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Figure S1: Simulated system used for the Anton simulations. SecY is shown in grey, SecE in orange, and the portion of
the ribosome retained in light blue. The lipid tails are in cyan with selected phosphorus, nitrogen, and oxygen atoms of the
head groups displayed as brown, blue, and red spheres, respectively. The water box for the periodic system is in light grey.
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Figure S2: Area inaccessible to lipids as a function of z, the position along the membrane normal. The black curve is
derived from simulation of the native SA embedded in SecY with an initially closed lateral gate, while the red is from
simulation with an initially open gate (see Fig. 1 in the main text). They are nearly overlapping, with the exception of a
small region near the center of the membrane where lipid tails can breach the open gate into the channel. The curves are
averaged over the course of each simulation.
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Figure S3: Plots of Ser87-Phe286 distance over time with different nascent helical TM segments embedded in SecY’s
central pore. (A) Initially closed SecY. Gate opening for hydrophobic helices (polyLeu and SA) are shown in black and
red, respectively, with hydrophilic ones (polySer and polyGln) in green and blue. (B) Initial intermediate opening with
polyLeu (black) and polyGln (red) inside. (C) Initially open, colored the same as in (A). (D) Empty SecY started in a
closed state (red/black) and in a state of intermediate gate opening (blue/green), with and without the ribosome bound.
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Figure S4: Lateral gate opening over time, identical to Fig. S3, except a different definition of the gate opening is used.
Here, gate opening is measured between the centers of mass for the Cα atoms of residues 83, 86, 87, 91, and 94 on TM2b
of SecY and 279, 282, 283, 285, and 286 on TM7 (E.coli numbering). These residues are a subset of those used to define
gate opening in Zhang and Miller (2010) (1).
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Figure S5: Interaction between lipids and a tested helix as a fraction of its total surface area. (A-C) Lipid-interaction
area for helices embedded in the center of the channel, corresponding to those in Fig. S3A-C. (A) Initially closed SecY. (B)
SecY with an intermediate opening initially. (C) Initially open SecY. (D) Change in interaction area for helices initially
positioned at the lateral gate (see Fig. 2 in the main text). Helices are colored as in (A), except for polySer, which is
replaced by the S4 helix here.
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Figure S6: Incursion of a lipid into the closed channel after ∼0.5 µs. SecY is shown in grey, SecE in orange, and the
lateral gate helices in green. The nascent SA helix (red) is still within the predominantly closed channel, indicated by the
proximity of residues Ser87 and Phe286 (yellow spheres). A lipid contacting the SA across the otherwise closed gate is
shown in a blue space-filling representation.

Figure S7: Spontaneous motion of the native SA in SecY. The separation between the center of SecY and the SA is
shown over time as in Fig. 2G in the main text. The black curve represents simulation at T = 353 K and the red curve
at T = 323 K. The same trend of the helix moving into the membrane is observed for both, although the one at higher
temperature is more rapid.
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Figure S8: Spontaneous motion of a helix in SecY. SecYE, the tested helix, and the membrane are displayed as in Fig. 2
in the main text. (A,B) Final state (t=2.5 µs) for the SA shown in the membrane plane (A) and from the cytoplasmic
side (B). (C,D) Final state of the S4 helix. The four arginine residues are shown in a blue space-filling representation,
highlighting their interactions with lipid head groups.

Figure S9: Potentials of mean force from Fig. 3 in the main text. The dashed lines above and below each heavy line
represent one standard deviation away from the mean. The statistical error was calculated using the method of Zhu and
Hummer (2).
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Figure S10: Simplified potentials of mean force. Linear PMFs (black lines, solid and dashed) generated as inputs for
the kinetic model are shown as a function of distance from the center of the channel, rSecY = 0. The solid blue and black
vertical lines correspond to the reference points chosen for the membrane, rmem. = 15 and rmem. = 25 Å, respectively (see
Fig. 5 in the main text and Fig. S11). The numbers to the right give ∆G(SecY → mem.) at the corresponding reference point
for each linear PMF. The PMFs for the SA, polyGln, and polyLeu helices determined from umbrella-sampling simulations
are shown in the background, colored as in Fig. 3 in the main text.
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Figure S11: Probability of membrane insertion. The baseline parameters used are a translation rate of
1 res/s, a gate opening of 15 Å, and rcutoff = 12 Å. (A-C) Insertion of SA as a function of (A) translation
rate, (B) gate opening, and (C) rcutoff = 12 Å. (D) Insertion of SA compared to the polyLeu and polyGln
helices.
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Figure S12: Membrane-insertion probability based on simplified PMFs for the membrane reference point rmem. = 25 Å.
All parts are otherwise identical to Fig. 5 in the main text.
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Figure S13: Histograms for 24 umbrella-sampling simulations used to reconstruct the PMF for the native SA.
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Potential of mean force

The radial potential of mean force (PMF) used for the finite-element models is composed of two parts.

The first component U1 is due to interactions between the helix and the environment, determined from

all-atom umbrella sampling MD simulations or from simplified linear fits. The second component U2

is due to the restraint imposed by the remainder of the ribosome-bound nascent chain. Because the

helix inside SecY can temporarily arrest translocation, the downstream nascent chain can accumulate

in the cytoplasm (3). This nascent chain is modeled as a freely-jointed chain such that, in the absence

of an underlying potential, the mean end-to-end length is given by

�r2�= NrL
2 (1)

where Nr is the number of residues in the chain and L = 3.8 Å, the Kuhn length, is the average residue

length in an extended polypeptide chain. The length r is taken to represent the range in which the

helix can diffuse away from the channel. We assume that the chain is growing at a constant rate so that

Nr(t) = t/τ , thus making r proportional to
√

t. The characteristic time τ is that required to synthesize

one residue by the ribosome and is set to 1 s in most calculations (3, 4), although other possibilities are

considered in Fig. 5A in the main text. The length r has a probability distribution (5)

ρfree(r,Nr) = exp(−3r
2/2NrL

2) (2)

with an associated potential of

Ufree(r,Nr) = 3r
2/(2βNrL

2). (3)

Hence, with T = 300 K and τ = 1 s, the resulting potential U(r, t) is

U(r, t) =U1(r)+Ufree(r,Nr) =U1(r)+U2(r, t) =U1(r)+
αr

2

t
(4)

where α = 0.062 (kcal/mol)·(s/Å2).
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Finite-element kinetic models

Diffusion within the lipid bilayer of the nascent chain around the SecY channel is described by a

time-evolving probability density. This probability density is defined over a 2D circular plane segment

S centered on the membrane-normal axis of the channel. The circumferential boundary of S is

reflective so as to close the system, making possible the use of the Boltzmann approach described

later. The radius of S is set to 2000 Å, a large value compared to the extent of the channel, so as

to minimize boundary effects. This radial extent is further validated by the fact that the potentials of

mean force typical in this study present an effectively insurmountable barrier at a radius much smaller

than 2000 Å.

For the purpose of simulating diffusion in this system, we employ a discretization of the plane

into a collection of N non-overlapping regions A = {ak ⊂ S : k = 1,2, . . . ,N,
�

k ak = S , ai ∩a j =

/0 ∀ i �= j} that form a grid over the system. This discretization involves defining on the plane a set

of random positions W = {wk : k = 1,2, . . . ,N}, called cell centers, and subsequently calculating the

Voronoi tessellation (r ∈ ak ⇐⇒| r−wk|< |r−wi| ∀ i �= k) induced by W . For the latter purpose,

the DelaunayTri() and VoronoiDiagram() classes of commands were applied to W in Matlab (6).

Prior to Voronoi tessellation, W is initialized as follows. First, the positions of the cell centers are

randomly assigned on S . A topology-preserving algorithm (7) is then used to adapt the positions of

the cell centers such that they follow a spatial distribution function ρ(r), which is pre-set to allocate

cell center densities according to the local level of detail required to describe different regions in the

system. For example, a higher level of detail is required for regions near the complicated surface

of the channel than for the membrane far away from the channel. The algorithm used efficiently

reproduces the distribution obtained by the k-means clustering algorithm (7). In particular, the adaptive

distribution approaches one that induces a centroidal Voronoi tessellation (CVT) (8). Heuristically,

since a spatial variable X(r) at position r ∈ ak will be approximated as its evaluation X(wk) at the

corresponding cell center, a CVT is advantageous because the cell center wk would then coincide with

the centroid of ak.
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Figure S14: Voronoi tessellation of membrane plane segment, enlarged to show SecY cross-section (in blue). The density
of cells is higher within the channel so as to describe diffusive behavior inside the channel in greater detail.

The geometry of the SecY channel is modeled as a reflective boundary by the following means:

From the PDB file of the laterally open SecY channel, a 2D projection of the protein atoms on a

membrane-parallel plane was taken. This projection was then overlaid on the Voronoi tessellation, and

those cells whose centers fell within a certain radius of any atom were identified as reflective. This

radius is given by the CHARMM van der Waal’s radius of the atom plus 3 Å, which approximates the

closest distance of approach of the nascent helix center to the channel walls.

The time evolution of the probability pi(t) of finding the nascent helix within cell ai is calculated

using two independent methods. The first method involves solving the discretized Smoluchowski

equation on the grid. The second method, in which the Boltzmann distribution is calculated at each
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time step, is validated by comparison with the more precise, but also more computationally expensive,

Smoluchowski method.

Smoluchowski model

Given the centers wk and the induced Voronoi tessellation A, a rate matrix R was constructed with

elements Ri j giving the rate of transfer from cell j to cell i. Ri j is calculated from the Smoluchowski

equation

∂t p(r, t) = ∇ ·De
−βU(r,t)∇e

βU(r,t)
p(r, t) (5)

where D is the diffusion coefficient, β = 1/kT , and U(r, t) is the time-dependent potential of mean

force as described in section Figure 13.

Integrating the Smoluchowski equation over the region ai gives

�

ai

∂t p(r, t)dr =
�

ai

∇ ·De
−βU(r,t)∇e

βU(r,t)
p(r, t)dr (6)

=
�

∂ai

De
−βU(r,t)n(r) ·∇e

βU(r,t)
p(r, t)dr (7)

=
�

∂ai

De
−βU(r,t)∂e

βU(r,t)
p(r, t)

∂n(r)
dr (8)

where n(r) is the unit normal vector on the boundary of ai.

Finally, the above expression is discretized by converting integrals into sums and derivatives into

differences as follows:

Vi ṗi(t) = ∑
j

De
−βUi j(t)

e
βUj(t)p j(t)− e

βUi(t)pi(t)

ni j

·Li j (9)

where Vi is the area of ai, j indexes the immediate neighbors of ai, Ui is the potential of mean force in

ai, Ui j is the potential of mean force at the midpoint of the line between wi and w j, ni j is the distance

between wi and w j, and Li j is the length of the interface between ai and a j.
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Thus, it can be inferred from the above expression that the transition rate from a j to ai is given by

Ri j = D
e

β (Ui−Uj)/2
Li j

Vini j

(10)

where we have further approximated Ui j = (Ui +Uj)/2. This approximation proves advantageous in

that the resulting rate matrix obeys detailed balance.

With the rate matrix R defined, we can now obtain the solution of the equation

ṗ = Rp. (11)

Using the Matlab eigen-solving command eig(), we calculate the eigenvalues λi and corresponding

eigenvectors νi, where i = 1,2, . . . ,N. Finally, the probability flowing into cell ak at time t +τ is given

by p(t + τ) = ∑l Alνl exp(λlτ) where Al are calculated by setting the initial condition p0 = p(t).

The simulation runs on two distinct time steps δ t and ∆t > δ t. The time-dependent potential is

updated every ∆t steps, and R is re-calculated. On the other hand, p is evaluated every δ t.

Validation of the Smoluchowski model

We validate our model against the analytic solution for free diffusion in two dimensions. We solve

the discretized Smoluchowski equation as described above, using a uniform potential and reflective

boundary conditions at a large radius of 2000 Å so as to approximate diffusive behavior in an infinite

plane. With the particle initially at the origin, the probability, ptheory, takes the form of a spreading

Gaussian distribution centered on the origin, i.e.,

ptheory(r, t) = (4πDt)−1 exp(−r
2/4Dt). (12)
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Figure S15: Results for free diffusion in two dimensions with system radius 2000 Å; 5000 Voronoi cells in the distribution
with a density of ρ(r|r < 20 Å) = constant, ρ(r|r > 20 Å) ∝ (r − 15 Å)−1; and a diffusion constant D = 250 Å2/µs.
Proportion of particles outside radius rcutoff were calculated for rcutoff = 10 Å, 15 Å, and 20 Å.

Hence, the probability of finding the particle outside a radius rcutoff is

Ptheory(t | r > rcutoff) = 1−
�

rcutoff

0
dr(2πr)ptheory(r, t) (13)

= 1−
�

rcutoff

0
dr(2πr)(4πDt)−1 exp(−r

2/4Dt) (14)

= exp(−r
2
cutoff/4Dt) (15)

The results from the Smoluchowski model for typical values of rcutoff used in this study agree

well with theory (see Figure 15). However, the simulations used in this study are not based on the

Smoluchowski model due to its computationally expensive calculations. Instead, data generated by

the Smoluchowski model was used to test the validity of the Boltzmann model, described below, for

the spatial and temporal scales typical of the simulations used here.
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Boltzmann Model

The Boltzmann model assumes that the system reaches equilibrium within one time step δ t. We justify

this assumption by comparing the Smoluchowski and Boltzmann results of an example simulation

using a linear radial potential of mean force superimposed on a time-dependent harmonic potential,

typical of those used in this study. From Figure 16, it is apparent that the Smoluchowski model

behavior closely agrees with the results of the Boltzmann model.

Figure S16: Results of Smoluchowski and Boltzmann simulations in a system of radius 2000 Å centered on the pore
axis of the SecY channel. The parameters used include a time step δ t = 2 s, a PMF update time step ∆t = 20 s for
the Smoluchowski model, and a diffusion coefficient D = 250 Å2/µs. The potential of mean force used is U(r, t) =
(0.1 kcal·mol−1·Å−1)r+(0.0619 kcal·s·mol−1·Å−2)r2/t. The graph displays the proportion of particles found outside ra-
dius rcutoff = 15 Å.

At every timestep δ t in the Boltzmann model, the potential of mean force is updated and the

corresponding Boltzmann distribution is calculated:

p(r, t) = K(t)exp(−βU(r, t)) (16)

where K
−1(t) =

�
S exp(−βU(r, t))dr is a normalizing constant.

We tested the sensitivity of the results from the Boltzmann model to the Voronoi grid distribution
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used by running a representative case (rcutoff = 15 Å, translation rate=1 res/s, linear PMF slope=-

0.2 kcal/mol·Å, channel opening=15 Å) on different grid distributions. As one can see from Fig-

ure 17A, the results are robust to changes in grid density gradients. In Figure 17B, the results begin

to diverge noticeably when the total cell count falls below 1000, which is much smaller than the 5000

used in production runs. These tests demonstrate that the grid tessellation used for production runs are

more than adequate to produce converged results.

Figure S17: (A) Comparison of results using grid densities of the form ρ(r|r < R) = ρ0, ρ(r|r > R) ∝ (r− (3/4)R)−1

for R=15 Å, 20 Å, 25 Å while keeping ρ0 constant. This comparison tests for sensitivity to grid density gradients. (B)
Comparison of results using R=20 Å and varying numbers of cells N. This comparison determines the threshold resolution
beyond which results begin to diverge.
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