Enhancing Biocompatibility of D-Oligopeptide Hydrogels by Negative **Charges** Laura L. Hyland,¹ Julianne D. Twomey,¹ Savannah Vogel¹, Adam H. Hsieh^{1,2} and Y. Bruce Yu^{1,3}*

Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 Department of Orthopaedics, University of Maryland, Baltimore, MD, 21201 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201.

¹ Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.

² Department of Orthopaedics, University of Maryland, Baltimore, MD, USA

³ Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA.

Table of Contents

Figure S1.	L ⁺ Analytical HPLC·····s2
Figure S2.	L ⁻ Analytical HPLCs3
Figure S3.	D ⁺ Analytical HPLC
Figure S4.	D ⁻ Analytical HPLC
Figure S5.	L ⁺ ESI(+)-MS
Figure S6.	L ⁻ ESI(-)-MS
Figure S7.	D ⁺ ESI(+)-MS
Figure S8.	D ⁻ ESI(-)-MS
Table S1A.	Paired t-test results for cell attachment ······s10
Table S1B.	Paired t-test results for cell proliferation
WST-1 subt	raction procedure ······s14

Supporting Information

Figure S1. Analytical reversed-phase HPLC chromatogram of L^* acquired with HP1100 chromatograph system (Agilent Technologies). Column: Zorbax 300SB-C18 (4.6 × 250 mm i.d.). Elution profiles were monitored at 280nm. Eluents: solvent A: 0.1% trifluoroacetic acid (TFA) in water, pH 2.0; solvent B: 0.1% TFA in methanol, pH 2.0. Chromatograph run conditions for all the peptides: flow rate: 1ml/min; gradient: 2% B/min; temperature: ambient.

Ľ

Figure S2. Analytical reversed-phase HPLC chromatogram of *L*⁻ acquired with HP1100 chromatograph system (Agilent Technologies). Column: Zorbax 300SB-C18 (4.6 × 250 mm i.d.). Elution profiles were monitored at 280nm. Eluents: solvent A: 20 mM NH4HCO3 in water, pH 7.0; solvent B: 20 mM NH4HCO3 in water (40%) + methanol (60%) mixture, pH 7.0. Chromatograph run conditions for all the peptides: flow rate: 1ml/min; gradient: 2% B/min; temperature: ambient.

Figure S3. Analytical reversed-phase HPLC chromatogram of D^+ acquired with HP1100 chromatograph system (Agilent Technologies). Column: Zorbax 300SB-C18 (4.6 × 250 mm i.d.). Elution profiles were monitored at 280nm. Eluents: solvent A: 0.1% trifluoroacetic acid (TFA) in water, pH 2.0; solvent B: 0.1% TFA in methanol, pH 2.0. Chromatograph run conditions for all the peptides: flow rate: 1ml/min; gradient: 2% B/min; temperature: ambient.

Figure S4. Analytical reversed-phase HPLC chromatogram of **D**⁻ acquired with HP1100 chromatograph system (Agilent Technologies). Column: Zorbax 300SB-C18 ($4.6 \times 250 \text{ mm i.d.}$). Elution profiles were monitored at 280nm. Eluents: solvent A: 20 mM NH4HCO3 in water, pH 7.0; solvent B: 20 mM NH4HCO3 in water (40%) + methanol (60%) mixture, pH 7.0. Chromatograph run conditions for all the peptides: flow rate: 1ml/min; gradient: 2% B/min; temperature: ambient.

Figure S5. *L*⁺ Mass spectrum acquired with an Amazon X Ion Trap Mass Spectrometer (Bruker) in positive ion mode. Flow rate of 3 μ L/min, 10 psi nebulizer pressure, 4 L/min dry gas flow and 250°C gas temperature.

Figure S6. *L*⁻ mass spectrum acquired with an Amazon X Ion Trap Mass Spectrometer (Bruker) in negative ion mode. Flow rate of 3 μ L/min, 10 psi nebulizer pressure, 4 L/min dry gas flow and 250°C gas temperature.

Figure S7. *D*⁺ mass spectrum acquired with an Amazon X Ion Trap Mass Spectrometer (Bruker) in positive ion mode. Flow rate of 3 µL/min, 10 psi nebulizer pressure, 4 L/min dry gas flow and 250°C gas temperature.

Figure S8. *D*⁻ mass spectrum acquired with an Amazon X Ion Trap Mass Spectrometer (Bruker) in negative ion mode. Flow rate of 3 μ L/min, 10 psi nebulizer pressure, 4 L/min dry gas flow and 250°C gas temperature.

Table S1. Results from a series of paired t-tests to determine significant differences in cell behavior on different hydrogel types. Table (A) shows viability and table (B) shows cell number. For acceptance, p < 0.01.

A. Viability (n = 54)							
Hypothesis	p value	Result					
Single Peptides							
$L^{-} > L^{+}$	0.2	rejected					
$L^+ > D^+$	0.5	rejected					
L ⁻ > D ⁻	0.4	rejected					
$D^- > D^+$	0.1	rejected					
$D^- > L^+$	0.2	rejected					
$L^{-} > D^{+}$	0.2	rejected					
N	eutral Gels						
$(LL)^{0} > (LD)^{0}$	2.0E-06	accepted					
$(LL)^{0} > (DL)^{0}$	1.0E-05	accepted					
$(DL)^{0} > (LD)^{0}$	0.5	rejected					
$(LD)^{0} > (DD)^{0}$	0.1	rejected					
$(DL)^{0} > (DD)^{0}$	0.06	rejected					
$(LL)^{0} > (DD)^{0}$	1.0E-07	accepted					
$(DD)^0 > (LLDD)^0$	4.0E-06	accepted					
$(LD)^0 > (LLDD)^0$	1.0E-06	accepted					
$(DL)^0 > (LLDD)^0$	8.0E-07	accepted					
Charged Gels							
$(DD)^{0} > (DD)^{+}$	0.003	accepted					
$(DD)^{-} > (DD)^{0}$	0.009	accepted					
$(LL)^{+} > (DD)^{+}$	5.0E-07	accepted					
$(LL)^{-} > (DD)^{-}$	0.003	accepted					
$(LL)^{0} > (LL)^{+}$	0.1	rejected					
$(LL)^{0} > (LL)^{-}$	0.08	rejected					
$(LL)^{-} > (LL)^{+}$	0.4	rejected					

B. Cell Number (n = 9)								
Hypothesis	Day	p value	Result					
	Single Peptides							
$L^{-} > L^{+}$	1	0.2	rejected					
$L^+ > D^+$	1	0.1	rejected					
L ⁻ > D ⁻	1	0.1	rejected					
$D^- > D^+$	1	0.06	rejected					
$D^{-} > L^{+}$	1	0.2	rejected					
$L^{-} > D^{+}$	1	0.02	rejected					
$L^{-} > L^{+}$	3	0.2	rejected					
$L^+ > D^+$	3	0.5	rejected					
$L^{-} > D^{-}$	3	0.5	rejected					
$D^- > D^+$	3	0.3	rejected					
$D^{-} > L^{+}$	3	0.3	rejected					
$L^{-} > D^{+}$	3	0.2	rejected					
$L^{-} > L^{+}$	7	0.4	rejected					
$L^+ > D^+$	7	0.4	rejected					
L ⁻ > D ⁻	7	0.4	rejected					
$D^- > D^+$	7	0.4	rejected					
D⁻ > L⁺	7	0.5	rejected					
$L^{-} > D^{+}$	7	0.2	rejected					
	Neutral	Gels						
$(LL)^{0} > (LD)^{0}$	1	0.3	rejected					
$(LL)^{0} > (DL)^{0}$	1	0.3	rejected					
$(DL)^{0} > (LD)^{0}$	1	0.3	rejected					
$(LD)^{0} > (DD)^{0}$	1	3.0E-05	accepted					
$(DL)^{0} > (DD)^{0}$	1	3.0E-05	accepted					
$(LL)^{0} > (DD)^{0}$	1	7.0E-04	accepted					
$(LL)^0 > (LLDD)^0$	1	0.004	accepted					
$(LD)^0 > (LLDD)^0$	1	7.0E-04	accepted					
$(DL)^0 > (LLDD)^0$	1	0.002	accepted					
$(LLDD)^{0} > (DD)^{0}$	1	0.2	rejected					
$(LL)^{0} > (LD)^{0}$	3	0.2	rejected					
$(LL)^{0} > (DL)^{0}$	3	0.2	rejected					
$(DL)^{0} > (LD)^{0}$	3	0.3	rejected					
$(LD)^{0} > (DD)^{0}$	3	0.4	rejected					
$(DL)^{0} > (DD)^{0}$	3	0.3	rejected					

$(LL)^{0} > (DD)^{0}$	3	0.03	rejected			
$(LL)^0 > (LLDD)^0$	3	2.0E-04	accepted			
$(LD)^{0} > (LLDD)^{0}$	3	4.0E-04	accepted			
$(DL)^{\circ} > (LLDD)^{\circ}$	3	0.002	accepted			
$(DD)^0 > (LLDD)^0$	3	0.012	rejected			
$(LL)^{0} > (LD)^{0}$	7	0.003	accepted			
$(LL)^{0} > (DL)^{0}$	7	6.0E-04	accepted			
$(DL)^{0} > (LD)^{0}$	7	0.3	rejected			
$(DD)^{0} > (LD)^{0}$	7	0.1	rejected			
$(DD)^{0} > (DL)^{0}$	7	0.09	rejected			
$(LL)^{0} > (DD)^{0}$	7	0.2	rejected			
$(LD)^{0} > (LLDD)^{0}$	7	3.0E-05	accepted			
$(DL)^{0} > (LLDD)^{0}$	7	3.0E-05	accepted			
$(DD)^0 > (LLDD)^0$	7	5.0E-05	accepted			
Charged Gels						
$(DD)^0 > (DD)^+$	1	0.004	accepted			
$(DD)^{-} > (DD)^{0}$	1	5.0E-04	accepted			
$(DD)^{-} > (DD)^{+}$	1	0.002	accepted			
$(LL)^+ > (DD)^+$	1	5.0E-06	accepted			
(LL) ⁻ > (DD) ⁻	1	0.0004	accepted			
$(LL)^0 > (LL)^+$	1	0.014	rejected			
$(LL)^{-} > (LL)^{0}$	1	0.09	rejected			
$(LL)^{-} > (LL)^{+}$	1	0.03	rejected			
$(DD)^0 > (DD)^+$	3	0.014	rejected			
$(DD)^{-} > (DD)^{0}$	3	0.1	rejected			
$(DD)^{-} > (DD)^{+}$	3	0.004	accepted			
$(LL)^+ > (DD)^+$	3	0.005	accepted			
(LL) ⁻ > (DD) ⁻	3	0.09	rejected			
$(LL)^0 > (LL)^+$	3	0.4	rejected			
$(LL)^{-} > (LL)^{0}$	3	0.4	rejected			
$(LL)^{-} > (LL)^{+}$	3	0.5	rejected			
$(DD)^0 > (DD)^+$	7	0.1	rejected			
$(DD)^{-} > (DD)^{0}$	7	0.2	rejected			
$(DD)^{-} > (DD)^{+}$	7	0.002	accepted			
$(LL)^+ > (DD)^+$	7	0.006	accepted			
(LL) ⁻ > (DD) ⁻	7	0.5	rejected			
$(LL)^0 > (LL)^+$	7	0.2	rejected			

	1	1	
$(LL)^{-} > (LL)^{0}$	7	0.5	rejected
$(LL)^{-} > (LL)^{+}$	7	0.3	rejected

WST-1 subtraction procedure

Cell+Gel Average Absorbance = Avg. Abs.(cells on gel, day X) – Avg. Abs.(gel, day X)

TCPS Average Absorbance = Avg. Abs.(cells on plate, day X) – Avg. Abs.(plate, day X)

Absorbances were normalized by Avg. TCPS, day 7, i.e.,

Cell+Gel Average Absorbance/TCPS Average Absorbance (day 7) \times 100%