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Quantitative theory of human color choices

N.L. Komarova and K.A. Jameson

1 Experimental methods

1.1 Participants

Participants were 56 subjects (34 female and 22 male) recruited either through
the University of California, San Diego, Department of Psychology human sub-
jects pool, or by posted solicitations. Participants received either cash payment
or course extra-credit. All subjects were native speakers of English. The study
was approved by University of California, San Diego Human Research Protec-
tions Program (HRPP) Institutional Review Board (IRB). Written informed
consent was obtained by all participants in accordance with UCSD Human
Research Protection Program (HRPP) protocol. The IRB ethics committees
approved all aspects of the recruitment and consent procedures used. Copies of
written informed consent forms with identifying subject information redacted
are available. Four subjects (2 male, 2 female) were omitted from data analyses
due to procedural errors during data acquisition. The remaining 52 subjects
(32 female, 20 male) completed all experimental tasks. Subsequent color vision
screening identified four of the male participants as having some form of color
vision anomaly, see below.

1.2 Apparatus and procedure

Stimuli were generated by a PowerPC Macintosh 7200 and displayed on a Hi-
tachi RasterOps MC 7515, 21” CRT monitor with a 19” viewablediagonal and
EBU monitor phosphors. CIELUV 1976 (u*,v*) values for phosphors were Red
(.4507, .5230); Green (.1206, .5610); Blue (.1754, .1580). The screen resolution
was 1024x786 at 70 Hz (24 bit color). The experimental display was checked
regularly for accurate color rendering using a calibration measurement system
dedicated to colorimetry functions. Blackout material covered surrounding CRT
casing leaving only viewable screen area. Stimuli were manipulated on the
screen via a trackball mouse and responses were recorded using a PsyScope
button box (Carnegie Mellon University, Pittsburgh, PA). Experimental proce-
dures were original routines implemented using PsyScope 1.2.5 PPC software
(Cohen, MacWhinney, Flatt, and Provost, 1993).

Participants were dark-adapted for at least 10 min. in a dimly lit room dif-
fusely illuminated at 2 Lux by a halogen lamp. The instructions were visibly
displayed and the experimenter read all task instructions to subjects. Practice
trials preceded data collection. In the experiment participants were randomly
presented series of triad trials comprised of three precisely rendered color stim-
uli. In a given triad trial participants must identify which of the three items
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presented is most different from the remaining two. Color appearance triads
were judged separately for the three conditions tested (i.e., global, local red and
local blue). Each condition included 21 stimuli in a Balanced Incomplete Block

Design (BIBD, lambda = 1) for a total of 70 triad judgments per condition.
A Balanced Incomplete Block Design (BIBD or BIB) is an established way

of reliably assessing a subset all possible triples among a number of items [20].
BIBDs have been used extensively in the study of semantics in anthropology,
clinical psychology and psychophysics as a technique for deriving information
about structural relations among many items [4]. Such designs are important
tools in investigations of cognition, and can be traced back to mathematical
psychologist C. H. Coombs [5]. Triad BIB designs are proven as alternatives
to presenting participants a full complement of triads. Here a full complement
of triadic comparisons for N = 21 items for a single conditions would be 1330
triads (given by N(N − 1)(N − 2)/6, where each pair is presented with every
other item in the stimulus set). Requiring 1330 judgments for each of the three
conditions we tested would be empirically impractical, and would be expected
to have undesirable impacts on participant performance. The Λ = 1 BIBD we
employ uses 70 triads to assess 21 stimulus items where each pair of items is pre-
sented in a triad one time. By design, this is a sparser sampling than a complete
design (Λ = N − 2) or a Λ = 2 or Λ = 3 design (where each pair of items occurs
twice or three times). We however can be confident of the robustness of the data
produced, because this methodology has been employed elsewhere to recover re-
lational structure for other stimulus domains and has been tested extensively
[?]. More importantly, in the present data for all three conditions tested we
observed a high degree of shared agreement (i.e., well-correlated observer re-
sponse patterns) in the triad color judgments of participants, as measured by
high average consensus levels (near 0.7), and, as described in detail elsewhere,
the data in all 3 conditions meets all Consensus Theory criteria [16] for a ro-
bustly shared knowledge domain [17]. Thus, while potential for increasing noise
and random errors exists in essentially any incomplete empirical design, we are
confident the BIBD we use more than adequately captures the desired structure
from the color similarity phenomena we model in this paper.

1.3 Stimuli

Stimulus selection was guided by aims of (1) studying color similarity judgments
using comparatively larger sets of color stimuli than that previously used in sim-
ilar cognitive research [13]; (2) investigating color categories identified as “Basic
Colors ” [1]; (3) maximizing the potential observation of color naming variation
across different observer groups [10]. Of these 3 aims only the first is emphasized
in the present paper (see Sayim et al. [17] for additional results). Three stim-
ulus sets from 3 regions of color space were selected. Each set consisted of 21
color samples (specifically, 21 stimuli gave an acceptable number of triad trials
in a balanced block design) with associated color names (the color name results
are reported in [17]). Stimuli were chosen following a principled procedure that
produced a representative sampling of color space for the three color conditions
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investigated. Three conditions consisted of 21 “global” colors, 21 “local red”
colors, and 21 “local blue” colors. Global color stimuli included eight OSA cen-

troids identified earlier as corresponding to eight salient color terms [3]. The
remaining 13 global color stimuli corresponded to OSA tiles named with the
highest frequency in a study of unrestricted naming in English of all 424 OSA
tiles [6]. Local stimuli were selected to permit comparing similarity structure
of within-category conditions with that for global (across-category) stimuli. By
studying local red and blue color stimuli, we aimed to elicit potential differences
between the global and local conditions, following the rationale that color simi-
larity judgments should differ for local and global stimulus sets [9]. Red and blue
categories were also chosen to explore a potential difference between observers
with varying color vision capabilities (as aspect of the research presented else-
where [17]). A general selection heuristic was used to select red and blue stimuli:
the monolexemic naming data of Boynton and Olson[3] was used to identify 21
OSA tiles, from each category (red and blue), that were reliably named “red”
and “blue” by a majority of their subjects. Minor deviations from this strategy
were needed and are described elsewhere [17]. Figure 2 of the main text shows
an approximation of the 21 colors sampled for each condition. After triad data
collection subjects answered demographic questions and were screened for color
vision abnormalities. All details of the experimental procedure are found in [17].
One triad example from each stimulus condition is shown in figure 1.

Figure 1: Examples of triad stimuli used for the global condition (left), red
condition (middle) and blue condition (right). Colors shown are only approxi-
mations of that presented during the experiment on the calibrated color CRT
display.

2 Color difference based on distance measure-

ments

2.1 Different distance models

To evaluate the predictions of different color distance models, we use the fol-
lowing method. For each condition (global, red, and blue), for each triad we
calculate the three color distances among the three stimuli. The stimulus op-
posite the shortest of the distances corresponds to the predicted odd-one-out
choice [2, 15]. For each triad, such theoretically predicted choice is compared to
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the majority choice of the responders. If the majority of the group picks a stim-
ulus different from the predicted one, we call this a “mismatch”. The number of
mismatches (out of the 70 triads for each condition) characterizes roughly how
well a color distance metric alone can predict the observers’ behavior.

Three distance models have been used and indices of color difference:

1. CIELAB. The first distance model [7] is the Euclidean distance measured
by using the three CIELAB coordinates for the two stimuli, L1, a1, b1 and
L2, a2, b2:

∆E =
√

(L2 − L1)2 + (a2 − a1)2 + (b2 − b1)2.

2. CIE94. The second model we used is the CIE94 delta-E distance formula
[8]:

∆E =

√

(L2 − L1)2 +
∆C2

(1 + 0.045C)2
+

∆H2

(1 + 0.015C)2
,

where we defined

C = 1/2

(

√

a21 + b21 +
√

a22 + b22

)

,

∆C =
√

a22 + b22 −
√

a21 + b21, ∆H =
√

2(C2 − a1a2 − b1b2).

3. CIEDE2000. Finally, we used the distance defined by the CIEDE2000
formula [11] where we employed the implementation algorithm given in
[18]. The appropriate formulas are rather lengthy and we refer to the above
sources for the mathematical expressions. CIEDE2000, was recommended
by the CIE in 2001. It includes five corrections to CIELAB: a lightness
weighting function, a chroma weighting function, a hue weighting function,
an interactive term between chroma and hue differences for improving the
performance for blue colors, and a factor for re-scaling the CIELAB a*
scale for improving the performance for neutral colors[12]. Through such
adjustments some configural visual processing effects, like “crispening”,
are addressed. While CIEDE2000 is the newest color difference formula
recommended by the Commission International de l’Eclairage, it is not
a comprehensive color appearance model, similar to CIELAB and CIE94,
but it is by far the most parsimonious and it provides color difference mea-
sures that have been empirically shown to be statistically similar (within
suggested levels of STRESS ≤ 5.0 [?]) to the most recently developed
CIECAM02 family of color appearance models (see [19], p. 324 Table
XI). We use CIEDE2000 here due to its straightforward, nonparametric
computational form, and because we considered it a more practical alter-
native (i.e., more likely to be used by researchers in color cognition and
industry) to the more advanced CAM models. The latter models strive to
incorporate important theoretical parameters, but they still remain com-
putationally onerous and untested with respect to their appropriateness as
metrics for cognitive science research on color behaviors or color similarity.
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Table 1 shows the results of the application of the above three methods
to evaluate the number of mismatches in each condition. In particular, the
following patterns have been observed:

• For each condition, all three methods give similar numbers of mismatches.

• For each method, the number of mismatches in the blue condition is the
largest.

• CIEDE2000 formula give the smallest number of mismatches in all three
conditions.

• The total number of mismatches is the smallest for CIEDE2000 and the
largest for CIE94.

• The sets of mismatches produced by the different methods overlap sig-
nificantly. The number of mismatches common between CIEDE2000 and
CIELAB method is 7/12, 11/13, and 16/17 for the three conditions; the
number of mismatches common between CIEDE2000 and CIE94 method
is 12/12, 12/13, and 14/17 for the three conditions (these data do not
appear in the table).

CIELAB CIE94 CIEDE2000
Global 13 17 12
Red 15 17 13
Blue 24 20 17

Total 52 54 42

Table 1: The number of mismatches resulting from the three color distance
models, for each of the three experimental conditions.

2.2 The null-model of color choice

In order to evaluate the use of CIE color difference metrics, or color space dis-
tance, as a general measure of color similarity, we performed the following anal-
yses. All 210 of the triad stimuli from the global, local red and blue conditions
differ with respect to the metric distances their triangles span in a color space.
Some of the global triads are comprised of one or more color stimuli separated
by large distances across color space, whereas some local triads are comprised
of stimuli that are, by comparison, relatively near each other in the color space.
When some stimuli in a triad are very distant in color space this can make the
odd-one-out choice easier, or more certain, if the choice is based purely on dis-
tance. Thus for the 210 triad stimuli used in the experiments we constructed
a certainty index for classifying gradient levels of triad certainty based on CIE
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distances described above. For each triad, we calculate its certainty index, given
by

Ccert =
2(o2 − o1)

o2 + o1
,

where {o1, o2, o3} is the ordered set of the triad’s side lengths, in the increasing
order. The certainty index conveys the relative difference between the two
shortest triad side lengths. A small certainty index reflects very ambiguous
(uncertain) triads, and a large certainty index reflects non-ambiguous triads, or
triads with greater choice certainty for the most distant stimulus in that triad.
Based on these calculated certainty indices, all 210 triad stimuli are grouped
into 10 classes; we call these groups “certainty classes”.

We postulate the following null-model of behavior. Given a triad {o1, o2, o3},
an observer will pick stimulus i with probability

pi =
1

soαi
, s =

3
∑

k=1

1

oαk
, i = 1, 2, 3. (1)

In other words, the probability to choose a given stimulus is inversely propor-
tional to (the power α of) the length of the opposite side of the triad, measured
in terms of the CIE distance. This model reflects some intuitive geometric prop-
erties of triads. For example, a triad with two equal sides which are shorter than
the third side will be very ambiguous, and correspond to p1 = p2 > p3, that
is, two stimuli will have an equal probability to be picked. On the other hand,
a non-ambiguous triad with one very short side and two long sides will have a
very large probability for the correct stimulus choice.

The parameter α measures the amount of intra-individual variation. Large
values of α mean that the same correct stimulus will be picked almost certainly.
Small values of alpha α ≈ 1 correspond to the situation where the “second”
and “third best” choices will also have a measurable probability to be picked,
which can be the result of sloppiness and inconsistency of observers. The trivial
case α = 0 corresponds to pi = 1/3, that is, all triads have an equal probability
to be picked. It will not be considered here; instead we will concentrate on
the range α ∈ [1, 5]. In all the models (except for α = 0), the CIE-predicted
stimulus choice has the largest chance of being chosen. Figure 2 illustrates the
role of parameter α in the model. For each triad, we calculated 1 − p1, which
is the probability for an observer modeled by equation (1) to pick the “wrong”
stimulus. These values are presented for different values of α. We plot the
quantity 1−p1 as a function of the certainty index, Ccert, for all 210 triads (the
plot in 2(b) shows the same information as 2(a), but on a log-scale). We can see
that, not surprisingly, the triads with a larger certainty index are characterized
by a smaller probability of error. Further, the probability of error decreases with
α. In other words, large values of α in model (1) mean that the observers are
very self-consistent. Smaller values mean an increased amount of “sloppiness”
and inconsistency.

6



0.0 0.5 1.0 1.5

10- 4

0.001

0.01

0.1

0.0 0.5 1.0 1.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Certainty index Certainty index

P
ro

ba
bi

lit
y 

of
 a

 m
is

m
at

ch

P
ro

ba
bi

lit
y 

of
 a

 m
is

m
at

ch

α=5
α=0,...,5

α=0

α=1

α=2

(b)(a)

Figure 2: The role of parameter α as a measure of intra-individual differences
of subjects. (a) The probability of a mismatch, 1− p1, for all the 210 triads, as
a function of the certainty index, for α = 0, . . . , 5. (b) Same as (a), but on a
log-scale, to show detail.

3 Statistics of triad responses

To understand how choice data varies across the 52 observers, we compare
responses from different subsets of our sample. On one hand, we consider the
aggregate data from the total group of observers (all 52 participants). And,
on the other hand, we consider the 52 individual observers (which for the sake
of comparison are analyzed as if they were 52 separate “groups”). We also
considered intermediate-size groups, for example, all the groups of two observers,
etc. For each subset of the population, we determine the majority vote for each
triad, and compared that with the CIE prediction for the same triad. Then we
count how many mismatches are in each certainty class. In figure 3 we present
the number of mismatches found for the group of 52 observers (blue circles,
marked as “Real observers, set of 52”), and the average of the 52 “groups” of
one observer (orange dots, marked as “Real observers, sets of 1”), as a function
of the certainty index. We observe the following patterns:

• The percentage of mismatches decreases as a function of the certainty
index.

• The percentage of mismatches is higher for smaller observer subsets than
it is for larger observer subsets.

To model the individual and group responses, we will discuss several sources
of variation that could occur. The different types of variation can be character-
ized as follows:

1. Sampling, or intra-individual variation. These variations arise as
random chance events, and will be more prevalent among the ambigu-
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ous triads. These variations are reflected in observer test-retest incon-
sistencies, can be ascribed to individual behavior, such as sloppiness in
completing the triad test.

2. Inter-individual variation. These variations reflect (a) inhomogeneities
of the observers (the presence of a small number of dichromat or anomalous
trichromat observers), or (b) individual cognitive factors such as personal
color salience or preference.

3. Systematic variation. These variations can arise (a) from inconsisten-
cies of the CIE description of the perceptual space, or (b) from some
systematic cognitive factors such as conventions. These variations reflect
deviations from the CIE prediction which are common among a large por-
tion of the population.

The three classes of variation listed above have very distinct features, and in
the following sections we discuss their mathematical properties. We show that
variations of type (1) and (2) alone cannot explain the observed variation, and
one must assume the existence of some systematic source of variation, (3).

3.1 Sampling and intra-individual variation

To consider this type of variation in isolation, we assume that all individuals
have exactly the same perceptual ordering of stimuli across color space, and
this space is correctly described by a CIE model of color distance. We will not
include any personal preference or individual differences in the description at
this stage. The observers described here can be called “idealized observers”,
because they are identical to each other, and because their perceptual space is
described accurately by a CIE color distance formula together with our model
(1).

Given this behavioral model, it is obvious that even with a population of
identical observers, there is a possibility of mismatches, which is larger for
smaller values of α, see previous section. Even though for each individual and
for each triad, there is a stimulus that will most likely be picked, there is still
a probability of picking a suboptimal stimulus. The amount of this effect is
incorporated in the parameter α.

For a given value of α in formula (1), we can calculate the probability that
the majority of the population will pick the CIE-predicted stimulus. Let us
suppose that there are k people in the subset, and defined the quantity k(1/3)

to be the smallest integer such that k(1/3) ≥ k/3. Then the probability for the
majority to pick the CIE-predicted stimulus is given by

P1 =
k

∑

i1=k(1/3)

i1
∑

i2=k−2i1

k!

i1!i2!(k − i1 − i2)!
pi11 pi22 pk−i1−i2

3 . (2)

In derivation of this expression we used a non-strict definition of majority: if
the number of people choosing stimulus i is given by ki with

∑3
i=1 ki = k, then

8



ki is a majority if kj ≤ ki with j 6= i.1 In the above formula we assume formally
that the factorial of negative integers is infinite. Under this assumption we see
that with k = 1, we simply have P1 = p1.

Let us suppose that a given certainty class contains m triads. Our theory
predicts how many mismatches we can expect in a population of k idealized
observers, and the variance of this amount:

E(mis) = (1− P1)m, V ar(mis) = (1− P1)P1m, (3)

according to the binary distribution.
In Figure 3 we illustrate the behavior of the idealized observers. The horizon-

tal axis corresponds to the certainty index, and the vertical axis is the number
of mismatches for each certainty class. The total number of triads in each class
corresponds to our 3 experimental conditions with a total of 210 triads. Figure
3’s two curves with error bars are the predictions of our theory with the idealized
observers. The green curve corresponds to k = 52 observers and the red curve
to k = 1 observers. We plot both the expected number of mismatches and the
standard deviation. We can see that the case with k = 52 observers corresponds
to a much smaller expected number of mismatches. It is easy to show that as
k → ∞, the number of mismatches of the population majority will also tend to
zero. This is an inherent property of sampling variation of this kind.

In our model, α is an unknown parameter, which measures the averaged
observer consistency, and which we can choose to make our model match the
data as close as possible. In figure 3 we chose the parameter α = 2 such that the
curve corresponding to the individual real observers lies close to the theoretical
curve of sampling variation. As we can see however, the curve corresponding to
the group of 52 real observers does not match the sampling variation prediction.
Taking different values of α does not improve the situation. The problem is that
in the presence of sampling and intra-individual variation only, the population
of 52 observers performs a lot better (that is, has much fewer mismatches) than
populations of 1 observer. That is, the amount of sampling variation decays to
zero very fast as the group size increases. This is not the case with the real
observers, whose k = 1 and k = 52 curves are relatively close to each other.
From this we can conclude that sampling/intra-individual variation alone do
not describe the data completely.

Before we move onto the next type of variation, we point out that in order
to check the validity of formulas (2-3), we have created artificial populations of
idealized observers by picking their triad responses in accordance with proba-
bilities pi. The population counts for these observers (in groups of 52 and in
groups of 1, averaged over 20 runs) are also presented in figure 3. They are lines
marked as “Idealized observers, sets of 52” and “Idealized observers, sets of 1”.
As expected, both of these lines are in close proximity with the theoretically
predicted sampling variation lines.

1A strict definition of majority would require a strict inequality.
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Figure 3: Sampling/intra-individual variation. The number of mismatches is
presented for different triad certainty classes. Shown are the two theoretical
curves for sampling/intra-individual variation, with error bars; two curves for
the real observers corresponding to k = 52 and the average of all k = 1; and
two curves for the average results of simulated idealized observers, with k = 52
and k = 1. The parameter α = 2.

3.2 Inter-individual variation

An example of inter-individual variation is the presence of individual differences
of perceptual space across the observers. Such differences are unique to each
observer (or to small subsets of observers) and can be caused by factors such as
dichromacy or other color vision features when such conditions are only present
in a small fraction of individuals (otherwise, the presence of the same type of
dichromacy in all individuals would have to be characterized as a systematic
variation, see below). Another reason for individual variation could be indi-
vidual behavioral differences, such as certain color preferences, or idiosyncratic
color salience. We characterize this type of variation by creating a different
perceptual space for each individual.

To model this, we assume that the perceptual space of each individual is
somewhat different. The perceptual space for each observer is obtained by in-
troducing a distortion to the CIE space. To create possible perceptual spaces,
we take the coordinates of the 63 stimuli and introduce a perturbation to them,
in the form (L, a∗, b∗) → (L+A(−1/2+ξ), a∗+A(−1/2+η), b∗+A(−1/2+ζ)),
where A is the amplitude of the perturbation, and ξ, η and ζ are some random
numbers uniformly distributed in [0, 1]. We used different random numbers
when perturbing the different color stimuli. Also, these numbers are different
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for different individuals. In this model, the parameter A controls the maxi-
mum amount of distortion between the CIEL*a*b* coordinates and the actual
perceptual coordinates used by the individuals.

Artificial observers with varying perceptual spaces are created in this way,
and their data analyzed as described above. It turns out that, similar to the
intra-individual variation, this type of variation does not improve our description
of the observed data. Figure 4 presents two attempts to match the data with
simulations of nonhomogeneous observers. In figure 4(a) we took α = 2 and
A = 40, to match the curve corresponding to k = 52. However, the simulated
k = 1 curve overestimates the number of mismatches. In Figure 4(b), the
parameters α = 4 and A = 20 assure that the k = 1 curve is matched well;
however, the number of mismatches is underestimated in the k = 52 case. In
general, increasing A and decreasing α corresponds to an increase in the number
of predicted mismatches. Manipulating these parameters over a wide range of
values does not result in a satisfactory fit with the real observer data.

This analysis shows that inter-individual variation is insufficient to explain
the data. This is consistent with the fact that although four out of 52 observers
in the sample were identified as having some form of color vision anomaly, their
presence did not significantly affect the number of mismatches between the
model and the observed data. In our framework, those four individuals represent
individual variation which cancels out when studying group responses.
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Figure 4: Inter-individual variation. Same as in Figure 5, but with nonhomo-
geneous idealized observers. The parameters are (a) α = 2, A = 40; (b) α = 4,
A = 20.

The color similarity literature examines both intra-individual and inter-
individual variation in triad judgment performance, as these sources of variation
will diminish the goodness of fit of any color models proposed. For example,
using a color triad task with 20 normal trichromat subjects, Bimler and col-
leagues quantified the stability of subjects’ test-and-retest triad performance
using multidimensional scaling analyses of individuals’ color similarity space
[2]. In order to to this, they defined Dmn an index of disconcordance be-
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tween test (m) and retest (n) datasets for each individual (simply, Dmn is the
straight-line distance between points, as described p. 74 of [2]). They found
the average within-subject index was Dmn = 0.26, which is an indication of the
average intra-individual variation in triad similarity scalings across repeated
observations. By comparison, the average value of Dmn inter-individual vari-
ation (between subject variation) overall was Dmn = 0.33. They report this
intra-individual variation to be significantly smaller (p < .05) than the inter-
individual variation in color triad similarity structures ([2], p. 74).

The important point for the present paper is that while intra- and inter-
individual differences in color similarity structures produced by triad perfor-
mance are significantly different, they have similar orders of magnitude (see
also [13]), and the intra-individual differences are smaller (albeit only slightly)
than the inter-individual differences. Our experiments did not assess individ-
ual repeated observations, so we cannot directly quantify the impact of intra-
individual variation on the degree to which our model fits the group data. How-
ever, as mentioned earlier in Section 1.2, in all three conditions we investigated,
a high degree of shared agreement was seen across participants in triad color
judgments (using Consensus Theory analyses)[16]. This provides confidence
that the datasets modeled here have, as shown by an independent analysis[17],
a high degree of consistency both within and across participants.

In our model, we propose a quantitative way to model the different sources
of variation. We use the parameter α which is an alternative way to measure
the consistency of observer responses. This measure is in a sense more univer-
sal because it allows to compare the consistency of responses across different
triads, which may differ in their certainty index. To model inter-individual
variations, we vary the underlying individual models of color distances of indi-
viduals. We find that inter-individual variations, like intra-individual variations,
are not enough to explain the observed responses.

3.3 Systematic variation

An example of systematic variation could arise from inconsistencies in the
CIEL*a*b*, CIE-delta E, or CIEDE2000 descriptions of perceptual space, or
cognitive behavior patterns common to all the observers that are not included
in the CIE models, such as common conventions. To model this kind of vari-
ation, we again assume that all the agents have identical perceptual space (a
homogeneous group of observers), and that it is not necessarily well described
by the CIE formalisms.

To model this situation we assume that the perceptual space (shared by
all the observers) is different from the CIE space that we use to identify the
CIE-predicted triads. This is done exactly as described in section ??, except
we create only one perceptual space, different from CIE and common for all
individuals. To clarify, the difference between the CIEL*a*b* space and the
perceptual space could be due to the inconsistencies inherent in the CIE model,
or to cognitive factors common to all the observers.
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Figure 5: Systematic variation. The number of mismatches is presented for
different triad certainty classes. Shown are the two curves for the real observers
corresponding to k = 52 and the average of all k = 1; and two curves for the
average results of simulated idealized observers with systematic errors, with
k = 52 and k = 1. The latter two curves are equipped with error bars for 40
independent simulations. The parameters are α = 4 and A = 20.

In order to implement this model of systematic variation, we created ideal-
ized observers who sampled their triads according to formula (1), with the triad
side lengths calculated as described before, but now based on a modified per-
ceptual space. Figure 5 presents simulation results for such observers, averaged
over 40 independent simulations, with k = 52 and k = 1. As we can see, the
curves corresponding to the real observers fit almost everywhere inside the er-
ror bars of the curves for the simulated observers. The parameter α was chosen
to be α = 4 for these simulations. This parameter value yields the closest fit
between the simulated and real observers. We note that this parameter value
is characteristic to the particular distortion of the perceptual space simulated
here.

We conclude that the presence of some systematic variation is consistent with
the observed response and can describe the observed variation. Compared to the
systematic variation we studied, influences attributable to non-systematic intra-
and inter-individual variations have decreased impact on the fit of our models
to data when overall group averages were considered, and can be thought as
similar to the addition of random noise to the data. A consequence of this
finding is that modeling average data which does not have any systematic vari-
ation underestimates the number of mismatches for larger group sizes, and the
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underestimation grows as group size increases.

3.4 Further analysis of observer responses

So far we have been concentrating on the analysis of mismatches. While this is a
useful way to compare the predicted and actual experimental result, the number
of mismatches does not include all the information about the responses. Another
quantity associated with the observer responses which does not only include
the majority vote, is the consistency index. It is constructed similarly to the
certainty index of the triads, but instead of using CIE distance measurements it
uses the observer responses. Let us suppose that the numbers {k1, k2, k3} is the
ordered set of the numbers of people who picked the three different stimuli in a
given triad, where k1 ≥ k2 ≥ k3. We have

∑3
i=1 ki = k, and k1 is the number

of people who picked the most “popular” stimulus. We define the consistency
index, Ccons, as follows,

Ccons =
2(k1 − k2)

k1 + k2
.

If Ccons is small then the top choice stimulus was a “close call”. A large con-
sistency index indicates that the choice was made by a vast majority of the
people.

We can represent each triad item as a point in a 2D space (Ccert, Ccons).
In Figure 6 we present all the 210 triads as points in this space; the tri-
ads corresponding to the mismatches (corresponding to the k = 52 popula-
tion) are denoted by larger points. Figure (a) corresponds to the real observer
data, and the other three figures show our simulated data, where (b) contains
sampling/intra-individual variation only, (c) the systematic variation and (d)
the inter-individual variation.

We can see that the point distribution in figure (c) (systematic variation)
matches the real data (a) much better than the other two figures. In particu-
lar, with sampling/intra-individual variation only (Figure 6(c)), we observe that
the certainty and consistency indices are much better correlated than in the real
data. This is of course to be expected, because “incorrect” responses are more
likely for ambiguous triads, and the only source of errors is the triads’ ambigu-
ity. The inclusion of inter-individual variation still preserves this high degree of
correlation. This is because inter-individual variations largely cancel out when
we are considering responses of a relatively large number of observers. There-
fore, for such populations, the major source of variation is again the sampling
variation.

We conclude that a necessary component in model that makes it consistent
with the observations is the presence of systematic variation. Inter- and intra-
individual variation are secondary factors, which alone are insufficient to explain
the data.
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Figure 6: Triads in the certainty-consistency space, (Ccert, Ccons). (a) The real
observer data; (b) sampling/intra-individual variation only, with α = 1; (c)
systematic variation, parameters as in figure 5; (d) inter-individual variation,
parameters as in figure 4(b). The larger points correspond to the mismatched
triads.

4 The expanded model: categorical and lightness-

saturation biases

4.1 Procedure

In order to incorporate category biases, we performed the following procedure
by using Mathematica software. First, the stimuli in each of the experimental
conditions (red, blue and global) were projected onto the hue-saturation plane
(the a ∗ b∗ plane), and their a ∗ b∗ values converted into the polar coordinates,
such that each stimulus is characterized by (ri, φi), a radial and an angular
coordinate for 1 ≤ i ≤ 21, the 21 stimuli in each condition. Then, the procedure
is slightly different for the local conditions and the global condition.

In each of the local conditions, two angles ϕmin and ϕmax were identified,
such that ϕmin = min1≤i≤21 φi and ϕmax = max1≤i≤21 φi. A step-size ∆ϕ =
(ϕmax − ϕmin)/N was defined for some large integer value N (the larger the
number N , the more refined the analysis). Then angle ϕ was varied between
ϕmin and ϕmax with step ∆ϕ. For each value of ϕ, a radial line corresponding to
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Figure 7: Color distance model CIELAB: the optimization problem. The num-
ber of mismatches as a function of parameters W cat and W ls. The top row
(a) presents model (2) where only categorical bias is included (W ls = 0). The
bottom row (b) shows contourplots of the number of mismatches as a function
of the parameters W cat and W ls for the full model (3). Results are presented
for the global condition (left), the red condition (middle) and the blue condition
(right). The parameter α = 2.

the angle ϕ split the stimuli into two groups, which were treated as “categories”.
For each fixed value of ϕ, we then performed the optimization of the weight
parameter, W cat. To do that, we varied W cat in formula (2) of the main text
between 0 and 1 with a small increment. For each given value of W cat we
calculated the number of mismatches yielded by the model, resulting in a figure
similar to figures 7(a). The value of W cat corresponding to the smallest number
of mismatches was noted. Then the same procedure was repeated for the next
value of the angle ϕ. In the end, the value of ϕ which resulted in the smallest
possible number of mismatches was identified. The corresponding categories are
presented in figure 2 of the main text, and the number of mismatches for this
value of ϕ are shown in figure 7(a) as a function of the parameter W cat. The
smallest number of mismatches obtained appears in Table 1 of the main text.

A similar algorithm was used for the global condition. The only difference
was that instead of one angle ϕ splitting the stimuli into two “categories”, we
used three values, ϕ1, ϕ2, and ϕ3, which split the 360◦ field of all stimuli in
the global condition into three categories. The values ϕ1 < ϕ2 < ϕ3 were
varied independently. The configuration presented in figure 2 of the main text
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corresponds to the smallest number of mismatches, see also Table 1.
This procedure was repeated for several values of the parameter α. It turned

out that the exact value of α did not make a significant difference.
Next, we added the lightness-saturation biases, formula (3) of the main text.

Now, instead of just one weight parameter, W cat, we worked with two param-
eters, W cat and W ls, which were varied independently in the two-dimensional
space, see figure 7(b). The number of mismatches is now minimized over a
two-dimensional domain, yielding the best fit for both W cat and W ls.

4.2 Results for CIEDE2000

In the main text of the paper we present the results of these calculations in the
context of CIELAB color distance formula, primarily because CIELAB is most
widely employed in practice (by color cognition and perception scientists and
in industry) and is reputed to be an approximation of color appearance space
that is thought to work fairly well empirically. We have also performed the
same calculations for the CIEDE2000 color difference formulae. formula which
has been shown The optimization process for the weights W cat and W ls for the
three experimental conditions is illustrated in figure 8. In figure 9 we show the
optimal categorization solutions for the CIEDE2000 color difference formulae.
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Figure 8: The same as in figure 7, except the calculations are performed using
the CIEDE2000 color difference formulae.

In table 2 we present the results of using extended models in the context of
the CIEDE2000 color difference forumulae, in the three experimental conditions.
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Figure 9: Optimal category choices for CIEDE2000 color difference formulae,
in the three experimental conditions, global (a), red (b) and blue (c). The 21
stimuli in each condition are plotted on the a*b* plane. The categories are
marked by different colors (which do not correspond to any real colors used),
and separated by radial dashed lines.

Global Red Blue
Null 12 13 17

Null+category bias 9 5 16
Null + Category +LS bias 8 5 7

Null + LS bias 12 13 9

Table 2: The number of mismatches using CIEDE2000 color difference, for the
three experimental conditions, for the null model and the extended models.

We observe the following trends:

General. Including additional biases, such as categorization bias and lightness-
saturation bias, result in a decrease of the number of mismatches in all three
conditions. While in the local conditions, the numbers of mismatches decrease
very significantly (by 62% and by 59% in the red and blue conditions respec-
tively), the reduction in the global condition is by 33%. Compared to the
CIELAB results, in all conditions the reduction was similar (54%, 53%, and
63% in global, red and blue).

The red condition. In the red condition, the categorization bias appears
to be most influential, whereas the lightness-saturation bias does not alter the
picture. This is consistent with our result for the CIELAB model. The optimal
categorization solution, figure 9(b) of this document for CIEDE2000 and figure
2 in the main text for CIELAB, is unique. The two solutions are similar to each
other.

The blue condition. In the blue condition, the lightness-saturation bias is
more important, but adding the categorization bias helps improve the model
even further. Again, this is consistent with our result for the CIELAB model.
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The optimal categorization for CIELAB (figure 2 of the main text) is unique,
and the optimal categorization for CIEDE2000 (figure 9(c) of this document)
consists of three very similar ways of splitting the colors, all very similar to the
one depicted in figure figure 9(c).

The global condition. In the global condition, both categorization and
lightness-saturation biases appear to play a role. The power of the modified
model, however, is more significant when used in combination with the CIELAB
distance formula (where it reduces the number of mismatches from 13 to 5), com-
pared with the CIEDE2000 formula, where the reduction is less significant (from
12 to 8). In the latter case, we observe many different optimal categorization
solutions, all resulting in 8 mismatches. One of these solutions is shown in figure
9(a).
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