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Appendix S3: hierarchical metapopulation

We consider a metapopulation composed of p1 groups of p2 patches, where all the patches have

the same relative size Kj = 1/P . Dispersal is symmetric, with three dispersal rates m0, m1 and

m2 de�ned as follows :

• mj′j = m0 if patches j
′ and j belong to two di�erent groups,

• mj′j = m0 +m1 if patches j
′ and j belong to the same group and j′ 6= j,

• mj′j = m0 +m1 +m2 if patches j
′ and j are the same (j′ = j).

We consider that all propagules land in one patch so that the rates satisfy
∑

j mj′j = p1p2m0 +

p2m1 + m2 = 1 and m+j = 1/P . Under these assumptions, the matrix Aenv is equal to the

symmetric dispersal matrix M de�ned in the main text (Section 2.2.1), so that

Aenv = m0 JP +m1 Ip1 ⊗ Jp2 +m2 IP ,
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where JP is the P × P matrix of ones, IP is the identity matrix of order P , Ip1 ⊗ Jp2 denotes

the block-diagonal matrix with diagonal matrices Jp2 and the symbol ⊗ denotes the Kronecker

product. The matrix Aenv can be decomposed into

Aenv = S1 + (m2 + p2m1)S2 +m2S3, (1)

where S1 =
1
p1
Jp1 ⊗ 1

p2
Jp2 , S2 = (Ip1 − 1

p1
Jp1)⊗ 1

p2
Jp2 , S3 = Ip1 ⊗ (Ip2 − 1

p2
Jp2) are the orthogonal

projection matrices on three mutually orthogonal subspaces of RP of dimensions 1, p1−1, p1(p2−1)

respectively. This decomposition shows that the eigenvalues of Aenv are 1 with multiplicity one,

m2 + p2m1 with multiplicity p1− 1 and m2 with multiplicity p1(p2− 1). The dominant eigenvalue

λ
(1)
env equals one, as expected, and the normalised dominant eigenvectors respecting the scaling

constraints are r
(1)
env = 1P/P and l

(1)
env = 1P , where 1P is the vector of ones of length P .

These results imply that x? = (1/P )
∑P

j=1 βh(j). Decomposition (1) also implies that

∑
j,j 6=1

λ
(j)
env

1− λ(j)env

r(j)envl
(j)′

env = ρS2 + ξS3

and so

D
(2)
loc(x

?) =
1

σ2

(
w′
(
IP + 2ρS2 + 2ξS3

)
w − 1

)
,

where ρ =
m2 + p2m1

p1p2m0

, ξ =
m2

p2m1 + p1p2m0

and w is the vector of length P with jth coordinate

equal to (βh(j) − x?)/(
√
Pσ). For g = 1, · · · , p1 and l = 1, · · · , p2, let w(gl) denote the coordinate

of w associated with patch l of group g and let w(g•) = (1/p2)
∑

l w(gl). The vector w is centred

thus
∑

g,l w(gl) = 0. Then we have

w′S1w = 0,

w′S2w = p2
∑
g

w2
(g•)

=
∑
k

∑
k′

Cov(πk, πk′)
(x? − βk)(x? − βk′)

σ2
,

w′(S2 + S3)w = w′IPw =
∑
g,l

w2
(gl)

=
H∑
k=1

πk
(x? − βk)2

σ2
.
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We note that w′S2w ≥ 0 since w′S2w is a quadratic form of a positive semide�nite matrix. After

setting ν = ρ− ξ, we get

D
(2)
loc(x

?) =
1

σ2

(
(1 + 2ξ)

H∑
k=1

πk
(x? − βk)2

σ2
+ 2ν

H∑
k=1

H∑
k′=1

Cov(πk, πk′)
(x? − βk)(x? − βk′)

σ2
− 1

)
.

It follows that x? is an evolutionarily stable strategy if:

(1 + 2ξ)
H∑
k=1

πk
(x? − βk)2

σ2
+ 2ν

H∑
k=1

H∑
k′=1

Cov(πk, πk′)
(x? − βk)(x? − βk′)

σ2
< 1.

When dispersal is homogeneous (m1 = m2 = 0), the condition for evolutionary stability becomes:

H∑
k=1

πk
(x? − βk)2

σ2
< 1.

When dispersal is hindered so that a propagule is more likely to stay in its patch than to land

on another patch (m2 6= 0) and when there is no group structure (m1 = 0), the condition for

evolutionary stability becomes:

(1 + 2ξ)
H∑
k=1

πk
(x? − βk)2

σ2
< 1.
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