Supporting Information

New high T_c multiferroics KBiFe₂O₅ with narrow band gap and promising photovoltaic effect

Ganghua Zhang^{1,2}, Hui Wu^{3,4}, Guobao Li¹, Qingzhen Huang³, Chongyin Yang², Fuqiang Huang^{1,2} *, Fuhui Liao¹ & Jianhua Lin¹ *

¹State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P.R. China); ²CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (P.R. China); ³NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (USA); ⁴Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (USA).

Compound	structure	<i>Т</i> _с (К)	E_{g} (eV)	Efficiency limit (%)
BiFeO ₃	perovskite	1376	2.67 ¹	7
BaTiO ₃	perovskite	408	3.28 ²	2
PbTiO ₃	perovskite	763	3.18 ³	2.5
LiNbO ₃	perovskite	1373	3.78 ⁴	0.5
LuFe ₂ O ₄	spinel	350 ⁵	2.18 ⁵	19
CrV_2O_4	spinel	33 ⁶		
CoCr ₂ O ₄	spinel	25 ⁷	3.18	3
FeCr ₂ O ₄	spinel	140 ⁹	2.9 ¹⁰	5
KBiFe ₂ O ₅	$A_2B_2O_5$	780	1.6	30

Table S1. Typical ferroelectric oxides.

References:

- Basu, S.R., Martin, L.W., Chu, Y.H., Gajek, M., Ramesh, R., Rai, R.C., Xu, X., Musfeldt, J.L. Photoconductivity in BiFeO₃ thin films. *Appl. Phys. Lett.* **92**, 091905 (2008).
- Wemple, S.H. Polarization fluctuations and the optical-absorption edge in BaTiO₃. *Phys. Rev. B* 2, 2679-2689 (1970).
- 3. Lazaro, S.de, Longo, E., Sambrano, J.R., Beltrán, A. Structural and electronic properties of PbTiO₃ slabs: a DFT periodic study. *Surf. Sci.* **552**, 149–159 (2004).
- Redfield, D., Burke, W.J. Optical absorption edge of LiNbO₃. J. Appl. Phys. 45, 4566-4571 (1974).
- 5. Rai, R.C., Delmont, A., Sprow, A., Cai, B., Nakarm, M.L. Spin-charge-orbital coupling in multiferroic LuFe₂O₄ thin films. *Appl. Phys. Lett.* **100**, 212904 (2012).
- Giovannetti, G., Stroppa, A., Picozzi, S., Baldomir, D., Pardo, V., Blanco-Canosa, S., Rivadulla, F., Jodlauk, S., Niermann, D., Rohrkamp, J., Lorenz, T., Streltsov, S., Khomskii, D.I., Hemberger, J. Dielectric properties and magnetostriction of the collinear multiferroic spinel CdV₂O₄. *Phys. Rev. B* **83**, 060402(R) (2011).
- Yamasaki, Y., Miyasaka, S., Kaneko, Y., He, J.-P., Arima, T., Tokura, Y. Magnetic Reversal of the ferroelectric polarization in a multiferroic spinel oxide. *Phys. Rev. Lett.* **96**, 207204 (2006).
- Suchomski, C., Reitz, C., Brezesinski, K., de Sousa, C.T., Rohnke, M., Iimura, K., de Araujo, J.P.E., Brezesinski, T. Structural, optical, and magnetic properties of highly ordered mesoporous MCr₂O₄ and MCr_{2-x}Fe_xO₄ (M = Co, Zn) spinel thin films with uniform 15 nm diameter pores and tunable nanocrystalline domain sizes. *Chem. Mater.* 24, 155–165 (2012).
- Singh, K., Maignan, A., Simon, C., Martin. C. FeCr₂O₄ and CoCr₂O₄ spinels: Multiferroicity in the collinear magnetic state? *Appl. Phys. Lett.* **99**, 172903 (2011).
- Sudesh, T.L., Wijesinghe, L., Blackwood, D.J. Characterisation of passive films on 300 series stainless steels. *App. Surf. Sci.* 253, 1006 (2006).

Empirical formula	KBiFe ₂ O ₅
FW	439.78
<i>Τ</i> (К)	296(2)
λ (Å)	0.71073
Space group	P2 ₁ cn
<i>a</i> (Å)	7.9841(5)
<i>b</i> (Å)	11.8192(8)
<i>c</i> (Å)	5.7393(4)
$a = \beta = \gamma$ (deg)	90
∨ (ų)	541.59(6)
Z	4
D_{calc} (g/cm ³)	5.394
μ (mm ⁻¹)	38.400
Goodness-of-fit on P ²	1.000
R_1 , w R_2 [$I > 2\theta(I)$]	0.0229, 0.0569
R_1 , w R_2 [all data]	0.0285, 0.0607

Table S2. Crystal data and structure refinement parameters for ${\rm KBiFe_2O_5}$

Atom	X	У	Ζ	g	$U_{\rm iso}(\times 100 {\rm \AA^2})$	
Bi	0.0231(3)	0.334742(18)	0.24945(17)	1	0.618(11)	
К	1.0103(9)	0.86449(18)	0.2476(9)	1	1.04(6)	
Fe1	0.23872(18)	0.5890(3)	0.2751(4)	1	0.495(17)	
Fe2	0.30603(18)	0.4112(4)	0.7757(4)	1	0.495(17)	
01	1.018(3)	0.6412(5)	0.251(3)	1	0.76(8)	
02	0.307(2)	0.5292(12)	0.9835(13)	1	1.3(2)	
03	0.238(2)	0.4753(12)	0.5073(13)	1	0.8(2)	
04	0.1768(18)	0.2940(10)	0.915(2)	1	0.8(3)	
05	0.3746(19)	0.7060(10)	0.408(2)	1	0.8(3)	
Selected bond lengths (Å)						
Bi-05#1	2.130(13)	Bi-O2 ^{#4}	2.712(16)	Fe2-03	1.801(11)	
Bi-04#2	2.174(13)	Fe1-O1 ^{#5}	1.873(19)	Fe2-01 ^{#4}	1.807(19)	
Bi-04#3	2.329(12)	Fe1-O3	1.893(12)	Fe2-02	1.836(12)	
Bi-05#4	2.345(13)	Fe1-O2 ^{#3}	1.896(10)	Fe2-04	1.902(13)	
Bi-O3	2.809(10)	Fe1-05	1.916(13)			

Table S3. Structural parameters of $KBiFe_2O_5$ single crystal at room temperature^[a].

^[a] Space group $P2_1cn$ (No. 33); Z=4; a = 7.9841(5) Å, b = 11.8192(8) Å, c = 5.7393(4) Å, V= 541.59(6) Å³. g = occupation factor.

Symmetry transformations were used to generate equivalent atoms:

#1 x-1/2, y-1/2, -z+1/2; #2 x, -y+1/2, z-1/2; #3 x, y, z-1; #4 x-1/2, 1-y, 1-z; #5 x-1, y, z.

Atom	Site	Occup.	x	У	Z	U _{iso} (x100Ų)	
Fe1	4a	1.0	0.2076(4)	0.5910(2)	0.2787(4)	0.14(1)	
Fe2	4a	1.0	0.2751(4)	0.0878(2)	0.2702(4)	0.14(1)	
Bi	4a	1.0	0.5	0.83512(8)	0.2494(7)	0.18(2)	
К	4a	1.0	-0.004(1)	0.8681(1)	0.255(1)	0.38(5)	
01	4a	1.0	0.2799(8)	0.5280(7)	-0.0075(8)	0.50(2)	
02	4a	1.0	0.2120(8)	0.0272(7)	-0.0046(9)	0.50(2)	
03	4a	1.0	0.3461(7)	0.7062(6)	0.4058(7)	0.30(2)	
04	<i>4a</i>	1.0	0.1487(7)	0.2056(6)	0.4188(7)	0.30(2)	
05	<i>4a</i>	1.0	-0.0066(7)	0.6422(1)	0.2391(8)	0.30(3)	
Bond leng	yths						
Fe1-01	1.	891(7)	Bi-O1	2.762(7)	K-02	2.954(10)	
Fe1-02	1.3	866(8)	Bi-O2	2.734(7)	K-02	2.955(10)	
Fe1-03	1.3	898(7)	Bi-O3	2.149(7)	K-03	3.495(11)	
Fe1-05	1.3	830(6)	Bi-O3	2.372(7)	K-03	3.554(12)	
Fe2-01	1.3	868(8)	Bi-O4	2.292(6)	K-04	3.453(11)	
Fe2-02	1.3	802(7)	Bi-O4	2.161(7)	K-04	3.516(11)	
Fe2-04	1.	917(7)	K-01	2.914(11)	K-05	2.6634(28)	
Fe2-05	1.3	859(6)	K-01	2.934(11)	K-05	2.963(10)	
					K-05	2.772(10)	
Bond angles							
01-Fe1-0	2 10	6.1(5)	01-Fe2-02	108.1(5)	03-Bi-03	84.51(21)	
01-Fe1-0	3 11	5.82(27)	01-Fe2-O4	103.76(30)	03-Bi-O4	78.62(23)	
01-Fe1-0	5 10	7.94(25)	01-Fe2-05	104.64(24)	03-Bi-O4	90.11(7)	
02-Fe1-0	3 10	5.56(30)	02-Fe2-O4	121.88(28)	03-Bi-04	156.01(8)	
02-Fe1-0	5 11	0.30(24)	02-Fe2-05	111.99(25)	03-Bi-O4	76.66(21)	
03-Fe1-0	5 11	0.93(29)	04-Fe2-05	104.91(28)	04-Bi-04	86.37(21)	

Table S4. Refined structural parameters of KBiFe₂O₅ from NPD data at 5K: Nuclear space group P_{2_1cn} , No. 33, a = 7.99117(6) Å, b = 11.7858(1) Å, c = 5.72967(4) Å, V=539.639(9).

Atom	Site	Occup.	х	У	Z	U _{iso} (x100Å ²)
Fe1	4а	1.0	0.2064(6)	0.5908(3)	0.2765(7)	0.17(1)
Fe2	4a	1.0	0.2738(7)	0.0878(3)	0.2722(7)	0.17(1)
Bi	4a	1.0	0.5	0.8348(1)	0.2490(9)	0.43(3)
К	4a	1.0	-0.016(1)	0.8676(2)	0.250(2)	0.52(7)
01	4a	1.0	0.275(1)	0.5287(8)	-0.006(1)	0.85(3)
02	4a	1.0	0.209(1)	0.0263(8)	-0.004(1)	0.85(3)
03	4a	1.0	0.339(1)	0.7101(6)	0.405(1)	0.64(3)
04	4a	1.0	0.143(1)	0.2027(6)	0.418(1)	0.64(3)
05	4a	1.0	-0.007(1)	0.6422(1)	0.236(1)	0.53(4)
Bond le	engths					
Fe1-01		1.868(9)	Bi-O1	2.788(10)	K-02	2.987(12)
Fe1-02		1.870(11)	Bi-O2	2.729(10)	K-02	2.892(13)
Fe1-03		1.918(8)	Bi-O3	2.148(8)	K-03	3.516(11)
Fe1-05		1.828(8)	Bi-O3	2.408(8)	K-03	3.589(13)
Fe2-01		1.873(11)	Bi-O4	2.268(8)	K-04	3.416(13)
Fe2-02		1.823(10)	Bi-O4	2.162(8)	K-04	3.483(11)
Fe2-04		1.908(8)	K-01	2.982(13)	K-05	2.668(4)
Fe2-05		1.861(8)	K-01	2.919(12)	K-05	2.954(14)
					K-05	2.794(14)
Bond a	ngles					
01-Fe1	-02	106.8(6)	01-Fe2-02	107.5(6)	03-Bi-03	82.84(24)
O1-Fe1	-03	117.4(4)	01-Fe2-04	103.3(4)	03-Bi-04	79.26(29)
01-Fe1	-05	107.46(34)	01-Fe2-05	105.3(4)	03-Bi-04	90.33(12)
O2-Fe1	-03	106.2(4)	02-Fe2-04	120.9(4)	03-Bi-04	155.86(12)
O2-Fe1	-05	109.9(4)	02-Fe2-05	112.26(35)	03-Bi-04	75.92(25)
O3-Fe1	-05	108.88(35)	04-Fe2-05	106.20(34)	04-Bi-04	88.06(24)

Table S5. Refined structural parameters of $KBiFe_2O_5$ from NPD data at 300K: Nuclear space group $P2_1cn$, No. 33, a = 7.98557(8) Å, b = 11.8225(1) Å, c = 5.73960(5) Å, V=541.87(1).

Atom	Site	Occup.	х	У	Z	U _{iso} (x100Å ²)
Fe1	4a	1.0	0.210(1)	0.5888(6)	0.2711(9)	1.88(3)
Fe2	4a	1.0	0.276(1)	0.0879(6)	0.2768(9)	1.88(3)
Bi	4a	1.0	0.5	0.8337(2)	0.244(1)	2.71(6)
К	4a	1.0	-0.021(2)	0.8663(5)	0.246(3)	4.4(2)
01	4a	1.0	0.282(1)	0.525(1)	0.005(1)	3.65(7)
02	4a	1.0	0.214(1)	0.029(1)	-0.013(1)	3.65(7)
03	4a	1.0	0.334(1)	0.7115(8)	0.409(1)	3.44(8)
04	4a	1.0	0.140(1)	0.1997(8)	0.414(1)	3.44(8)
05	4a	1.0	-0.003(1)	0.6401(2)	0.230(1)	2.9(1)
Bond le	engths	5				
Fe1-01		1.806(11)	Bi-O1	2.852(14)	K-02	3.100(19)
Fe1-02		1.884(13)	Bi-O2	2.712(14)	K-02	2.792(21)
Fe1-03		1.938(13)	Bi-O3	2.187(13)	K-03	3.519(19)
Fe1-05		1.830(12)	Bi-O3	2.405(13)	K-03	2.571(22)
Fe2-01		1.885(12)	Bi-O4	2.301(13)	K-04	3.425(22)
Fe2-02		1.878(11)	Bi-O4	2.158(13)	K-04	3.479(18)
Fe2-04		1.894(13)	K-01	3.133(21)	K-05	2.6634(28)
Fe2-05		1.869(12)	K-01	2.842(19)	K-05	2.983(25)
					K-05	2.796(25)
Bond a	ngles					
O1-Fe1	-02	103.8(7)	01-Fe2-02	111.6(7)	03-Bi-O3	82.3(4)
01-Fe1	-03	120.3(6)	01-Fe2-04	102.9(6)	03-Bi-O4	79.0(4)
01-Fe1	-05	109.2(6)	01-Fe2-05	103.3(5)	03-Bi-04	90.47(21)
O2-Fe1	-03	106.7(6)	02-Fe2-04	118.8(6)	03-Bi-04	156.55(21)
O2-Fe1	-05	110.6(6)	02-Fe2-05	110.6(6)	03-Bi-04	77.3(4)
03-Fe1	-05	106.2(5)	04-Fe2-05	108.4(5)	04-Bi-O4	88.9(4)

Table S6. Refined structural parameters of $KBiFe_2O_5$ from NPD data at 698K: Space group $P2_1cn$, No. 33 (nuclear), a = 7.9974(1) Å, b = 11.9168(2) Å, c = 5.7690(1) Å, V=549.81(2).

Atom	Site	Occup.	x	У	Z	U _{iso} (x100Å ²)
Fe	4g	1.0	0.2282(1)	0.1635(2)	0.2625(2)	2.64(3)
Bi	2f	1.0	0.5	0.6724(3)	0.25	3.10(6)
К	2е	1.0	0	0.685(1)	0.25	5.1(1)
01	<i>4g</i>	1.0	0.7188(3)	0.0666(4)	0.5289(5)	4.71(7)
02	<i>4g</i>	1.0	0.6567(3)	0.4151(4)	0.1064(4)	4.52(7)
03	2e	1.0	0	0.2273(5)	0.25	4.7(1)
Bond le	engths				Bond angles	
Fe-01	1.8	3587(31)	K-02 ×2	3.5782(28)	01-Fe-01	107.19(9)
Fe-O1	1.8	3652(31)	K-03 ×2	2.9342(13)	01-Fe-02	105.15(14)
Fe-O2	1.8	3966(31)	K-03	2.767(7)	01-Fe-02	118.64(14)
Fe-O3	1.8	3396(16)	K-03	3.266(7)	01-Fe-O3	108.47(12)
Bi-01 >	×2 2.7	7255(31)			01-Fe-O3	110.62(14)
Bi-02 >	×2 2.3	3801(27)			02-Fe-03	106.66(14)
Bi-O2 >	×2 2.1	L873(30)			03-Bi-O3 ×2	84.13(9)
K-01 ×	2 3.6	553(5)			03-Bi-O3	89.58(16)
K-01 ×	2 2.8	391(4)			03-Bi-O3 ×2	77.70(11)
K-02 ×	2 3.2	220(4)			03-Bi-O3	154.33(18)

Table S7. Refined structural parameters of $KBiFe_2O_5$ from NPD data at 863 K: Space group P2/c, No. 13, a = 7.8987(1) Å, b = 6.0331(1) Å, c = 5.7744(1) Å, V=274.39(1).

Figure S1. Schematic illustration of physical mechanism of photovoltaic effect driven by multi-domains in ferroelectric materials.

Figure S2. Powder XRD pattern and the simulated XRD pattern for KBiFe₂O₅.

Figure S3. High resolution TEM image at room temperature along the [010] direction. Inset: enlarged view of image (top) and electron diffraction pattern along [010] zone axis (bottom).

Figure S4. Nonlinear optical second-harmonic generation (SHG) excited by Q-switched Nd:YAG l064 nm laser, generating green light of 532nm having about 10% of SHG intensity of AgGaS₂.

Figure S5. XPS spectrum of KBiFe₂O₅: (a) Bi 4f and (b) Fe 2p.

Figure S6. Schematic ion locations and their associated dipole moments (red balls for the center-of-mass positions of coordinating oxygens around each cation). Total ionic contribution ($P_{\rm s} \sim 1.47 \ \mu C/cm^2$ along the positive *a*-axis) is obtained by summing dipole moments of cations in a unit cell assuming nominal charge for ions.

Figure S7. Experimental (circles), calculated (line), and difference (noisy line below observed and calculated patterns) NPD profiles for KBiFe₂O₅ at 5K. Vertical bars indicate calculated positions of Bragg peaks from the nuclear phase (upper) and from the magnetic phase (lower). λ =1.5403Å. Space group *P2*₁*cn*, No. 33, *a* = 7.99117(6) Å, *b* = 11.7858(1) Å, *c* = 5.72967(4) Å, *V*=539.639(9) Å³; *R*_{wp}=0.0331, *R*_p=0.0278, χ^2 =1.159. Magnetic symmetry of Shubnikov group: *P2*₁*'cn'* with Fe moment of 3.87(2) μ_B along *c*-axis direction.

Figure S8. Experimental (circles), calculated (line), and difference (noisy line below observed and calculated patterns) NPD profiles for KBiFe₂O₅ at 698 K. Vertical bars indicate calculated positions of Bragg peaks from the nuclear phase. λ =1.5403Å. Space group *P*2₁*cn*, No. 33, *a* = 7.9974(1) Å, *b* = 11.9168(2) Å, *c* = 5.7690(1) Å, *V*=549.81(2) Å³; *R*_{wp}=0.0436, *R*_p=0.0350, χ ²=2.019.

Figure S9. Experimental (circles), calculated (line), and difference (noisy line below observed and calculated patterns) NPD profiles for KBiFe₂O₅ at 863 K. Vertical bars indicate calculated positions of Bragg peaks. λ =1.5403Å. Space group *P*2/*c*, No. 13, *a* = 7.8987(1) Å, *b* = 6.0331(1) Å, *c* = 5.7744(1) Å, *V*=274.39(1) Å³; *R*_{wp}=0.0389, *R*_p=0.0312, χ^2 =1.690.

Figure S10. (a) Temperature-dependent XRD patterns for KBiFe₂O₅ and simulated XRD pattern for (high temperature H) monoclinic phase (*P*2/*c*) according to the NPD structure parameters. The arrows show special peak positions belonging to H-phase. (b) Structure evolution from *P*2₁*cn* (cell parameters: a = 7.9841(5) Å, b = 11.8192(8) Å, c = 5.7393(4) Å) to *Pnna* (cell parameters: a=11.895(2) Å; b=11.6721(3) Å; c=7.9714(5) Å) involving cell doubling.

Figure S11. TG and DTA curves of $KBiFe_2O_5$. No evidence of decomposition was observed from the TG curve. The irreversible structural transition of monoclinic phase can be distinctly observed from DTA curve.

Figure S12. Schematic illustration of spin-canting behavior in $KBiFe_2O_5$. Dotted arrows indicate the G-type spin structure and solid arrows indicate the spin orientation induced by magnetic field.

Figure S13. Optical images of crystals responding to the external magnetic field in different directions.

Figure S14. DSC traces during heating and cooling showing a broad transition at 650K which can be identified as the onset of the domination of the AFE phase.

Figure S15. (a) Dielectric constant and (b) tangent loss of monoclinic phase (P2/c) as a function of temperature measured at 10^{2-5} Hz, using amplitude of 1 V.

Figure S16. The light absorption coefficient (a) of $KBiFe_2O_5$.

Figure S17. SEM image of the measurement setup of $KBiFe_2O_5$.

Figure S18. The XRD comparison between the ${\sf KBiFe_2O_5}$ powders and ceramic.