Supporting Information

A Remarkable Series of Vinblastine Analogues Displaying Enhanced Activity and an Unprecedented Tubulin Binding Steric Tolerance: C20' Urea Derivatives

Erick K. Leggans, Katharine K. Duncan, Timothy J. Barker, Kristin D. Schleicher, and Dale. L. Boger*

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

Figure S1.

Compound	IC ₅₀ (nM)			
	L1210	HCT116	HCT116/VM46	
Vinblastine (1)	6.0	6.8	600	
R = H (11)	40	7.5	4400	
Alkyl				
R = methyl (14)	5.7	0.82	530	
R = ethyl (15)	2.1	0.73	90	
R = <i>n</i> -propyl (16)	6.0	2.7	221	
R = <i>i</i> -propyl (17)	5.5	5.7	430	
R = cyclopropyl (18)	3.9	0.73	85	
R = <i>n</i> -butyl (19)	5.7	4.6	270	
R = <i>t</i> -butyl (20)	40	20	670	
R = cyclohexyl (21)	5.8	5.4	450	
R = cyclohexyl (22)	48	8.8	>1000	
Aryl				
$R = C_6 H_5 (23)$	6.5	5.1	390	
$R = p - C_6 H_4 F$ (24)	5.7	3.9	400	
$R = p - C_6 H_4 CI$ (25)	6.2	6.7	590	
$R = p - C_6 H_4 CH_3$ (26)	4.5	4.8	330	
$R = p-C_6H_4CF_3$ (27)	7.3	7.1	610	
$R = p - C_6 H_4 OCH_3$ (28)	4.9	2.0	230	
$R = m - C_6 H_4 OCH_3$ (29)	5.4	0.77	80	
$R = o-C_6H_4OCH_3$ (30)	4.8	0.77	65	
$R = CH_2C_6H_5$ (31)	6.4	7.3	740	
$R = CH_2CH_2C_6H_5$ (32)	6.3	6.3	590	
$R = CH_2(2-pyridyl)$ (33)	24	5.6	670	
R = $CH_2(2-furyl)$ (34)	5.4	5.1	530	

Figure S2.

		00 ()	00 ()		
Compound	L1210	HCT116	HCT116/VM46		
1	6.0	6.8	600		
35	6.4	6.9	470		

Figure S3.

IC₅₀ (nM)

Compound	1050 (1111)		
	L1210	HCT116	HCT116/VM46
Vinblastine (1)	6.0	6.8	600
R = H (11)	55	7.7	2000
$R = C_6 H_{11}$ (36)	30	20	520
$R = C_6 H_5 (37)$	50	40	650
$R = CH_2CH_2(4-FC_6H_4) (38)$	60	60	750

Figure S4.

IC₅₀ (nM)

Compound	L1210	HCT116	HCT116/VM46
Vinblastine (1)	6.0	6.8	600
X = NH, Y = O			
R = H (11)	40	7.5	4400
$R = CH_3 (39)$	5.9	2.8	80
$R = CH_2CH_3$ (40)	8.3	7.2	550
R = Morpholine (41)	5.3	4.5	360
R = Piperidine (42)	5.5	3.9	50
X = NH, Y = S			
R = H	55	7.7	2000
$R = CH_3 (43)$	7.8	8.7	250
X = O, Y = O			
$R = CH_3 (44)$	5700	4700	9100

Figure S5.

IC₅₀ (nM)

Compound	L1210	HCT116	HCT116/VM46
Vinblastine	6.0	6.8	600
R^1 and $R^2 = H(7)$	640	600	>10000
$R^1 = H R^2 = CH_3 (45)$	70	60	8500
R^1 and $R^2 = CH_3$ (46)	1300	980	>10000

Figure S6.

IC₅₀ (nM)

Compound	L1210	HCT116	HCT116/VM46
R = H (15)	2.1	0.73	90
R = Me (47)	570	610	8500

Figure S7.

IC₅₀ (nM)

	30 (/		
Compound	L1210	HCT116	HCT116/VM46
R = OH, X = H (1)	6.0	6.8	600
R = NHCONHEt, X = H (15)	2.1	0.73	90
R = OH, X = F (48)	0.70	0.80	80
R = NHCONHEt, X = F (49)	0.70	0.62	70