Supplementary Table 1. Oligonucleotides used to introduce mutations in the AAP coding

sequence. Plus and minus strands were annealed together and cloned into AgeI/SpeI, AgeI/MluI,

or SpeI/MluI sites as shown in Supplementary Fig. 1.

Oligo Name	Sequence (5' - 3')
R4* +	CCGGTTAGCCGTCAGTCTTCA
R4* -	CTAGTGAAGACTGACGGCTAA
P5* +	CCGGTCGCTAGTCAGTCTTCA
P5* -	CTAGTGAAGACTGACTAGCGA
S6* +	CCGGTCGCCCGTAGGTCTTCA
S6* -	CTAGTGAAGACCTACGGGCGA
V7* +	CCGGTCGCCCGTCATAGTTCA
V7* -	CTAGTGAACTATGACGGGCGA
F8* +	CCGGTCGCCCGTCAGTCTAGA
F8* -	CTAGTCTAGACTGACGGGCGA
T9* +	CCGGTCGCCCGTCAGTCTTC TAG AGTCAGGATTACCTCTCAGACCATCTGTG
	GAGAGCCCTTAACGCGTAAA
Т9* -	AGCTTTTACGCGTTAAGGGCTCTCCACAGATGGTCTGAGAGGTAATCCTGAC
	TCTAGAAGACTGACGGGCGA
S10* +	CCGGTCGCCCGTCAGTCTTCACT TAG CAGGATTACCTCTCAGACCATCTGTG
	GAGAGCCCTTAACGCGTAAA
S10* -	AGCTTTTACGCGTTAAGGGCTCTCCACAGATGGTCTGAGAGGTAATCCTG CT
	AAGTGAAGACTGACGGGCGA
Q11* +	CTAGTTAGGATTACCTCTCAGACCATCTGTGGAGAGCCCTTAACGCGTAAA
Q11* -	AGCTTTTACGCGTTAAGGGCTCTCCACAGATGGTCTGAGAGGTAATCCTAA
D12* +	CTAGTCAGTAGTACCTCTCAGACCATCTGTGGAGAGCCCTTAACGCGTAAA
D12* -	AGCTTTTACGCGTTAAGGGCTCTCCACAGATGGTCTGAGAGGTACTACTGA
<u>Y13*</u> +	CTAGTCAGGATTAGCTCTCAGACCATCTGTGGAGAGCCCTTAACGCGTAAA
Y13* -	AGCTTTTACGCGTTAAGGGCTCTCCACAGATGGTCTGAGAGCTAATCCTGA
L14* +	CTAGTCAGGATTACTAGTCAGACCATCTGTGGAGAGCCCTTAACGCGTAAA
L14* -	AGCTTTTACGCGTTAAGGGCTCTCCACAGATGGTCTGACTAGTAATCCTGA
<u>S15* +</u>	CTAGTCAGGATTACCTCTAGGACCATCTGTGGAGAGCCCTTAACGCGTAAA
<u>S15* -</u>	AGCTTTTACGCGTTAAGGGCTCTCCACAGATGGTCCTAGAGGTAATCCTGA
D16* +	CTAGTCAGGATTACCTCTCA TAG CATCTGTGGAGAGCCCTTAACGCGTAAA
D16* -	AGCTTTTACGCGTTAAGGGCTCTCCACAGATGCTATGAGAGGTAATCCTGA
H17* +	CTAGTCAGGATTACCTCTCAGACTAGCTGTGGAGAGCCCTTAACGCGTAAA
H17* -	AGCTITTACGCGTTAAGGGCTCTCCACAG CTA GTCTGAGAGGTAATCCTGA
L18* +	CTAGTCAGGATTACCTCTCAGACCAT TAG TGGAGAGCCCTTAACGCGTAAA
L18* -	AGCTTTTACGCGTTAAGGGCTCTCCACTAATGGTCTGAGAGGTAATCCTGA
W19* +	CTAGTCAGGATTACCTCTCAGACCATCTG TAG AGAGCCCTTAACGCGTAAA
W19* -	AGCTTTTACGCGTTAAGGGCTCTCTACAGATGGTCTGAGAGGTAATCCTGA
R20* +	CTAGTCAGGATTACCTCTCAGACCATCTGTGG TAG GCCCTTAACGCGTAAA
R20* -	AGCTTTTACGCGTTAAGGGCCTACCACAGATGGTCTGAGAGGTAATCCTGA
A21* +	CTAGTCAGGATTACCTCTCAGACCATCTGTGGAGATAGCTTAACGCGTAAA
A21* -	AGCTTTTACGCGTTAAGCTATCTCCACAGATGGTCTGAGAGGTAATCCTGA
L22* +	CTAGTCAGGATTACCTCTCAGACCATCTGTGGAGAGCCTAGAACGCGTAAA
L22* -	AGCTTTTACGCGTTCTAGGCTCTCCACAGATGGTCTGAGAGGTAATCCTGA

N23* +	CTAGTCAGGATTACCTCTCAGACCATCTGTGGAGAGCCCTT TAG GCGTAAA
N23* -	AGCTTTTACGCCTAAAAGGGCTCTCCACAGATGGTCTGAGAGGTAATCCTGA
A24* +	CTAGTCAGGATTACCTCTCAGACCATCTGTGGAGAGCCCTTAACTAGTAAA
A24* -	AGCTTTTACTAGTTAAGGGCTCTCCACAGATGGTCTGAGAGGTAATCCTGA
R20K +	CTAGTCAGGATTACCTCTCAGACCATCTGTGGAAAGCCCTTAACGCGTAAA
R20K -	AGCTTTTACGCGTTAAGGGCTTTCCACAGATGGTCTGAGAGGTAATCCTGA

Supplementary Table 2. PCR primers used to amplify linear DNA fragments as templates

Oligo Name	Sequence (5' - 3')
T7 upstream +	AGTAGGTTGAGGCCGTTGA
21 trunc -	GGCTCTCCACAGATGGTCT
22 trunc -	AAGGGCTCTCCACAGATGG
23 trunc -	GTTAAGGGCTCTCCACAGA
24 trunc -	CGCGTTAAGGGCTCTCCAC
25 trunc -	GACCGCGTTAAGGGCTCTC
W19A 24 trunc -	CGCGTTAAGGGCTCTCGCCAGATGG
W19Y 24 trunc -	CGCGTTAAGGGCTCTGTACAGATGG
R20* 25 trunc -	GACCGCGTTAAGGGCCTAC
A21* 25 trunc -	GACCGCGTTAAGCTATCTC
L22* 25 trunc -	GACCGCGTTCTAGGCTCTC
N23* 25 trunc -	GACCGCCTAAAGGGCTCTC
A24* 25 trunc -	GACCTAGTTAAGGGCTCTC
R20K 25 trunc -	GACCGCGTTAAGGGCTTTC

to generate mRNAs encoding AAPs.

Supplementary Table 3. Quantitative analyses of AAP nascent chain photoadducts to ribosomal proteins. The amount of radiolabeled AAP nascent chain that formed photoadducts with ribosomal proteins rpL4 and rpL17 was determined using ImageQuant TL (GE Healthcare) and presented as the fraction of sum of radiolabeled AAP, both crosslinked and uncrosslinked.

	Table SSA, Telated to Fig. 5a.							
	WT, +Arg	WT, -Arg	D12N, +Arg	D12N, -Arg				
rpL4	7.9	3.6	3.7	3.2				
rpL17	1.4	2.0	1.4	1.5				
AAP	90.7	94.4	94.8	95.3				

Table S3A, related to Fig. 5a.

Table S3B, related to Fig. 5b.

		0		
	WT, +Arg	WT, -Arg	D12N, +Arg	D12N, -Arg
rpL4	9.2	4.3	4.7	4.5
rpL17	2.4	8.0	4.6	4.7
AAP	88.4	87.7	90.7	90.8

Table S3C, related to Fig. 5c.

	WT, +Arg	WT, -Arg
rpL4	7.3	5.7
rpL17	0.6	1.9
AAP	92.1	92.4

Table S3D, related to Fig. 6a.

	A21		L	22	N	23	A	24	V2	25
	+Arg	-Arg	+Arg	-Arg	+Arg	-Arg	+Arg	-Arg	+Arg	-Arg
rpL4	11.6	13.7	17.2	11.0	12.9	14.2	11.2	5.8	9.6	6.1
rpL17	0.4	1.1	0.6	0.9	0.2	1.7	1.0	3.0	1.1	2.3
AAP	88.0	85.2	82.2	88.1	86.9	84.01	87.8	91.2	89.3	91.6

Table S3E, related to Fig. 6b.

	WT		WT W19A		W19Y		D12N	
	+Arg	-Arg	+Arg	-Arg	+Arg	-Arg	+Arg	-Arg
rpL4	13.9	7.4	8.9	9.5	9.0	7.1	6.5	5.3
rpL17	1.2	3.4	3.4	4.1	1.9	3.1	1.9	1.6
AAP	84.9	89.2	87.7	86.4	89.1	89.8	91.6	93.1

Table S3F, related to Fig. 6c.

		W	Τ		D12N			
	+Arg	+D-Arg	+RGD	-	+Arg	+D-Arg	+RGD	-
rpL4	14.0	6.7	9.3	6.1	7.0	4.7	6.1	5.2
rpL17	1.1	3.2	1.4	3.3	2.0	1.5	1.8	1.7
AAP	84.9	90.1	89.3	90.6	91.0	93.8	92.1	93.1

Table S3G, related to Fig. 7.

	+Arg, +Cyh	-Arg, +Cyh	-Arg, +Cyh,	+Arg	-Arg
			+Arg		
rpL4	15.9	10.6	15.9	10.9	10.0
rpL17	1.1	3.3	1.1	0.6	3.3
AAP	83.0	86.1	83.0	88.5	86.7

Supplementary Table 4. Quantitative analyses of AAP nascent chain photoadducts to ribosomal proteins. The amount of radiolabeled AAP nascent chain that formed photoadducts with ribosomal proteins rpL4 and rpL17 was determined using ImageQuant TL (GE Healthcare).

	L	4	L	17	
	+Arg	-Arg	+Arg	-Arg	
A21	0.963 ± 0.005	0.925 ± 0.003	0.037 ± 0.005	0.075 ± 0.003	N=3
L22	0.974 ± 0.009	0.929 ± 0.003	0.026 ± 0.009	0.071±0.003	N=3
N23	0.983 ± 0.004	0.900 ± 0.008	0.017 ± 0.004	0.100 ± 0.008	N=3
A24	0.927 ± 0.009	0.695 ± 0.035	0.073 ± 0.009	0.305 ± 0.035	N=7
A24 D12N	0.779 ± 0.002	0.757 ± 0.009	0.221±0.002	0.243 ± 0.009	N=2*
V25	0.890 ± 0.028	0.704 ± 0.044	0.110±0.027	0.296 ± 0.044	N=6
V25 D12N	0.729 ± 0.004	0.681 ± 0.005	0.271±0.004	0.319 ± 0.005	N=2
A24	0.671 ± 0.005^{a}		$0.329 {\pm} 0.005^{a}$		N=2
A24	$0.838 {\pm} 0.030^{b}$		0.162 ± 0.030^{b}		N=2
A24	$0.933 \pm 0.001^{\circ}$	0.752 ± 0.008^{c}	0.067 ± 0.001^{c}	0.248 ± 0.008^{c}	N=2
A24	$0.917 {\pm} 0.017^{d}$		$0.083 {\pm} 0.017^{d}$		N=2
W19A	0.749 ± 0.028	0.719 ± 0.021	0.251 ± 0.028	0.281 ± 0.021	N=2
W19Y	0.836±0.011	0.707±0.013	0.164±0.011	0.293±0.013	N=2

^a, 2mM D-Arg was added instead of Arg.
^b, 2mM RGD was added instead of Arg.
^c, translation was stopped by Cyh before UV irradiation, as described in Fig. 7.
^d, 2mM Arg added after translation was stopped by Cyh, as described in Fig. 7.

*, when N=2, average deviation, not standard deviation, is calculated.