Supporting Information for:

Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide ¹⁵N-¹⁵N and carbonyl ¹³C-¹³C dipolar recoupling data

Kan-Nian Hu^a, Wei Qiang^a, Guillermo A. Bermejo^b, Charles D. Schwieters^b, and Robert Tycko^a

^aLaboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
^bDivision of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624

Figures S1 and S2; Tables S1 and S2

Figure S1: 2D NCACX (a), NCOCX (b), and CC (c) correlation spectra of microcrystalline, uniformly ¹⁵N,¹³C-labeled GB1, recorded at 17.6 T with MAS at 17.00 kHz. Assignments were obtained from these spectra using the MCASSIGN2 program [Hu *et al.*, J Biomolec. NMR **50**, 267-276 (2011)]. Assignments are listed in Table S1.

Figure S2: 2D CHHC (a), NHHC (b), and RAD (c) spectra of GB1, from which inter-residue distance restraints in Table S2 were obtained. These spectra were recorded at 17.6 T with MAS at 17.00 kHz.

Table S1: Site-specific chemical shift assignments and predicted backbone torsion angles for microcrystalline GB1. Assignments were generated in a semi-automated manner from spectral data in Fig. S1, using the program MCASSIGN2. ¹³C shifts are in ppm relative to DSS, ¹⁵N shifts are in ppm relative to liquid NH₃. Torsion angle predictions (in degrees) were generated by TALOS+. Only "good" predictions are shown. Predictions that were included in Xplor-NIH calculations. Torsion angles determined from atomic coordinates in PDB file 2GI9 are shown for comparison.

residue	¹³ CO	$^{13}C\alpha$	¹³ Cβ	¹³ Cy	¹³ Cδ	backbone	sidechain ¹⁵ N shift	TALOS+ ϕ	TALOS+ ψ	ϕ, ψ in PDB
M1	170.7	55.5	35.6	31.9	SIIII	33.5	IN SHITE	prediction	prediction	,152
Q2	174.2	55.0	30.7	35.0	179.4	117.6	106.7	-135 ± 22	147 ± 14	-94,127
Y3	174.9	57.0	44.2			120.0		-130 ± 16	157 ± 13	-115,152
K4	173.6	54.9	35.3			117.1		- 152 ±10	150 ± 9	-114,146
L5	174.4	52.8	42.7	27.2	25.5, 24.6	120.5		-117 ± 16	133 ± 17	-122,125
I6	175.3	59.8	38.2	17.2, 27.2		121.4				-105,123
L7	174.6	54.9	42.6	27.2		122.5				-104,126
N8		50.7	38.1			120.2		-117 ± 28	164 ± 26	-120,65
G9	173.7	44.2				105.2				-86,169
K10	178.3	59.3	32.4			117.7		-61 ± 7	-34 ± 10	-62,-40
T11	173.0	62.6	69.4	23.5		105.1		-105 ± 19	-2 ± 16	-107,-43
L12	173.7	53.9	44.2	27.7		123.2		-128 ± 35	153 ± 12	-111,125
K13	175.5	53.1	39.2	26.0		118.8		-134 ± 13	158 ± 16	-133,148
G14	170.5	45.7				102.1		-169 ± 28	162 ± 11	144,-153
E15	173.5	53.7	33.3			116.7		-143 ± 17	160 ± 0	-139,140
T16	172.3	59.9	69.3	19.5		111.6		-125 ± 31	153 ± 14	-139,171
T17	174.0	59.9	73.4	21.5		108.0		-126 ± 19	162 ± 6	-135,162
T18	171.0	62.2	69.8	18.0		110.9				-153,162
E19		54.1	31.4			119.0		-135 ± 23	156 ± 14	-111,128
A20	177.5	50.9	23.2			120.0		-132 ± 35	167 ± 15	-150,156
V21	173.9	63.7	32.0			113.4		- 84 ± 28	-20 ± 23	-67,-31
D22	175.3	52.3	42.0	179.0		111.2				-156,177
A23	179.2	54.5	17.9			118.3				-70,-39
A24	180.5	54.6	18.5			116.3		-64 ± 6	-38 ± 7	-61,-37
T25	175.7	66.8	67.8	21.1		112.1		-67 ± 9	-38 ± 13	-67,-47
A26	177.0	54.7	17.2			119.7		-64 ± 6	-40 ± 14	-60,-40
E27	177.4	59.3	28.2	34.3	180.2	112.5		-65 ± 10	-40 ± 13	-58,-43
K28	179.5	59.2	32.4	25.3		112.6		-67 ± 9	-45 ± 9	-62,-42
V29	178.9	66.4	31.4	21.0, 22.2		115.7		-69 ± 10	-40 ± 9	-63,-48
F30	178.5	57.3	37.4			115.2		-69 ± 9	-38 ± 12	-68,-36
K31	179.3	60.0	31.6	25.9		117.8		-69 ± 9	-38 ± 11	-65,-38
Q32	176.9	59.2	27.7	33.4	180.4	116.9	110.6	-63 ± 5	-45 ± 4	-64,-41
Y33	178.4	61.4				116.8		-62 ± 6	-44 ± 7	-59,-46
A34	179.3	55.9	17.6			118.1		-61 ± 6	-39 ± 6	-63,-46
N35	179.7	57.0	39.0			115.1		-62 ± 4	-41 ± 6	-60,-45
D36	174.8	55.9	38.6	177.6		118.4		-66 ± 9	-29 ± 13	-63,-46
N37	175.2	53.2	40.1	176.8		109.0	109.4	-91 ± 11	1 ± 14	-103,12
G38	173.8	46.4				104.8		85 ± 23	15 ± 11	86,10
V39	174.5	61.7	32.6	21.2, 22.0		119.3		-104 ± 14	126 ± 24	-97,134

D40	174.2	53.2	42.1	180.2		124.2	-107 ± 25	151 ± 34	-140,111
G41	172.0	45.0				104.9			-156,-164
E42	177.3	55.1	31.1	35.1	179.5	115.0	-114 ± 25	140 ± 13	-96,140
W43	177.0	57.4	32.6			121.6			-113,147
T44	173.3	60.9	73.0	21.0		105.2	-135 ± 24	161 ± 14	-131,159
Y45	171.6	57.5	42.7			114.8	-149 ± 7	152 ± 14	-136,130
D46	176.7	50.7	42.4	180.4		121.2			-119,104
D47	177.1	55.4	43.3	179.8		120.0	-64 ± 8	-28 ± 13	-62,-25
A48	177.9	53.8	19.4			114.9	-71 ± 16	-28 ± 14	-71,-16
T49	174.9	60.4	70.4	21.7		97.7	-108 ± 11	1 ± 21	-126,8
K50	175.2	56.0	28.9	24.3	27.8	114.8	61 ± 7	34 ± 11	53,40
T51	174.3	62.8	71.1	21.3		108.0			-123,129
F52	175.4	56.6	43.0			125.2	-102 ± 20	152 ± 14	-99,152
T53	172.3	60.1	71.4	20.5		107.8	-143 ± 23	157 ± 13	-129,149
V54	172.5	58.1	32.1	19.4, 21.4		113.5	-122 ± 24	145 ± 14	-131,131
T55	173.7	61.3	71.4	21.4		120.2	-112 ± 18	131 ± 17	-133,129
E56	180.2	57.2	32.4	38.2	182.8	127.7			-97,

Table S2: Interatomic distance restraints derived from inter-residue crosspeaks in 2D CHHC, NHHC, and RAD spectra of microcrystalline GB1 in Fig. S2, and from ¹⁵N-BARE and ¹³C-BARE data for N- and C-terminal residues. (Note: If atom 1 and/or atom 2 can represent more than one site, *e.g.*, the three H_{β} sites of A20, then distance restraints for all possible combinations of atom 1 and atom 2 were included in the Xplor-NIH calculations.)

atom 1	atom 2	distance range (Å)	2D spectrum
I6 H_{α}	E15 H _α	1.8-2.8	СННС
N8 H _a	K13 H _α	1.8-2.8	СННС
K4 H _α	T17 H _α	1.8-2.8	СННС
L12 H _δ	N37 H _β	1.8-2.8	СННС
T18 H _y	V29 H ₈	1.8-2.8	СННС
T18 H _v	V29 H _y	1.8-2.8	CHHC
A20 H _β	A26 H _a	1.8-2.8	CHHC
A20 H _β	A26 H _B	1.8-2.8	СННС
G9 H _a	V39 H _y	1.8-2.8	СННС
E42 H ₆	T55 H _β	1.8-2.8	СННС
D46 H _β	T51 H _β	1.8-2.8	СННС
I6 H _B	T53 H _y	1.8-2.8	СННС
L7 H ₆	V54 H _y	1.8-2.8	СННС
L7 H _y	V54 Η _γ	1.8-2.8	СННС
G9 H _a	E56 H _β	1.8-2.8	СННС
K4 H _N	T51 H _α	2.0-4.0	NHHC
$L5 H_{\alpha}$	F52 H _N	2.0-4.0	NHHC
$L7 H_{\alpha}$	E54 H _N	2.0-4.0	NHHC
G9 H _α	E56 H _N	2.0-4.0	NHHC
L7 H _N	E15 H _α	2.0-4.0	NHHC
K4 H _α	T18 H _N	2.0-4.0	NHHC
D46 H _α	A48 H _N	2.0-4.0	NHHC
D46 H _N	F52 H _α	2.0-4.0	NHHC
Y45 H _α	T51 H _N	2.0-4.0	NHHC
$L5 C_{\delta}$	F30 C _α	3.0-7.0	RAD
$L5 C_{\delta}$	W43 C _{ε2}	3.0-7.0	RAD
L5 Cγ	F30 C _α	3.0-7.0	RAD
L5 C _y	W43 C _{ε2}	3.0-7.0	RAD
L7 C _δ	Υ33 C _ζ	3.0-7.0	RAD
N8 C _a	L12 C _α	3.0-7.0	RAD
L5 C _β	T16 C _α	3.0-7.0	RAD
L5 C _β	Τ17 C _γ	3.0-7.0	RAD
Υ3 C _ζ	A20 C _β	3.0-7.0	RAD
A20 C _β	A26 C_{α}	3.0-7.0	RAD
$L5 C_{\beta}$	F30 C _β	3.0-7.0	RAD
K31 C _β	W43 C _{ε2}	3.0-7.0	RAD
K31 C _δ	W43 C _{ε2}	3.0-7.0	RAD
K31 C _γ	W43 C _{ε2}	3.0-7.0	RAD
F30 C _α	A34 C _β	3.0-7.0	RAD
A34 C _β	V39 C _β	3.0-7.0	RAD
Υ45 C _ζ	D47 C _β	3.0-7.0	RAD
W43 C _{ε2}	V54 C _γ	3.0-7.0	RAD
M1 N	Q2 N	3.1-3.5	¹³ N-BARE
T55 N	E56 N	3.1-3.3	¹³ N-BARE
MI CO	Q2 C0	3.0-3.2	¹³ C P A PE
155 CO	EJOCU	2.9-3.1	U-DAKE