7		let	ô	Het			ô	В			D			F	
•		T2F	, T2	, T2			, T2	-						- c	dx2
		ŔŎ,	Het	Het	ô	ô	Het			~			_	105000	A A
		3 T1	4 T 1	5 T1	0 0	1 Z	8 T1	4 60	2 51 61 #16 #16	55	ъ /			1 and in	9
		#2	#2	#2;	#2(#2	#28	6 # 1 6 # 2 7 # 9 7 # 0	臣 第 5 5 5 5 5 5 5 5 5 5 5 5 5	et O A R	Ŭ L				DKO#26
- 1	2kb -	-	-	-		-	_			2 후 출 문	≥	173 1	10 44	19.2	2312 A
+	9kb -		1000	100			+	910bp			Tet1			TAL	OT 2U at #E
		Tet	1 <i>Afl</i> I	l 3'e	ext.			- 563bp —						C USERICIN	CTZHEI#32
								818p – 🔤 🔤 🔤]		Tet2 KO	\sim	/	CAR S	S . 30 .
+ 1	2kb -							192hp -			Tet2 WT	HCpG and I	CpG Only		T1KO#17
						-	1	4020p			1012 111	5hmC only			1110#17
_	9KD														
		Tet	2 Sca	al 5'	ext.							CpG and 5h	mC positive		
5	01 DE (Gene	s in D	ко	A_5	5_P20	97578	Ccdc46	ENSMUST0000030257	Galntl1	Hus1	Mks1	Osta	Rn18s	Tet1
0	610010	012F	Rik		A_5	5_P20	97840	Ccdc59	ENSMUST0000036360	Gata3	lfitm1	Mlycd	Padi2	Rnf128	Tet2
1	<u>190002</u> 600014	H23F	<u>Rik</u> Zik		A 5	5 P21	06145 21992	Ccdc61	ENSMUS100000038002 ENSMUST00000048122	Gbe1 Gcat	11172 11111	Mmgt2 Mmp3	Patl2 Phk	RpI10 RpI10I	lex14 Timm44
1	700007	G11F	Rik		A 5	5 P21	40076	Cd302	ENSMUST00000056053	Gcdh	Inpp5d	Mon1b	Pcsk9	Rpl39l	Tip3
1	700013	H16F	Rik		A 5	5 P21	42668	Cd55	ENSMUST0000065159	Gla	lqca	Mosc2	Pdcl2	Rprl2	Tmcc3
1	700016	M24F	Rik		A 5	5 P21	45237	Cd79b	ENSMUST0000065533	Glod5	Itga9	Mov10l1	Pde9a	Rtn4rl1	Tmem132a
1	700018	B08F	Rik		A_5	5_P21	65394	Celsr3	ENSMUST00000075377	Gm10439	Kcnip2	Mpzl2	Pga5	S100a6	Tmem20
1	700019	B21F	<u>Rik</u>		A_5	5 P21	78299	Chst1	ENSMUST00000078451	Gm10487	Kcnj12	Mreg	Pgbd5	S100z	Tmem35
1	700021				A 5	5 P21	79448 83168	Cited2 Cride3	ENSMUST0000085290	Gm10499 Gm10536	KCt015	Mtan7d2	PgK2 Pinox	Sall2 Scd1	Tmem450
1	700121	C10F	Rik		A 6	6 P12	6435	Cngb3	ENSMUST00000098610	Gm10729	Kif5b	Mthfd2l	Pkd2	Scml2	Tnfaip8l1
1	810037	117Ri	ik		A23	0065H	16Rik	Cnp	ENSMUST0000099164	Gm11545	Kihi9	Myh3	Plac8	Scpep1	Tnfrsf1a
1	810055	G02F	Rik		A43	0104N	18Rik	CO807821	ENSMUST00000100797	Gm12886	Klk8	Myl3	Plbd1	Sdcbp2	Tnip1
2	310043	J07R	lik		A73	0011L0)1Rik	Colec12	ENSMUST00000101048	Gm13043	Krtdap	Myl6b	Plekhg2	Sema5b	Tnnc2
2	610002	M06F	Rik		AA9	86860		Comt	ENSMUST00000103452	Gm13109	Ktn1	Myo15	Pls3	Sertad4	Tnni3
2	610018 610010	GU3F	KIK Nik		Abc	a/ h1h		Cotil	ENSMUS100000109511	Gm13229 Gm13880	Lama3	My01b Naaa	Pnck Pnp2	Strp4 Scpl1	Trappo6a
2	810417	H13F	Rik		Abc	b10		Cthrc1	ENSMUST00000112726	Gm15085	Lat	NAP005004-001	Poglut1	Sirpa	Trh
2	900062	L11R	ik		Aca	р3		Ctsl	ENSMUST00000114452	Gm2012	Ldhb	NAP114425-1	Pop1	Six4	Trmt2b
4	930422	G04F	Rik		Actr	13		Cxcr7	ENSMUST00000115014	Gm3925	Lgi3	Ncrna00086	Ppp1r1a	Six6	Tsen15
4	930422	N03F	Rik		Afap	0112		Cyp2s1	ENSMUST00000128996	Gm4371	Lnpep	Ndrg2	Ppp1r3a	Slc13a5	Ttc23
4	930429	F11R	lik		Agp	at9		Cyp39a1	ENSMUST00000137941	Gm5640	Lnx2	Ndrg4	Pramef12	Slc22a17	Ttc39c
4	<u>930502</u> 930550	E18F	KIK Pik		AKta	hd2			ENSMUS100000140371 ENSMUST00000140653	Gm5801 Gm715	LOC100046091	Neati	Pramet17 Pramel6	SIC2782	Ttyp3
4	933402	E13F	Rik		Ank			D4Bwg0951e	ENSMUST00000145887	Gm7676	LOC100047293	Nkx2-5	Pramel7	SIc38a5	Tuba3a
5	031425	F14R	Rik		Ank	rd35		D5Ertd579e	ENSMUST00000146108	Gm9927	LOC100048345	Nmi	Prima1	Slc43a3	Tuba3b
5	730507	C01F	Rik		Ank	rd37		D630023F18Rik	Eomes	Gna14	LOC236598	Nnat	Pmp	Slc46a1	Tusc1
5	730508	B09F	Rik		Aoc	3		Dazl	Ephb3	Gng3	Lonrf3	NP063432	Prr11	Slc5a4b	Ubc
6	030429	G01F	Rik		Apo	bec2		Dbp	Ephx4	Gnptg	Lrrn4	Npl	Prrg3	SIc6a15	UbqIn2
6	330576 530401		kik Rik		Arl5	o ic		Dobid I Ddy4	Eluli Fsy1	Goll 1a Gnr19	LSU	Nppp Nrsn1	Ptrin 14	Sic6a9	Unc5h
9	430069	107Ri	ik		Arrd	lc2		Ddx43	EU234054	Gpx2	Macrod1	Nsa2	Pura	Slc9a3r1	Ushbp1
9	530083	012F	Rik		As3	mt		Dennd4b	Evpl	Grb14	Mael	Nubp2	Pzp	SIx	Usp44
A	_55_P1	19527	768		Ash	21		Dgke	Exosc2	Grik4	Mageb4	Nxt2	Qprt	Sox11	Vamp4
Α	55 P1	19703	324		Atg4	4c		Diap2	Eya2	Gspt2	Malat1	Oas1a	Rab3a	Sox3	Vmn1r236
A	<u>55</u> P1	19876	615 		Atp8	3a1		Dkk3	F2r	H2-M3	Man2b1	Oas1f	Rab3il1	Spink3	Vrtn
Å	55 P2	20005	54		Auri	61		Dhance	Fabp3	H2atx Hous4	Mangak15	Oat	Rapget3	StK39 Strag	Wdr27
Ā	55 P2	20049	901		BB2	271588		Dpp4	Fam64a	Hcfc1r1	Marcks	Obsl1	Rasl10a	Sulf1	Wfdc10
A	55 P2	20056	672		Bex	1		Dpp7	Fam71b	Hes5	Mark1	Odf3b	Rcn1	Syt11	Wt1
Α	_55_P2	20173	869		Bin1	1		Dpysl2	Fat2	Hesx1	Marveld2	Olfr1026	Rec8	Syt5	Xlr3b
Α	55 P2	20243	891		BMC	022387		Dpysl4	Fbn1	Hey1	Matn2	Olfr1329	Reg2	Tab1	XIr4a
A	<u>55 P2</u>	20280	069		Bmp	06		Dsc3	Fbxo27	Hist3h2ba	Mbnl3	Olfr1346	Rell2	Taf7I	Xir4b
Å	55 P2	20317	30		BY3	00735	10.Pik	DIX1 Effe2	ryio Ekbo6	nmga2 Hmba1	Mest	Olfr399	rketsat Rffm1	TC1574996	∠ap/U Zfp275
Ā	55 P2	20820)25		Cah	les1	TOTAIN	Ear1	Fmr1nb	Hook2	Mfap5	Olfr485	Rhobtb3	TC1678291	Zfp467
A	_55_P2	20852	240		Car	12		Emid2	Frat1	Hrk	Miip	Olfr691	Rhox13	TC1700876	Zfp661
A	55 P2	20868	335		Cbx	2		Enah	Gad1	Hscb	Mirg	Osr2	Rhox2h	TC1715318	Zfp869
F					Cbx	4		ENSMUST0000018918		Hsd17b6			Rhox5	Terf1	Zmat4
					Ccd	c112		ENSMUST0000022049		Hspb11			Ripk3	Tesc	Zxdb

Figure S1: List of differentially expressed genes in Tet1/Tet2 double mutant ESCs (relates to Figure 1).

(A&B) Southern blot and PCR to confirm the genotypes of derived ESCs. (C) 501 genes deregulated (1.5 folds or more). 175 down regulated genes are shown in green and 326 up regulated genes are shown in red. (D) Venn diagram showing the fraction of CpG rich and TSS 5hmC positive genes among all deregulated genes in DKO ESCs. (E) Trophoblast-like cells in teratoma sections stain positive for trophoblast marker Cdx2.

Α

DHet (M) X DHet (F) [58 litters, 456 pups, Avg litter size=7.8]

Genotypes (% Expected)	T1+/+ T2+/+ (6.25%)	T1+/+ T2–/– (6.25%)	T1+/+ T2+/– (12.5%)	T1+/– T2+/+ (12.5%)	T1+/– T2+/– (25%)	T1+/ T2/ (12.5%)	T1–/– T2+/– (12.5%)	T1–/– T2+/+ (6.25%)	T1–/– T2–/– (6.25%)
No. of alive pups(%)	32 (7%)	35 (7.7%)	53 (11.6%)	59 (13%)	129 (28.4%)	67 (14.7%)	45 (9.9%)	26 (5.7%)	10 (2.2%)
No. of dead pups (%)	0 (0%)	0 (0%)	0 (0%)	1 (0.2%)	0 (0%)	2 (0.4%)	3 (0.7%)	3 (0.7%)	9 (2%)

B_{DKO} (M) X DHet (F) [25 litters, 103 alive pups, Avg litter size=4.1]

Genotypes (% Expected)	T1+/– T2+/– (25%)	T1+/– T2–/– (25%)	T1–/– T2+/– (25%)	T1–/– T2–/– (25%)
No. of alive pups(%)	37 (36.3%)	40 (39.2%)	16 (15.7%)	10 (9.8%)
No. of dead pups (%)	1 (1%)	1 (1%)	6 (5.9%)	7 (6.9%)

C T1Het, T2KO (M) X DHet (F) [20 litters, 108 alive pups, Avg litter size = 5.4]

Genotypes (% Expected)	T1+/+ T2+/- (12.5%)	T1+/+ T2–/– (12.5%)	T1+/– T2+/– (25%)	T1+/- T2-/- (25%)	T1–/– T2+/– (12.5%)	T1–/– T2–/– (12.5%)
No. of alive pups(%)	15 (14%)	14 (13.1%)	32 (29.9%)	32 (29.9%)	11 (10.3%)	4 (3.7%)
No. of dead pups (%)	0 (0%)	0 (0%)	0 (0%)	1 (0.9%)	1 (0.9%)	0 (0%)

			Н				
Hematopoietic Analysis:	wт	DKO	Serum Analysis	WT (M)	DKO (M)	WT (F)	D
СВС			Liver Function				
WBC (mm3)	5.2	6.94	Alanine aminotransferase (ALT) IU/L	4	34	56	
RBC (10^6/mm3)	9.82	9.53	Aspartate aminotransferase (AST) IU/L	161	204	202	
HCT (%)	40.7	44.6	Gamma-glutamyl transferase (GGT) IU/L	1	1	3	
Hgb (g/dl)	14.4	14.9	Albumin g/dL	2.5	2.3	1.9	
Plat. Count (/mm3)	815	823	Globulin g/dL	3.2	2.3	2.3	
Retic Count (%)	_	_	Total Bilirubin mg/dL	0.1	0.1	0	
RBC Indices MCV (fl)	41 4	46.8	Creating mg/dL	5. <i>1</i> 0.1	4.0	4.2	
	35 /	33.4	Cholesterol mg/dl	142	103	116	
	55.4	55.4	Glucose mg/dL	164	345	318	
Differential			Kidnev function				
Neutrophils (%)	12	8	BUN mg/dL	26	28	35	
Bands (young neutrophils) (%)	4	-	Muscle/beart function				
Lymphocytes (%)	84	93	Creatine kinase (CK) IU/I	1687	3588	2864	
Monocytes (%)	_	_	Minerals	1001	0000	2001	
Eosinophiles (%)	_	_	Calcium (mg/dL)	9.2	9.3	9.4	
Basophiles (%)	_	_	Phosphorus (mg/dL)	9	8.6	13.3	
			Bicarbonate (mEq/L)	18	12	4	
		Detential	Others				
Others	_	Ivmphoma	Amylase	1539	1324	1552	
Galero	_	cells present	Lipase	116	113	138	
		esho procont	Hemolysis Index	N	+	N	

Figure S2: Breeding summary and blood analysis of Tet1/Tet2 double knockout mice. (relates to Figure 3) (A-C) Summary of breeding for generating DKO mice from indicated crosses. (D &E) Genotype confirmation of mice by Southern blot and PCR. (F) Gross images of various organs of formalin fixed control and DKO neonates. (G&H) Blood analysis of adult 2-month-old DKO and wild type mice M=Male, F=Female, N=Normal.

Figure S3: Presence of 5hmC in Tet1/Tet2 double knockout embryos and neonates (relates to Figure 6) (A) Quantification of 5hmC and 5mC by mass spectrometry in embryos and dead pups. (B) Immunohistochemistry for 5hmC in sections of Ctrl (Dhet) and DKO E15.5 embryo. Nuclei are counter stained with Hematoxylin.

(04	creased in DKO progeny
(94 genes: 36 mater	paternally expressed, 56 nally expressed)
Airn	Meg3
AK029869	Mest
AK050713	Mkrn1-ps1
AK053394	Mkrn3
Ampd3	Mst1r
Apeg3	Nap1l4
Arts	Nespas
A504 Atn10a	Oshni5
Axi	Pde10a
Begain	Pde4d
Blcap	Peg10
Calcr	Peg13
Casd1	Peg3
Cd81	Phactr2
Cdkn1c	Phf17
Cmah	Plagi1
Cntn3	Pon2
Cong2	Pon1r9a
Copyz Don	Onct
Ddc	Rasorf1
Dhcr7	Rian
Dlk1	Rti1
Drd1a	Scin
Fbxo40	Sfmbt2
Fthl17	Sgce
Gatm	SIc22a18
Gnas	Sic22a2
Gpr1	Sic22a3
Grb10	SIC38a4
	TbC1012
Htr2a	Tnfrsf23
Htra3	Trappc9
laf2	Tspan32
qf2as	Tssc4
lgf2r	Ube3a
Impact	Usp29
lpw	Wt1
Kcnk9	Xir3b
Kcnq1	Xir4b
Kcnq1ot1	Xir4c
Klf14	Zdbf2
Kirb1f	Zfp64
Magel2	Zim1
VICTSZ	Zrsri
Methylation un	changed in DKO progen
l (≞o genes. o µ	ernally expressed)
12 mate	MBII-343
12 mate AF357341	
12 mate AF357341 AF357425	MBII-426
12 mate AF357341 AF357425 AF357426	MBII-426 Nap115
12 mate AF357341 AF357425 AF357426 AF357428	MBII-426 Nap1I5 Ndn
12 mate AF357341 AF357425 AF357426 AF357428 Ascl2	MBII-426 Nap1I5 Ndn Peg12
12 mate AF357341 AF357425 AF357426 AF357428 Ascl2 Cobl	MBII-426 Nap115 Ndn Peg12 PhIda2
12 mate AF357341 AF357425 AF357426 AF357428 Ascl2 Cobl Dio3	MBII-426 Nap115 Ndn Peg12 PhIda2 Snrpn
12 mate AF357341 AF357425 AF357426 AF357428 Ascl2 Cobl Dio3 Dlx5	MBII-426 Nap115 Ndn Peg12 Philda2 Snrpn Snurf

Ins2

Zim3

Figure S4. DKO tissues show increased 5mC levels at imprinting loci (relates to Figure 6) (A) MeDIP-seq profile of the indicated mouse imprinted loci in newborn wt pup#7 (progeny of WT male x Dhet female), DKO pup#15 (progeny of DKO male x Dhet female), Dhet#34 (progeny of DKO male x WT female) and Dhet#35 (progeny of WT male x DKO female). Enrichments are indicated as normalized read counts per CpG. UCSC transcription units are indicated on top in dark blue. Genomic features are viewed as custom tracks in the UCSC genome browser (Dreszer et al., 2012). (B) MeDIP-seq profile of the distal part of the prox6 imprinting region of mouse chromosome 6 in the same samples as described in A. Enrichments are indicated as normalized read counts per CpG. UCSC transcription tracks in the UCSC genome browser (Dreszer et al., 2012). (C) List of analyzed imprinted gene loci in mouse genome for increased methylation. The methylation status of genes shown in red are confirmed by sodium bisulfite sequencing in this study as shown in table S1.

Figure S5: 5hmC quantification and bisulfite sequencing of selected imprinted genes in WT and DKO sperm DNA (relates to Figure 5) (A) Global 5hmC and 5mC levels in sperm DNA quantified by mass spectrometry. (B) Normalized counts of RNAseq reads from different stages of spermatogenesis in GEO data set GSE35005 (published March 2012) that maps to Tet3 transcript. (C) Sections of testes stained for 5hmC. Nuclei are counter stained with hematoxylin. Note the presence of 5hmC in various cell types inside the tubules of DKO testis. Specificity of this antibody for this staining protocol has been confirmed in liver sections in figure S3. (D) Bisulfite sequencing of paternally expressed gene Peg3 and paternally imprinted gene H19 in WT and DKO sperm DNA.

Table S1: Methylation analysis of selected imprinted genes by sodium bisulfite sequencing, relates to figure 7 and table 1.

Table S1A	Maternally expressed					
Sample	Parents	Genotype	Phenotype	% Mest Methylation	% Peg3 Methylation	% H19 Methylation
Embryo#174	DKO male X Dhet female	Dhet	Normal	97	9	65
Embryo#172	DKO male X Dhet female	DKO	Normal	50	63	37
Embryo#171	DKO male X Dhet female	DKO	Very small	58	7	_
Embryo#178	DKO male X Dhet female	DKO	Slightly large	49	1.3	_
Embryo#192	WT male X WT female	WT	Normal Viable	36	1.3	36
Pup#28	DKO male X Dhet female	T1KO,T2Het	Dead P1	76	19	73
Pup#8	DKO male X Dhet female	T1KO,T2Het	Viable and Small	70	12	48
Pup#34	DKO male X WT female	Dhet	Viable	44	55	-
Pup#15	DKO male X Dhet female	DKO	Dead P3	56	13	-
Pup#29	DKO male X Dhet female	T1KO,T2Het	Dead P1	56	10	_
Pup#25	DKO male X Dhet female	DKO	Dead P1	54	21	_
Pup#16	DKO male X Dhet female	DKO	Dead P1	52	8	-
Pup#4	DKO male X Dhet female	DKO	Dead P1	25	18	-
Pup#2182	WT male X Dhet female	T1WT,T2Het	Viable	57	17	44
Adult#2286	DKO male X WT female	Dhet	Viable	57	14	-
Adult#2287	DKO male X WT female	Dhet	Viable	56	11	-
Adult#2285	DKO male X WT female	Dhet	Viable	42	10	_
Adult#2284	DKO male X WT female	Dhet	Viable	29	12	-
Adult#2288	WT male X WT female	WT	Viable	43	8	-
Sperm	2month old Male (from DhetXDhet)	DKO	Viable	10.5	1.1	89
Sperm	2month old Male (from DhetXDhet)	WT	Viable	1.2	1.1	94

Table S1B: Analysis of maternally expressed genes H19 and lgf2r

Table S1B	Paternally expressed					
Sample	Parents	Genotype	Phenotype	% H19 Methylation	% lgf2r Methylation	% Mest Methylation
Pup#17	WT male X DKO female	Dhet	Dead P1 or P2.	85	_	75
Pup#41	WT male X DKO female	Dhet	Dead P1 or P2.	82	58	60
Pup#42	WT male X DKO female	Dhet	Dead P1 or P2.	77	81	83
Pup#46	WT male X DKO female	Dhet	Dead P1 or P2.	75	50	_
Pup#35	WT male X DKO female	Dhet	Dead P1 or P2.	72	_	_
Pup#44	WT male X DKO female	Dhet	Dead P1 or P2.	70	48	57
Pup#40	WT male X DKO female	Dhet	Dead P1 or P2.	68	65	_
Pup#43	WT male X DKO female	Dhet	Dead P1 or P2.	68	78	78
Pup#39	WT male X DKO female	Dhet	Dead P1 or P2.	60	47	_
Pup#45	WT male X DKO female	Dhet	Dead P1 or P2.	54	44	_
Adult#2310	WT male X DKO female	Dhet	Viable	70	38	_
Adult#2309	WT male X DKO female	Dhet	Viable	66	39	_
Adult#2311	WT male X DKO female	Dhet	Viable	52	40	_
Adult#2288	WT male X WT female	WT	Viable	27	39	45
Pup#34	DKO male X WT female	Dhet	Viable	55	-	_
Sperm	2month old Male (from DhetXDhet)	DKO	Viable	89	_	10.5
Sperm	2month old Male (from DhetXDhet)	WT	Viable	94	-	1.2

16-24 clones were analyzed for each sample.

Controls for each category of samples are shown in blue. - indicates not tested.

Embryos used in this analysis were harvested at E13.5 Aberrantly methylated samples (>65%) are show in red. Table S2: Classification of deregulated genes in DKO mouse ESCs (relates to Figure 1).

Deregulated genes in DKO ESCs are classified into CpG containing genes, 5hmC containing genes and bivalent gene categories.

Supplemental Experimental Procedures

Super-ovulation of mice and Derivation of ESCs

 $Tet1^{+/-}|Tet2^{+/-}$ females were primed with 5 IU of pregnant mare serum gonadotrophin (PMSG) (IP injection) and 45hr later administered 5 IU of human chorionic gonadotropin (HCG) (IP injection) and mated with DKO or double heterozygote males. Next day, plugged females were sacrificed and fertilized eggs were harvested from oviduct and cultured in KSOM for three days. Developed E3.5 blastocysts were used to derive ES cells as explained before (Markoulaki et al., 2008). Briefly, blastocysts were treated with acid Tyrode's solution (Sigma Cat# T-1788) to remove zona and immediately washed and cultured in ES cell derivation medium containing MEK inhibitor on gamma-irradiated mouse feeders. Six days later the cultures were passaged and expanded on feeders using regular ESCs media containing LIF. Genotyping was performed by Southern blot as described before (Dawlaty et al., 2011; Li et al., 2011) and PCR using primers listed below:

Tet1 For	5'- AACTGATTCCCTTCGTGCAG -3'
Tet1 Rev	5'- TTAAAGCATGGGTGGGAGTC -3'
Tet2WT For	5'- CCATGCAGGGAAGACAAGAGTAGC -3'
Tet2WT Rev	5'- ATCTTGTTTGGATGGAGCCCAGAG -3'
Tet2KO For	5'- CCCATTGTTCCTTTGCTCCATGCA-3'
Tet2KO Rev	5'- CGTCGCCGTCCAGCTCGACCAG -3'
SRY For	5'- GGAATGAATGTGTTCCATGTCG -3'
SRY Rev	5'- CTCATGTAGACCAAGATGACC -3'

Mouse colony generation and blood analysis

Additional breeding schemes to those described in the main text involved crossing male DKOs or $Tet1^{-/-}|Tet2^{+/-}|Tet2^{-/-}|Te$

for genotyping. Mice were weaned and weighed at 3-4 weeks of age. Genotyping was performed using tail DNA and the same primer used for genotyping ESCs. For blood analyses, 400 µl of blood was collected retro-orbitally from 2-month old mice and analyzed at the Massachusetts Institute of Technology Department of Comparative Medicine Diagnostic and Comparative Pathology lab.

Teratoma assay

ESCs $(1x10^6)$ were injected subcutaneously into SCID mice (Taconic). Mice were euthanized 3 weeks after injection and tumors were collected and fixed in formalin for two days followed by imbedding in paraffin, sectioning and staining with hematoxylin and eosin for histological analysis following standard procedures.

DNA extraction and quantification of 5mC and 5hmC

Following a published procedure (Le et al., 2011), pelleted ESCs and mouse tissues were incubated overnight in 100mM Tris-HCl containing 5mM EDTA, 0.2% SDS, 200 mM NaCl and 400 μ g/ml proteinase K, and DNA was then isolated using a standard protocol with phenol:chloroform:isoamyl alcohol and Phase Lock GelTM separation tubes (5-PRIME). The DNA content of the final samples was then determined by the optical density at 260 nm using a NanoDrop spectrophotometer. Two μ g of DNA (except for sperm DNA when 200ng was used) was digested (37 °C, >1 hr) with a cocktail of nuclease enzymes (DNA Degradase PlusTM, Zymo Research; 2.5 μ l 10X DNA Degradase Reaction buffer, 1 μ l DNA Degradase Plus and water, total volume of 25 μ l). Aqueous formic acid was then added (25 μ l, 0.1% v/v; final concentration 40 ng digested DNA/ μ l), and aliquots of the mixture were injected onto a reverse phase UPLC column (Eclipse C18 2.1 x 50 mm, 1.8 μ particle size, Agilent) equilibrated with buffer A (0.1% aqueous formic acid) and eluted (200 μ L/min) with an increasing

concentration of buffer B (methanol: min/%B; 0/0, 2/0, 4/5, 6/5, 8/0, 10/0). The injection volume for each sample was adjusted such that the dC peak area was at least 1 million area counts (Agilent MassHunter Quantitative Analysis, version B.04.00), which is equivalent to injection of approximately 100 ng of digested DNA. The effluent from the column was directed to an electrospray ion source (Agilent Jet Stream) connected to a triple quadrupole mass spectrometer (Agilent 6460 QQQ) operating in the positive ion multiple reaction monitoring mode using previously optimized conditions, and the intensity of specific $MH^+ \rightarrow$ fragment ion transitions were recorded (5mdC m/z 242.1 \rightarrow 126.1, 5hmdC 258.1 \rightarrow 142.1 and dC m/z 228.1 \rightarrow 112.1). Peak areas for dC, 5mdC and 5hmdC were measured using instrument manufacturer-supplied software (Agilent Mass Hunter Quantitative Analysis version B.04.00/build 4.0.225.19). Three 897bp DNA standards, each homogenous for either unmodified 2'-deoxycytidine (dC), 5-methyl-2'deoxycytidine (5mdC), or 5hydroxymethyl-2'-deoxycytidine (5hmdC), were purchased (Zymo, Irvine, CA), and used to generate calibration curves. The standards had been prepared by PCR using the appropriate nucleotides and were spin-column purified by the manufacturer to obtain 50 ng/uL aqueous Tris buffered solutions. By MRM criteria these standards were all more than 99.6% pure. With each batch of experimental samples a series of standard samples was simultaneously prepared using the DNA standards. The standard samples contained increasing amounts of 5mdC and 5hmdC in the presence of the same amount of dC (0, 0.1, 1, 5 and 10% for 5mdC and 0, 0.1, 0.5, 1, and 2% for 5hmdC). Calibration curves were constructed for 5mdC and 5hmdC from the data obtained from the standard samples (measured 5mdC or 5hmdC peak area/measured dC + 5mdC + 5hmdC peak areas) plotted against actual percentage of either 5mdC or 5hmdC in the samples. The measured percentage of 5mdC and 5hmdC in each experimental sample was then converted to actual percentage 5mdC and 5hmdC by interpolation from the calibration curves. This provided a correction for any differences that might

exist in the molar MRM responses of the various nucleosides. With this assay a sample with 0.1% 5hmdC can be reliably detected following injection of the hydrolysis mixture from 50 ng of digested DNA. The DKO samples reported here did not have a detectable peak for 5hmdC, even following injection of the hydrolysis mixture from 400 ng of digested DNA.

Immunohistochemistry

For immunohistochemistry of embryos sections with DAB staining, E15.5 embryos were fixed in formalin for 24 hrs, paraffin embedded, sectioned and stained with anti 5hmC (Active Motif 1:2000) overnight at 4C as reported before (Yang et al., 2012). For immunohistochemistry of gonads with fluorescence staining, E13.5 gonads were fixed in 4% paraformaldehyde overnight and paraffin embedded. 5 micron longitudinal sections were prepared, denatured with HCl and stained with anti-5hmC, anti-5mC and anti-Mvh antibodies as described before (Gill et al., 2011). Indirect immunofluorescence for Oct4 and Nanog in ESCs were performed as explained before (Dawlaty et al., 2011). Description of antibodies used are listed below:

Anti 5hmC (rabbit)	Active Motif (#39769)	1:2500 for IHC
Anti 5mC (mouse)	Active Motif (#39649)	1:1000 for IHC
Anti Mvh (goat)	R&D Systems	1:250 for IHC
Anti Cdx2 (mouse)	BioGenex	Ready-to-use mix
Anti Oct4 (mouse)	Santa Cruz (Clone C10)	1:100 for IHC
Anti Nanog (rabbit)	Bethyl Laboratories	1:250 for IHC

RNA extraction, cDNA synthesis and RTqPCRs

RNA was extracted from pre-plated ESCs or snap-frozen and powdered mouse tissue using Qiagen RNAeasy kit. About 1.5µg of RNA was used to synthesize cDNA (Invitrogen Superscript III kit).

Real time quantitative PCR was performed in an ABI 7900 cycler (Applied Biosystems) using primers listed below. Gene expression was normalized to Gapdh.

Tet1 For5'GCTGGATTGAAGGAACAGGA3'Tet1 Rev5'GTCTCCATGAGCTCCCTGAC3'Tet2 For5'GTCAACAGGACATGATCCAGGAG3'Tet2 Rev5'CCTGTTCCATCAGGCTTGCT3'Tet3 For5'CCGTGACTGTGCTCTCAACT3'Tet3 Rev5'TTCTATCCGGGAACTCATGG3'

Tet1 primers are from (Dawlaty et al., 2011) and Tet2 primers are from (Li et al., 2011). In addition to the primers listed above, RTqPCR primers for Nanog, Oct4 and Gapdh (Dawlaty et al., 2011), Esrrb (Buganim et al., 2012), Peg3 and Mest (Ciccone et al., 2009) were used in this study.

Southern Blotting

10 μg of DNA isolated from ESCS or mouse tail was digested overnight and ran on 0.8% agarose gel. Transfer, hybridization of blots and probe sequences were performed as described (Dawlaty et al., 2011; Li et al., 2011).

Isolation and Sodium Bisulfite treatment of sperm DNA

For the analysis of imprinted genes in sperm, sperm was collected from epididymis of 2-month-old mice and DNA was extracted as described (Tash and Bracho, 1998; Walsh and Bestor, 1999). 500ng of DNA was treated with sodium bisulfite using EpiTect kit (Qiagen) following manufacturers protocol. Bisulfite sequencing primers used were as explained before: Mest, Peg3 and H19 (Lucifero et al., 2002) and Igf2r (Hiura et al., 2006).

Mapping of sequencing data

Processing and mapping of the sequencing data were carried out using the short read analysis pipeline SHORE (Ossowski et al., 2008) and can be found in supplemental experimental procedures. Reads were trimmed by removing stretches of bases having a quality score <30 at the ends and to a maximal length of 60 bp. The trimmed reads were mapped to the mouse genome assembly mm9 using the mapping program BOWTIE (Langmead et al., 2009), allowing up to 2 mismatches per read. After the mapping duplicate reads were removed using PICARD (http://picard.sourceforge.net) and the position-wise coverage of the genome by sequencing reads was determined and visualized as custom tracks in the UCSC genome browser (Dreszer et al., 2011).

Gene expression profile analysis

RNA was extracted from mouse embryonic stem cells using Qiagen RNAeasy Kit, labeled and hybridized to Agilent Whole Mouse Genome 4 × 44K v2 microarrays (two-channel). Two independent male WT cell lines were hybridized on the same arrays as two independent male DKO cell lines. One of these comparisons was performed in replicate. Similarly two independent female WT cell lines were compared to two independent female DKO cell lines, with one comparison done in replicate. Two male T1 KO cell lines were compared to two male T2 KO cell lines in replicate. One of the T2 KO cell lines was left out of the analysis of differentially expressed genes because we discovered inconsistencies in sample preparation and quality. Data were normalized within array by loess normalization and between arrays by quantile normalization of average intensities ("Aquantile") using Bioconductor. Probes for the same gene were summarized by mean and technical replicas were combined by average. Differential expression was assayed by moderated t-test as implemented by the

limma package in Bioconductor. The cutoffs used for differential expression were |logFC| > 0.7 and p-value < 0.01.

Enrichment analysis of deregulated genes in ESCs

For enrichment analysis of CpG islands and bivalent histone marks, the differentially expressed genes in DKO ESCs were compared to lists of high CpG, intermediate CpG and low CpG enriched genes or H3K4me3, H3K4me27, H3K4me3+H3K27me27 enriched genes in mouse embryonic stem cells (Bernstein et al., 2006). For enrichment analysis of 5hmC marked genes, the differentially expressed genes in DKO ESCs were compared to a list of TSS-5hmC enriched genes in mouse embryonic stem cells (Pastor et al., 2011). The significance of enrichment of different classes of genes within the deregulated gene set compared to all expressed genes was assessed by hypergeometric test using R. Gene ontology analysis was performed using GeneGo with default parameters.

Tet3 RNAseq read count analysis

The following samples for public dataset GSE35005 (published March 2012) were downloaded from GEO: GSM860182 (SG-A_RNAseq), GSM860185 (pacSC_RNAseq), GSM860187 (eST_RNAseq). The two runs for each sample were combined. Reads that did not have at least a quality of 20 in 90% of the read were removed with fastq_quality_filter, from the FASTX-Toolkit. Reads were mapped to the mouse genome (mm9) using tophat v2.0.4, without looking for novel junctions and using a gtf file with mm9 refseq annotations downloaded from UCSC. All other tophat options were the default. We used htseq-count (http://www.huber.embl.de/users/anders/HTSeq/doc/overview.html) on the intersection-strict mode to count how many reads mapped to each gene. Gene counts were normalized using DEseq (Trapnell et al., 2009; Anders and Huber, 2010)

Supplemental References

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol *11*, R106.

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell *125*, 315–326.

Buganim, Y., Faddah, D.A., Cheng, A.W., Itskovich, E., Markoulaki, S., Ganz, K., Klemm, S.L., van Oudenaarden, A., and Jaenisch, R. (2012). Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase. Cell *150*, 1209–1222.

Ciccone, D.N., Su, H., Hevi, S., Gay, F., Lei, H., Bajko, J., Xu, G., Li, E., and Chen, T. (2009). KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature *461*, 415–418.

Dawlaty, M.M., Ganz, K., Powell, B.E., Hu, Y.-C., Markoulaki, S., Cheng, A.W., Gao, Q., Kim, J., Choi, S.-W., Page, D.C., et al. (2011). Tet1 Is Dispensable for Maintaining Pluripotency and Its Loss Is Compatible with Embryonic and Postnatal Development. Stem Cell *9*, 166–175.

Dreszer, T.R., Karolchik, D., Zweig, A.S., Hinrichs, A.S., Raney, B.J., Kuhn, R.M., Meyer, L.R., Wong, M., Sloan, C.A., Rosenbloom, K.R., et al. (2011). The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Research *40*, D918–D923.

Gill, M.E., Hu, Y.C., Lin, Y., and Page, D.C. (2011). Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci USA *108*, 7443–7448.

Hiura, H., Obata, Y., Komiyama, J., Shirai, M., and Kono, T. (2006). Oocyte growth-dependent progression of maternal imprinting in mice. Genes to Cells *11*, 353–361.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol *10*, R25.

Le, T., Kim, K.-P., Fan, G., and Faull, K.F. (2011). A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Analytical Biochemistry *412*, 203–209.

Li, Z., Cai, X., Cai, C., Wang, J., Zhang, W., Petersen, B.E., Yang, F.C., and Xu, M. (2011). Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood.

Lucifero, D., Mertineit, C., Clarke, H.J., Bestor, T.H., and Trasler, J.M. (2002). Methylation Dynamics of Imprinted Genes in Mouse Germ Cells. Genomics *79*, 530–538.

Markoulaki, S., Meissner, A., and Jaenisch, R. (2008). Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse. Methods *45*, 101–114.

Ossowski, S., Schneeberger, K., Clark, R.M., Lanz, C., Warthmann, N., and Weigel, D. (2008). Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Research *18*, 2024–2033.

Pastor, W.A., Pape, U.J., Huang, Y., Henderson, H.R., Lister, R., Ko, M., Mcloughlin, E.M., Brudno, Y., Mahapatra, S., Kapranov, P., et al. (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 1–4.

Tash, J.S., and Bracho, G.E. (1998). Identification of phosphoproteins coupled to initiation of motility in live epididymal mouse sperm. Biochem. Biophys. Res. Commun. *251*, 557–563.

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics *25*, 1105–1111.

Walsh, C.P., and Bestor, T.H. (1999). Cytosine methylation and mammalian development. Genes & Development 13, 26–34.

Yang, H., Liu, Y., Bai, F., Zhang, J.-Y., Ma, S.-H., Liu, J., Xu, Z.-D., Zhu, H.-G., Ling, Z.-Q., Ye, D., et al. (2012). Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. 1–7.