Supporting information: Dynamics of adaptation in spatially heterogeneous metapopulations

J. Papaïx ^{1,2,a}, O. David ^{2,b}, C. Lannou ^{1,c} & H. Monod ^{2,d}

26/12/2012

¹INRA, UMR 1290 BIOGER, F-78850 Thiverval Grignon. ²INRA, UR 341 Mathématiques et Informatique Appliquées, F-78350 Jouy-en-Josas. ^ajulien.papaix@jouy.inra.fr ^bolivier.david@jouy.inra.fr ^cchristian.lannou@grignon.inra.fr ^dherve.monod@jouy.inra.fr

Appendix S3: hierarchical metapopulation

We consider a metapopulation composed of p_1 groups of p_2 patches, where all the patches have the same relative size $\overline{K}_j = 1/P$. Dispersal is symmetric, with three dispersal rates m_0 , m_1 and m_2 defined as follows :

- $m_{j'j} = m_0$ if patches j' and j belong to two different groups,
- $m_{j'j} = m_0 + m_1$ if patches j' and j belong to the same group and $j' \neq j$,
- $m_{j'j} = m_0 + m_1 + m_2$ if patches j' and j are the same (j' = j).

We consider that all propagules land in one patch so that the rates satisfy $\sum_{j} m_{j'j} = p_1 p_2 m_0 + p_2 m_1 + m_2 = 1$ and $m_{+j} = 1/P$. Under these assumptions, the matrix A_{env} is equal to the symmetric dispersal matrix M defined in the main text (Section 2.2.1), so that

$$A_{\rm env} = m_0 \, J_P + m_1 \, I_{p_1} \otimes J_{p_2} + m_2 \, I_P,$$

where J_P is the $P \times P$ matrix of ones, I_P is the identity matrix of order P, $I_{p_1} \otimes J_{p_2}$ denotes the block-diagonal matrix with diagonal matrices J_{p_2} and the symbol \otimes denotes the Kronecker product. The matrix A_{env} can be decomposed into

$$A_{\rm env} = S_1 + (m_2 + p_2 m_1) S_2 + m_2 S_3, \tag{1}$$

where $S_1 = \frac{1}{p_1} J_{p_1} \otimes \frac{1}{p_2} J_{p_2}$, $S_2 = (I_{p_1} - \frac{1}{p_1} J_{p_1}) \otimes \frac{1}{p_2} J_{p_2}$, $S_3 = I_{p_1} \otimes (I_{p_2} - \frac{1}{p_2} J_{p_2})$ are the orthogonal projection matrices on three mutually orthogonal subspaces of \mathbb{R}^P of dimensions 1, $p_1 - 1$, $p_1(p_2 - 1)$ respectively. This decomposition shows that the eigenvalues of A_{env} are 1 with multiplicity one, $m_2 + p_2 m_1$ with multiplicity $p_1 - 1$ and m_2 with multiplicity $p_1(p_2 - 1)$. The dominant eigenvalue $\lambda_{env}^{(1)}$ equals one, as expected, and the normalised dominant eigenvectors respecting the scaling constraints are $r_{env}^{(1)} = 1_P/P$ and $l_{env}^{(1)} = 1_P$, where 1_P is the vector of ones of length P.

These results imply that $x^* = (1/P) \sum_{j=1}^{P} \beta_{h(j)}$. Decomposition (1) also implies that

$$\sum_{j,j\neq 1} \frac{\lambda_{\text{env}}^{(j)}}{1 - \lambda_{\text{env}}^{(j)}} r_{\text{env}}^{(j)} l_{\text{env}}^{(j)'} = \rho S_2 + \xi S_3$$

and so

w

$$D_{\rm loc}^{(2)}(x^{\star}) = \frac{1}{\sigma^2} \Big(w' \big(I_P + 2\rho S_2 + 2\xi S_3 \big) w - 1 \Big),$$

where $\rho = \frac{m_2 + p_2 m_1}{p_1 p_2 m_0}$, $\xi = \frac{m_2}{p_2 m_1 + p_1 p_2 m_0}$ and w is the vector of length P with jth coordinate equal to $(\beta_{h(j)} - x^*)/(\sqrt{P}\sigma)$. For $g = 1, \dots, p_1$ and $l = 1, \dots, p_2$, let $w_{(gl)}$ denote the coordinate of w associated with patch l of group g and let $w_{(g\bullet)} = (1/p_2) \sum_l w_{(gl)}$. The vector w is centred thus $\sum_{q,l} w_{(gl)} = 0$. Then we have

$$w'S_{1}w = 0,$$

$$w'S_{2}w = p_{2}\sum_{g} w_{(g\bullet)}^{2}$$

$$= \sum_{k}\sum_{k'} Cov(\pi_{k}, \pi_{k'}) \frac{(x^{\star} - \beta_{k})(x^{\star} - \beta_{k'})}{\sigma^{2}},$$

$$'(S_{2} + S_{3})w = w'I_{P}w = \sum_{g,l} w_{(gl)}^{2}$$

$$= \sum_{k=1}^{H} \pi_{k} \frac{(x^{\star} - \beta_{k})^{2}}{\sigma^{2}}.$$

We note that $w'S_2w \ge 0$ since $w'S_2w$ is a quadratic form of a positive semidefinite matrix. After setting $\nu = \rho - \xi$, we get

$$D_{\rm loc}^{(2)}(x^{\star}) = \frac{1}{\sigma^2} \left((1+2\xi) \sum_{k=1}^{H} \pi_k \frac{(x^{\star} - \beta_k)^2}{\sigma^2} + 2\nu \sum_{k=1}^{H} \sum_{k'=1}^{H} \operatorname{Cov}(\pi_k, \pi_{k'}) \frac{(x^{\star} - \beta_k)(x^{\star} - \beta_{k'})}{\sigma^2} - 1 \right).$$

It follows that x^* is an evolutionarily stable strategy if:

$$(1+2\xi)\sum_{k=1}^{H}\pi_{k}\frac{(x^{\star}-\beta_{k})^{2}}{\sigma^{2}}+2\nu\sum_{k=1}^{H}\sum_{k'=1}^{H}\operatorname{Cov}(\pi_{k},\pi_{k'})\frac{(x^{\star}-\beta_{k})(x^{\star}-\beta_{k'})}{\sigma^{2}}<1.$$

When dispersal is homogeneous $(m_1 = m_2 = 0)$, the condition for evolutionary stability becomes:

$$\sum_{k=1}^{H} \pi_k \frac{(x^\star - \beta_k)^2}{\sigma^2} < 1.$$

When dispersal is hindered so that a propagule is more likely to stay in its patch than to land on another patch $(m_2 \neq 0)$ and when there is no group structure $(m_1 = 0)$, the condition for evolutionary stability becomes:

$$(1+2\xi)\sum_{k=1}^{H}\pi_k \frac{(x^{\star}-\beta_k)^2}{\sigma^2} < 1.$$