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Appendix S3: hierarchical metapopulation

We consider a metapopulation composed of p; groups of p, patches, where all the patches have
the same relative size Fj = 1/P. Dispersal is symmetric, with three dispersal rates mg, m; and

meo defined as follows :
e m;; = my if patches j' and j belong to two different groups,
e m;; = mg + my if patches j' and j belong to the same group and j’ # j,
e mj; = my+ mq + my if patches ;' and j are the same (5’ = j).

We consider that all propagules land in one patch so that the rates satisfy Zj My = p1pamo +
pamy +me = 1 and my; = 1/P. Under these assumptions, the matrix Ae,, is equal to the

symmetric dispersal matrix M defined in the main text (Section 2.2.1), so that

Aenv = My JP +my Ip1 X Jp2 + ma [Pa
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where Jp is the P x P matrix of ones, Ip is the identity matrix of order P, I, ® J,, denotes
the block-diagonal matrix with diagonal matrices J,, and the symbol ® denotes the Kronecker

product. The matrix A.,, can be decomposed into
Aeny = 51+ (ma + pamy) Sy + maSs, (1)

where 5 = piljp1 ® pinpz, So = (I, — pilJpl) ® pigjm, Sy =1, @ (I, — p%Jpz) are the orthogonal

projection matrices on three mutually orthogonal subspaces of RY of dimensions 1, p; —1, p1(pa—1)

respectively. This decomposition shows that the eigenvalues of A.,, are 1 with multiplicity one,

ms + pamy with multiplicity p; — 1 and mgy with multiplicity p;(ps — 1). The dominant eigenvalue

AL equals one, as expected, and the normalised dominant eigenvectors respecting the scaling
)

constraints are reny = 1p/P and léi}v = 1p, where 1p is the vector of ones of length P.

These results imply that * = (1/P) Zle Br(j)- Decomposition (1) also implies that
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and so
D1(022, (x*) = % <U)/(]p + 2pSs + 2683)w — 1),
where p = L +p2m1, = 2 and w is the vector of length P with jth coordinate
pip2myo P21y + p1p2mo

equal to (Bu(j) — 2*)/(V/Po). For g=1,--- .pyand [ = 1,--- ,po, let wgy denote the coordinate
of w associated with patch [ of group g and let wge) = (1/p2) >, w(g). The vector w is centred

thus >, wiy = 0. Then we have
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We note that w'Ssw > 0 since w'Ssw is a quadratic form of a positive semidefinite matrix. After

setting v = p — &, we get
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fo@(x*) = % ((1 +2¢) Zﬁk(m*_—fky + 21/2 Z COV(Wk,Wk/)(x* — Bk)(f* — ) _ 1) _

It follows that x* is an evolutionarily stable strategy if:
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When dispersal is homogeneous (m; = mg = 0), the condition for evolutionary stability becomes:
H * 2
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When dispersal is hindered so that a propagule is more likely to stay in its patch than to land
on another patch (mg # 0) and when there is no group structure (m; = 0), the condition for
evolutionary stability becomes:
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