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Appendix S2: canonical equation of adaptive dynamics

General case

The canonical equation of adaptive dynamics (Champagnat et al., 2006; Durinx et al., 2008) gives

the speed of the evolution process towards the singular strategy. We recall its origin and give its

expression in our setting. We consider the evolution of the quantitative trait x in a monomorphic

population before x reaches the singular strategy x?. The process is now considered as stochastic

and its asymptotic behaviour is studied. The population size KT is assumed to be large.

At the �nest time scale, mutations are assumed to be rare and the probability of a mutant

birth in the population per generation is assumed to be equal to a very small value θ0(x). At

a larger timescale, time is continuous and one unit lasts nG generations of the �nest time scale,

where nG tends to in�nity. In this larger timescale, mutations approximately occur according to a

continuous-time Poisson process with rate nG θ0(x). Asymptotic results are obtained by assuming

1



that nG andKT tend to in�nity at the same rate and θ0 tends to zero, while θ(x) = lim
nG→+∞

nG θ0(x)

is of order one.

Mutations are assumed to be small. More precisely, the trait of a mutant is given by x2 = x+εz

where ε is a small scalar and the random variable z is assumed to have a centred and symmetrical

mutation distribution µx. The timescale is changed a second time so that one unit in the new

timescale lasts ε−2 units in the previous timescale, where ε tends to zero. Then the trait of the

resident follows the equation (Champagnat et al., 2006; Durinx et al., 2008):

ẋ =
1

2
γ2(x) θ(x) px2(x, x)

where ẋ = dx/dt, γ2(x) is the variance of the mutation distribution µx, p(x1, x2) is the mutant's

survival probability and px2(x, x) is its partial derivative with respect to x2 evaluated at x1 =

x2 = x.

Now we calculate the survival probability p(x1, x2). If s(x1, x2) < 0, the mutant cannot survive

and p(x1, x2) = 0. If s(x1, x2) > 0, the extinction of the mutant population mainly occurs at the

beginning of the population growth when the population is still small. Thus, the demography

of the mutant population is modelled with a slightly supercritical multi-type branching process

with a reproduction mean matrix equal to A(x1, x2) (Durinx et al., 2008). Let ξj′j(x1) denote the

random number of descendants in patch j of an individual with trait x1 in patch j′ in a resident

population with trait x1. Then, provided the eigenvectors are scaled so that l
(1)
env
′r

(1)
env = 1 and∑

j[r
(1)
env]j = 1 (as stated before), the survival probability of a mutant that arises in patch j is

equal to (Durinx et al., 2008; Haccou et al., 2005, section 5.6):

pj(x1, x2) ≈ 2s(x1, x2)[l
(1)
env]j/τ

2(x1),

where

τ 2(x) =
∑
j′

[r(1)env]j′ Var
[∑

j

[l(1)env]j ξj′j(x)
]
. (1)

The mutant arises in patch j with probability
[
r(1)env

]
j
= Kj. Thus the global survival probability

of the mutant is equal to:

p(x1, x2) =
∑
j

pj(x1, x2)[r
(1)
env]j ≈ 2s(x1, x2)/τ

2(x1),
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since l
(1)
env
′r

(1)
env = 1. Deriving this equation with respect to x2, we obtain:

px2(x, x) ≈ 2sx2(x, x)/τ
2(x).

Applying equation (6) of Appendix S1, it follows that the canonical equation is equal to:

ẋ =
γ2(x) θ(x)

τ 2(x)σ2
(x? − x).

Only τ 2(x) can depend on the landscape structure through ξj′j(x), l
(1)
env and r

(1)
env.

Symmetric case

A simple way of introducing demographic stochasticity in the model is to assume that each patch

has a large o�spring pool from which the next generation is sampled. The o�spring of a particular

resident individual in patch j′ is assumed to be in proportion
mj′j

m+jKT

(where m+j =
∑
j′

mj′jKj′)

in the pool of patch j, from which Kj individuals are sampled. The numbers of descendants

ξj′1, . . . , ξj′P of this individual in the di�erent patches are then assumed to be independent with:

ξj′j ∼ B
(
Kj,

mj′j

m+jKT

)
,

where B denotes the binomial distribution. The expectation of this distribution is consistent with

the deterministic model of equation (1) in Appendix S1.

Consider the case of a symmetric environment in the sense that, for all patches j and j′,

Kj = KT/P (same carrying capacity K), m+j = 1/P (same input connection) and mj′j = mjj′

(symmetric dispersal). Note that the hierarchical environment as de�ned in the main text is

a special case. Then we have ξj′j ∼ B
(
K,

mj′j

K

)
. Besides, the dominant eigenvectors satisfy
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l
(1)
env = 1P and r

(1)
env = 1P/P . Consequently equation (1) gives:

τ 2 =
∑
j′

[r(1)env]j′ Var
[∑

j

[l(1)env]j ξj′j

]
=

1

P

∑
j′

∑
j

Var(ξj′j)

=
1

P

∑
j′

∑
j

K
mj′j

K

(
1− mj′j

K

)
=

1

P

∑
j′

(∑
j

mj′j −
1

K

∑
j

m2
j′j

)
=

1

P

∑
j′

(
1− 1

K

∑
j

m2
j′j

)
= 1− 1

PK

∑
j′

∑
j

m2
j′j.

Let VarM =
(∑

j′,j m
2
j′j − 1

)
/P 2 denote the variance of the dispersal rates mj′j. We get

τ 2 =
KT − 1

KT

− P

K
VarM .
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