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Appendix S1: invasion analysis

Competition between a mutant and a resident

Elementary dynamics The resident population is assumed to be monomorphic with trait value

x1. At a given time t1, an individual produces a mutant with trait value x2. At a time t2 shortly

after t1 (t2 > t1, with t2 − t1 small), the mutant is rare enough to consider that the resident

population remains monomorphic (n2j(t) << n1j(t) for all patches j and for t1 ≤ t ≤ t2). Under

this approximation and according to equation (1) of the main text, the number of mutants in

patch j at time t+ 1 is equal to

n2j(t+ 1) ≈

(∑P
j′=1mj′j n2j′(t)

)
fh(j)(x2)(∑P

j′=1mj′j Kj′

)
fh(j)(x1)

Kj.
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Let Ni(t) =
(
ni1(t), · · · , niP (t)

)
′ denote the vector of the population sizes nij(t) of phenotype

i on patches j = 1, · · · , P . The vector of mutant population sizes satis�es the matrix equation

N2(t + 1) = A(x1, x2)N2(t), where A(x1, x2) is the P × P projection matrix with element in row

j and column j′ equal to [
A(x1, x2)

]
jj′

=
mj′j Kj

m+j

fh(j)(x2)

fh(j)(x1)
. (1)

Provided that A(x1, x2) is irreducible and primitive, the growth of phenotype x2 in the period t2

shortly after t1 is approximately given by

N2(t2) ≈
(
λ(1)(x1, x2)

)t2−t1 r(1)(x1, x2) l(1)(x1, x2)′N2(t1), (2)

where λ(1)(x1, x2) is the dominant eigenvalue of A(x1, x2), and l
(1)(x1, x2) and r(1)(x1, x2) are its

associated left and right normalized eigenvectors, which have all their entries strictly positive

(Caswell, 2001, chapter 4). Note that A(x1, x2) is irreducible if and only if there is a dispersal

path from each patch to every other patch, i.e. there are no disconnected subsets of patches or

traps in the landscape, with respect to dispersal (Caswell, 2001, chapter 4). It is irreducible and

primitive if and only if there exists an integer q such that A(x1, x2)
q has all entries strictly positive.

Mutant's fate The mutant's fate is determined by its invasion �tness function s(·, ·) de�ned by

s(x1, x2) = ln
(
λ(1)(x1, x2)

)
(Durinx et al., 2008, see also equation (2)). If s(x1, x2) ≤ 0, the mutant

becomes extinct shortly after t1. If s(x1, x2) > 0, then the mutant either becomes extinct shortly

after t1 by genetic drift, or it increases in frequency in the population since l(1)(x1, x2)
′N2(t1) > 0.

Because our model is deterministic, only the latter alternative occurs and it occurs in all patches

since all coordinates of r(1)(x1, x2) are strictly positive.

Mutation steps are assumed to be small. Thus the mutant and resident phenotypes have close

trait values x1 and x2. In this case and away from some particular trait values called singular

strategies (see below), a stable dimorphism of x1 and x2 is not possible (Champagnat et al., 2006;

Durinx et al., 2008). A mutant with positive invasion �tness will eventually replace the resident

and will generate a new monomorphic resident population with trait value x2. It is assumed that

mutations occur su�ciently infrequently so that the population becomes monomorphic before a

new mutant appears.
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Long-term population evolution towards the singular strategy At a longer time scale,

the resident population evolves gradually through a succession of mutant invasions. As mutation

steps are small, the �rst order approximation of the invasion �tness s(x1, x2) gives

s(x1, x2) ≈ s(x1, x1) + (x2 − x1).Dloc(x1),

where Dloc(x1) =
∂s

∂x2
(x1, x1) is the local �tness gradient (Geritz et al., 1998). Its sign determines

the direction of selection: if Dloc(x1) > 0, then only mutants with x2 > x1 can invade, whereas if

Dloc(x1) < 0, then this is possible for mutants with x2 < x1 only. The trait value x
? for which the

local �tness gradient is zero, i.e. Dloc(x
?) = 0, is called the `singular strategy'. It is said to be

convergence stable if the resident population evolves towards x?, which occurs if the derivative of

the local �tness gradient Dloc(x) is negative at x = x? (Geritz et al., 1998). If Dloc(x
?) > 0, then

x? is an evolutionary repeller.

Notations and conventions In the following, explicit reference to (x1, x2) will often be omitted

from quantities such as the matrix A(x1, x2) or its eigenvalues and eigenvectors. This is in order

to simplify notations, but also because we may view these quantities as functions and the relation-

ships between them as functional relationships. For example equations involving l(j)(x1, x2) and

r(j)(x1, x2) can be considered as functional equations between the functions l(j)(·, ·) and r(j)(·, ·)

of (x1, x2). Besides, the derivative of any given function g(x1, x2) with respect to x1 or x2 will

be denoted by gx1 or gx2 respectively. For example, ∂s
∂x2

(x1, x2) will be denoted by sx2(x1, x2) or,

more concisely, by sx2 .

The eigenvectors of matrix A are scaled so that l(j)′ r(j) = 1 and l(j)′ r(j
′) = 0 for j 6= j′. The

dominant right eigenvector r(1) is scaled to satisfy
∑

j[r
(1)]j = 1. For simplicity all the eigenvalues

λ(j) and the eigenvectors l(j) and r(j) of A are assumed to be real in this appendix.

Properties of A(x, x) The matrix A(x, x) is independent of x since
[
A(x, x)

]
jj′

=
mj′jKj

m+j

. We

shall denote it by Aenv since it depends only on the environment structure. It follows that the

eigenvalues, left eigenvectors and right eigenvectors of Aenv are independent of x too. They will

be denoted by λ
(j)
env, l

(j)
env, r

(j)
env respectively. In the absence of a mutant, the metapopulation is at

equilibrium and the dominant eigenvalue of Aenv satis�es λ
(1)
env = 1. The dominant right eigenvector

satis�es
[
r(1)env

]
j

= Kj and Aenv r
(1)
env = r

(1)
env.
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Properties of the derivative of A and its eigenvalues We remind that all the eigenvectors

are scaled to satisfy l(j)′r(j) = 1. In that case, the eigenvalue derivatives satisfy (Caswell, 2001,

Chapter 9, eqn. 9.10)

λ(j)x2
= l(j)′Ax2 r

(j). (3)

By deriving equation (1), we obtain

[Ax2(x1, x2)]jj′ =
mj′jKj

m+j

·
fh(j)(x2)

fh(j)(x1)
·
βh(j) − x2

σ2

which gives the following two properties on the derivative of A with respect to x2 :

Ax2 =
1

σ
∆A, (4)

Ax2 r
(j) =

1

σ
λ(j) ∆ r(j), (5)

where ∆ is the P × P diagonal matrix depending on x2, whose jth diagonal element equals

(βh(j) − x2)/σ.

Singular strategy

In this section, we determine an analytical expression of the singular strategy x?.

Mathematical expression of the singular strategy We look for the singular value x? that

satis�es Dloc(x
?) = 0. First, we calculate the �tness gradient sx2(x1, x2). Using equations (3) and

(5), we get

sx2 = ln
(
λ(1)
)
x2

=
1

λ(1)
· λ(1)x2

=
1

λ(1)
· l(1)′Ax2 r

(1)

=
1

σ
· l(1)′∆ r(1).
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Second we deduce the following expression of the local �tness gradient Dloc(x) = sx2(x, x) :

Dloc(x) =
1

σ2

∑
j

([
l(1)env

]
j

(
βh(j) − x

)
Kj

)
=

1

σ2

(
x? − x

)
(6)

where x? is de�ned by

x? =
∑
j

[
l(1)env

]
j
Kj βh(j) =

∑
k

( ∑
j,h(j)=k

[
l(1)env

]
j
Kj

)
βk.

A strategy is singular i� the local �tness gradient Dloc(x) is zero. Thus x? is the singular strategy.

From equation (6),
dDloc

dx
(x) = − 1

σ2
< 0, so that the singular strategy x? is always convergence

stable.

Stability of the singular strategy and branching criterion

In this section, we study the �tness gradient and deduce the branching condition given in Section

3.1.2 of the main text.

Once the resident population has reached the convergence-stable singular strategy x?, it may

remain monomorphic with phenotype x? or branch into distinct phenotypes better adapted to the

di�erent habitats. In the �rst case, the singular strategy is said to be evolutionarily stable. The

second order approximation of the invasion �tness s(x1, x2) gives

s(x1, x2) ≈ s(x1, x1) + (x2 − x1).Dloc(x1) +
(x2 − x1)2

2
. D

(2)
loc(x1), (7)

with D
(2)
loc(x1) =

∂2s

∂x22
(x1, x1) = sx2x2(x1, x1). The stability of x? is determined by the third term

of equation (7). If D
(2)
loc(x

?) > 0, then x? is a branching point. On the contrary, if D
(2)
loc(x

?) < 0,

then x? is an `evolutionarily stable strategy' (Geritz et al., 1998).

In order to know if the strategy x? is evolutionarily stable, we calculate D
(2)
loc(x

?). We have :

sx2x2 = ln
(
λ(1)
)
x2x2

=
1

λ(1)
λ(1)x2x2

−
( 1

λ(1)
λ(1)x2

)2
=

1

λ(1)
λ(1)x2x2

− s2x2
.
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Since λ(1)(x?, x?) = λ
(1)
env = 1 and sx2(x

?, x?) = Dloc(x
?) = 0, we get

D
(2)
loc(x

?) = λ(1)x2x2
(x?, x?).

By deriving equation (3) with j = 1 we have:

λ(1)x2x2
= l(1)x2

′Ax2 r
(1) + l(1)′Ax2x2 r

(1) + l(1)′Ax2 r
(1)
x2
.

This is the sum of three terms which we have to evaluate at x1 = x2 = x? to get D
(2)
loc(x

?). We

denote these three terms evaluated at x1 = x2 = x? by ω?
1, ω

?
2 and ω?

3.

First term computation According to Caswell (2001, chapter 9, eqn. 9.132) and using equa-

tion (5),

l(1)x2
=

∑
j,j 6=1

l(1)′Ax2 r
(j)

λ(1) − λ(j)
l(j)

=
1

σ

∑
j,j 6=1

λ(j)

λ(1) − λ(j)
l(1)′∆r(j) l(j).

By equation (5) again

l(1)x2

′Ax2 r
(1) =

1

σ
λ(1) l(1)x2

′∆ r(1).

When evaluated at x1 = x2 = x?, this expression gives the �rst term of D
(2)
loc(x

?), that is,

ω?
1 =

1

σ2
λ(1)env l

(1)
env
′∆?

(
P∑

j=2

λ
(j)
env

λ
(1)
env − λ(j)env

r(j)envl
(j)
env
′

)
∆? r(1)env,

where ∆? = ∆(x?).

Second term computation Let IP denote the identity matrix of order P . By deriving equa-

tion (4) we have:

Ax2x2 =
1

σ
∆Ax2 +

1

σ
∆x2A

=
1

σ2

(
∆2 − IP

)
A.
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It follows that,

l(1)′Ax2x2r
(1) =

1

σ2
l(1)′

(
∆2 − IP

)
Ar(1)

=
1

σ2
λ(1)

(
l(1)′∆2r(1) − 1

)
.

When evaluated at x1 = x2 = x?, it gives the second term of D
(2)
loc(x

?) :

ω?
2 =

1

σ2
λ(1)env

(
l(1)env
′∆?2r(1)env − 1

)
.

Third term computation According to Caswell (2001, chapter 9, eqn. 9.131),

r(1)x2
=

P∑
j=2

l(j)′Ax2 r
(1)

λ(1) − λ(j)
r(j)

=
1

σ
λ(1)

P∑
j=2

l(j)′∆r(1)

λ(1) − λ(j)
r(j).

By equation (4)

l(1)′Ax2 r
(1)
x2

=
1

σ
l(1)′∆A r(1)x2

.

When developed and evaluated at x1 = x2 = x?, this expression gives the third term of D
(2)
loc(x

?),

which is equal to the �rst one : ω?
3 = ω?

1.

Global formula Finally, since λ
(1)
env = 1 we have,

D
(2)
loc(x

?) = ω?
1 + ω?

2 + ω?
3

=
1

σ2

[
l(1)env
′∆?

(
IP + 2

P∑
j=2

λ
(j)
env

1− λ(j)env

r(j)envl
(j)
env
′

)
∆? r(1)env − 1

]
.

The strategy x? is evolutionarily stable if

l(1)env
′∆?

(
IP + 2

P∑
j=2

λ
(j)
env

1− λ(j)env

r(j)envl
(j)
env
′

)
∆? r(1)env − 1 < 0

which is equivalent to the condition given in Section 3.1.2 of the main text.
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