C to 60°C	9
AB252423	ANME-2c	-	ANME-2c	55.0	>10°C	10
AB252424	ANME-2ab	-	ANME-2c	55.5	>10°C	10
AB260054	ANME-2ab	-	ANME-2b	56.8	64°C	11
AB260055	ANME-2ab	-	ANME-2b	56.9	64°C	11
AB301860	ANME-1a	ANME-1a	ANME-1a	55.8	52°C	12
AM268264	Unclassified	ANME-1a	ANME-1	56.9	45 °C	13
AM418591	Unclassified	-	ANME-3	56.1	55°C to 90°C	14
AM418592	Unclassified	-	ANME-3	56.5	55°C to 90°C	14
AM418593	Unclassified	-	ANME-2	56.3	50°C to 70°C	14
AM418594	Unclassified	-	ANME-2	56.7	50°C to 70°C	14
EF644781	ANME-2ab	-	ANME-2	56.0	nd	15
EF644784	ANME-2ab	-	ANME-2	56.7	nd	15
FR682489	ANME-1a	ANME-1a	ANME-1-Guaymas I	56.4	50°C	16
FR682490	ANME-1	ANME-1AT	ANME-1-Guaymas II	56.6	50°C	16
FR682491	ANME-1	ANME-1AT	ANME-1-Guaymas II	56.9	50°C	16
JF937764	Unclassified	-	ANME-2c	54.1	30° C to 35° C	17

JF937743	Unclassified	-	ANME-2ab	54.5	30°C to 35°C	17
JF937751	Unclassified	ANME-1AT	ANME-1a	56.2	15°C to 20°C	17
JF937770	Unclassified	ANME-1AT	ANME-1a	55.3	60°C to 95°C	17
JF937719	Unclassified	ANME-1GBa	ANME-1 Guaymas	64.0	60°C to 95°C	17
JF937715	Unclassified	ANME-1GBa	ANME-1 Guaymas	63.8	60°C to 95°C	17
JF937746	Unclassified	ANME-1GBa	ANME-1 Guaymas	64.3	15°C to 20°C	17
JF937791	Unclassified	ANME-1GBa	ANME-1 Guaymas	64.6	60°C to 95°C	17
JF937755	Unclassified	ANME-1GBa	ANME-1 Guaymas	63.5	15°C to 20°C	17
JN919590	Unclassified	nd ³	ANME-1a	57.6	52°C	18
JN925693	Unclassified	nd	ANME-1a	57.5	52°C	18
JN922003	Unclassified	nd	ANME-1a	58.4	52°C	18
JN916619 ⁴	Unclassified	nd	ANME-1a	61.5	52°C	18
JN917740	Unclassified	ANME-1a	ANME-1a	56.5	52°C	18
JN920217	Unclassified	ANME-1AT	ANME-1a	56.7	52°C	18
JN923285	Unclassified	ANME-1AT	ANME-1a	56.8	52°C	18
JN923760	Unclassified	ANME-1AT	ANME-1a	56.6	52°C	18
JN919387	Unclassified	ANME-1AT	ANME-1a	57.7	52°C	18
JN916455	Unclassified	ANME-1AT	ANME-1a	57.4	52°C	18
JN928779	Unclassified	ANME-1a	ANME-1a	56.3	52°C	18
JN924050	Unclassified	ANME-1a	ANME-1a	55.1	52°C	18
JN918036	Unclassified	ANME-1a	ANME-1a	56.7	52°C	18
JN915944	Unclassified	nd	ANME-1a	56.9	52°C	18
JN934186	Unclassified	nd	ANME-1a	56.4	52°C	18
JN918739	Unclassified	nd	ANME-1a	57.7	52°C	18
JN928776	Unclassified	ANME-1a	ANME-1c	57.3	52°C	18
JN932428	Unclassified	ANME-1a	ANME-1c	57.0	52°C	18
JN921789	Unclassified	ANME-1a	ANME-1c	56.2	52°C	18
JN928790	Unclassified	ANME-1a	ANME-1c	57.3	52°C	18
JN919646	Unclassified	ANME-1a	ANME-1c	57.7	52°C	18
JN929819	Unclassified	ANME-1a	ANME-1c	58.2	52°C	18
JN928810	Unclassified	ANME-1a	ANME-1c	57.4	52°C	18
JN925024	Unclassified	ANME-1a	ANME-1c	57.8	52°C	18
JN933005	Unclassified	ANME-1a	ANME-1c	57.3	52°C	18
JN915819	Unclassified	ANME-1a	ANME-1c	56.5	52°C	18
JN929815	Unclassified	ANME-1a	ANME-1c	57.8	52°C	18
JN920932	Unclassified	ANME-1a	ANME-1c	58.4	52°C	18
JN920961	Unclassified	ANME-1a	ANME-1c	58.9	52°C	18
JN928769	Unclassified	ANME-1a	ANME-1c	57.4	52°C	18
JN927216	Unclassified	ANME-1a	ANME-1c	57.8	52°C	18
JN926589	Unclassified	ANME-1a	ANME-1c	56.6	52°C	18

49

¹Taxonomic position of sequences was determined by constructing a phylogenetic tree in the ARB

50 software package (3) using maximum-likelihood (PHYML) algorithm.

51 ² na – not applicable (no such sequence in Silva database)

- 52 ³ nd not determined (sequences represent separate phylogenetic lineages)
- ⁴ This is the only sequence beyond the ANME-1GBa group that has P_{GC} above 60%. However, it is
- 54 short (413 bp) and may be chimeric (55% Pintail Quality according to Silva database).

56	1.	Ver Eecke HC, Butterfield DA, Huber JA, Lilley MD, Olson EJ, Roe KK, Evanse LJ,
57		Merkel AY, Cantin HV, Holden JF. 2012. Hydrogen-limited growth of hyperthermophilic
58		methanogens at deep-sea hydrothermal vents. Proc. Natl. Acad. Sci. USA. 109(34):13674-
59		13679.
60	2.	Huber JA, Cantin HV, Huse SM, Welch DB, Sogin ML, Butterfield DA. 2010. Isolated
61		communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc
62		seamounts. FEMS Microbiol. Ecol. 73(3):538-49.
63	3.	Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T,
64		Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S,
65		Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B,
66		Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A,
67		Schleifer KH. 2004. ARB: a software environment for sequence data. Nucleic. Acids. Res.
68		32(4) :1363–1371.
69	4.	Stahl DA, Amann R. 1991. Development and application of nucleic acid probes in bacterial
70		systematic, p 205-248. In Stackebrandt E, Goodfellow M (ed), Nucleic acid techniques in
71		bacterial systematics, John Wiley and Sons Ltd, Chichester.
72	5.	McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H. 2000. Origins of halophilic
73		microorganisms in ancient salt deposits. Environ. Microbiol. 2(3):243-250.
74	6.	Kondo Y, Minegishi H, Kamekura M, Echigo A, Shimoshige H,Shimane Y, Usami R. An
75		extreme halophile in the order Halobacteriales. Unpublished.
76	7.	Liu BB, Tang SK, Ming H. Studies on diversity of cultured Halophilic archaeon in Lop Nur
77		and its surrounding region and their enzymes screening. Unpublished.
78	8.	Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML,

79		Jannasch HW. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin:
80		evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68(4):1994-
81		2007.
82	9.	Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. 2006. Methane- and sulfur-
83		metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem.
84		Appl. Environ. Microbiol. 72(9):6257-6270.
85	10	. Inagaki F, Kuypers MM, Tsunogai U, Ishibashi J, Nakamura K, Treude T, Ohkubo S,
86		Nakaseama M, Gena K, Chiba H, Hirayama H, Nunoura T, Takai K, Jørgensen BB,
87		Horikoshi K, Boetius A. 2006. Microbial community in a sediment-hosted CO ₂ lake of the
88		southern Okinawa Trough hydrothermal system. Proc. Natl. Acad. Sci. USA. 103(38):14164-
89		14169.
90	11	. Nakagawa S, Inagaki F, Suzuki Y, Steinsbu BO, Lever MA, Takai K, Engelen B, Sako Y,
91		Wheat CG, Horikoshi K. 2006. Microbial community in black rust exposed to hot ridge
92		flank crustal fluids. Appl. Environ. Microbiol. 72(10):6789-6799.
93	12	. Hirayama H, Sunamura M, Takai K, Nunoura T, Noguchi T, Oida H, Furushima Y,
94		Yamamoto H, Oomori T, Horikoshi K. 2007. Culture-dependent and -independent
95		characterization of microbial communities associated with a shallow submarine
96		hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl. Environ.
97		Microbiol. 73(23) :7642-7656.
98	13	. Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN. 2007. Microbial
99		community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania
100		(eastern Mediterranean). Orig. Life. Evol. Biosph. 37(2):177-188.
101	14	. Roussel EG, Bonavita MA, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ.
102		2008. Extending the sub-sea-floor biosphere. Science. 320(5879) :1046.
103	15	. Voordeckers JW, Do MH, Hügler M, Ko V, Sievert SM, Vetriani C. 2008. Culture

- 104 dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison
- 105 of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge.
- 106 Extremophiles. **12(5)**:627-640.
- 107 16. Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs KU, Teske A,
- Boetius A, Wegener G. 2011. Thermophilic anaerobic oxidation of methane by marine
 microbial consortia. ISME J. 5(12):1946-1956.
- 110 17. Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A. 2012.
- Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin
 hydrothermal sediments. ISME J. 6(5):1018-1031.
- 113 18. Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR. 2012.
- 114 Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon
- flux and decoupling from sulfate reduction. Environ. Microbiol. doi: 10.1111/j.1462-
- 116 2920.2012.02825.x.