Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions

Experimental Brain Research

Shomesh E. Chaudhuri, Daniel M. Merfeld

S. E. Chaudhuri, D. M. Merfeld Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA e-mail: shomesh_chaudhuri@meei.harvard.edu

D. M. Merfeld (corresponding author) Otology and Laryngology, Harvard Medical School, Boston, MA, USA e-mail: dan_merfeld@meei.harvard.edu Telephone: (617) 573-5595 Fax: (617) 573-5596

Online Resource 2

Since the biased-reduced $\hat{\sigma}$ estimates in Table 2 of the paper are positively biased, we can use a scale factor α) to improve both the accuracy (reduced bias) and precision (lower variance) of our estimates. If μ is set to $k\sigma$, where k is a constant, the expected BRGLM $\hat{\sigma}$ bias (E[$\hat{\sigma}$] – σ) scales linearly with σ , but the size of the scaling increases non-linearly with increasing values of |k|. Fig. S2 shows the expected BRGLM $\hat{\sigma}$ bias normalized by σ , $(E[\hat{\sigma}] - \sigma)/\sigma$, for a 3D/1U staircase with $n = 25$ as a function of $|k|$, where $\mu = k\sigma$. We can fit the simulated expected percent bias to a $4th$ order polynomial such that:

$$
(E[\hat{\sigma}] - \sigma)/\sigma = -0.030|k|^4 + 0.062|k|^3 + 0.254|k|^2 - 0.038|k| + 0.085
$$

Fig. S2 The expected BRGLM $\hat{\sigma}$ percent bias for a 3D/1U staircase with $n = 25$ as a function of |k|, where $\mu = k\sigma$

We note that for small k , which, in our experience, includes the majority of normal vestibular data, the expected percent bias is nearly constant and so using the value (0.085) at $|k| = 0$ in this range provides a good approximation. In this case α is constant and is equal to $(1 + ((E[\hat{\sigma}] - \sigma)/\sigma)|_{k=0})^{-1} = (1.085)^{-1} = 0.922$. If the range of |k| were greater we could use the $4th$ order polynomial fit to calculate α . From the BRGLM fit we would get an estimate of \hat{k} equal to $\hat{\mu}/\hat{\sigma}$. Using the 4th order polynomial, we could then estimate the expected percent bias and α would be equal to $(1 + ((E[\hat{\sigma}] - \sigma)/\sigma)|_{\hat{k}})^{-1}$.