Supporting Information

Dong et al. 10.1073/pnas.1222783110

SI Materials and Methods

Bacterial Strains and Growth Conditions. Strains and plasmids are listed in Table S3. Cultures were routinely grown in LB medium containing 0.5% sodium chloride at 37 °C. The following antibiotics and chemicals were added to the medium when appropriate: ampicillin (100 μ g/mL), streptomycin (100 μ g/mL), kanamycin (50 μ g/mL), tetracycline (10 μ g/mL), chloramphenicol (2.5 μ g/mL for *Vibrio cholerae* and 25 μ g/mL for *Escherichia coli*), and arabinose (0.1%). Mutants of *V. cholerae* and gene expression vectors were constructed as previously described (1–4). Site-directed mutagenesis was performed using the QuikChange II XL Site-Directed mutagenesis kit according to the instruction of manufacturer (Agilent). All constructs were verified by sequencing.

Construction of the Saturating Transposon Library. For library construction, we used a mariner-transposon-based vector pSAMDGm (a gift from Stephen Lory, Harvard Medical School, Boston), which is modified from the vector pSAM_Bt (5). In brief, the transposon sequence carries two recognition sites of MmeI at each end, which cuts ~20 bps downstream of the recognition site. Digestion of genomic DNA (gDNA) with MmeI thus results in DNA fragments containing the transposon sequence flanked by a short piece of gDNA (~15 bp), the sequence of which indicates the insertion location on the genome (6).

Saturating transposon library was prepared by coincubating donor E. coli and recipient V. cholerae strains on LB agar for 2 h at 37 °C. Cells were suspended in 2 mL LB and plated on LB medium containing streptomycin and gentamycin to select for transconjugants. After overnight growth at 37 °C, colonies were scraped off the plates and suspended in 3 mL of PBS buffer. Genomic DNA were extracted by adding an equal volume of lysis buffer (Phenol: Chloroform with 2 mM EDTA and 1% SDS) to cell suspension. After incubating at 65 °C for 5 min and on ice for 5 min, genomic DNA was separated from cell debris by centrifugation at $21,000 \times g$ for 10 min. DNA was concentrated by precipitation with isopropanol and washed with ethanol following standard protocols. To prepare the sequencing library, purified DNA was digested with MmeI (NEB). Digested products (~1.3 Kb) were ligated to adapters containing 12 indexes for multiplexing sequencing. Ligation products were amplified by PCR with primers complementary to sequences on the adaptor and inside the transposon, respectively. The resulting PCR products were sequenced on an Illumina HiSeq2000 platform in the Biopolymer core facility at Harvard Medical School. Six independent libraries were prepared for each of wild type and the T6SS null mutant of *hcp*.

Data Analysis. Sequencing generated a large pool of reads (~50 nt), which contains the index sequence at the 5' end, followed by ~15-bp gDNA sequence and the transposon sequence at the end. Sequencing reads were sorted based on the index and trimmed to retain only the gDNA sequence (~15 nt) by the software CLC Genomics Workbench 4.0. Reads were mapped to the reference genome *V. cholerae* N16961. The number of transposon insertion per gene is represented as the normalized RPKM value (7), which shows the relative abundance of transposon mutations in any given gene in the original transposon pool.

Western blot analysis. Western blot analysis was performed as previously described (4). Proteins were resolved in a precast 10% (wt/vol) SDS/PAGE gel (Life Technologies) and transferred to

a PVDF membrane (Millipore) by electrophoresis. The membrane was then blocked in 5% (wt/vol) nonfat milk for 1 h at room temperature, and incubated with primary antibodies at 4 ° C overnight. The membrane was washed three times in TBST buffer (50 mM Tris, 150 mM NaCl, 0.05% Tween 20, pH7.6), and incubated with an HRP-conjugated secondary antibody (Pierce) for 1 h at room temperature. Signals were detected using the ECL solution and ECL films (Amersham).

Protein Secretion Assay. Cultures were grown in LB medium to exponential phase (OD₆₀₀ = 0.5). If applicable, gene expression was induced by 0.1% L-arabinose for 1 h. One milliliter of culture was centrifuged at 20,000 × g for 2 min and the supernatant was then filtered through a 0.2-µm filter. A mixture of 900 µL of the supernatant and 100 µL of 100% trichloroacetic acid (TCA) solution was placed on ice for 2 h, and centrifuged at 15,000 × g for 20 min at 4 °C. The supernatant was discarded and the pellet was washed with 1 mL of 100% acetone by centrifugation at 20,000 × g for 5 min. The resultant pellet was resuspended with 30 µL of SDS-loading dye. Proteins were analyzed by Western blot analysis.

T6SS-Dependent Killing Assay. Killing assay was performed as described (8). Cultures of predator and prey strains were mixed together at a ratio of 10:1, and spotted on LB medium for 3 h. Bacterial spots were then washed into 1 mL of LB and survival of prey strains was measured by serial dilution on selective medium for the growth of prey strains.

Immunoprecipitation. Exponential phase cultures (OD₆₀₀ = 0.5) were induced with 0.1% L-arabinose for 1 h at 37 °C and harvested by centrifugation at 4,000 × g for 10 min. Cell pellets were resuspended in 10 mL of TBST buffer supplemented with the Halt protease inhibitor mixture (Thermo Scientific) and lysozyme (1 mg/mL). Cells were lysed by sonication and centrifuged at 10,000 × g for 15 min at 4 °C to remove cell debris. Anti–Histag Dynabeads solution was prepared by mixing 0.1 mL Dynabeads (Life Technologies) with 5 µg of monoclonal anti-His antibody (Sigma). After 6 h incubation at 4 °C, the Dynabeads solution was added to the cell lysate and incubated for 2 h at 4 °C. Beads were washed 3 times with TBST buffer. Proteins were eluted with 50 µL of SDS/PAGE loading buffer, and separated on a 10% (wt/vol) SDS/PAGE gel (Life Technologies).

Dictyostelium Amoebae Survival Assay. The assay was performed as described previously (9, 10). Bacterial overnight culture was diluted 10 times in PBS buffer and plated on SM/5 plate. Exponential phase culture of amoebae cells (1×10^5 CFU/mL) was collected by centrifugation and serial plated on the top of the bacterium-containing agar plates. The plates were incubated at 22 °C for 3 d, and the number of plaques formed by *Dictyostelium* was recorded.

Actin Cross-Linking Assay. Actin cross-linking was tested as described (11). To eliminate background actin cross-linking and cytotoxicity mediated by T6SS-independent toxins in *V. cholerae*, all strains tested here are in *rtxA*, *hapA*, and *hlyA* triple mutant background (12). One milliliter of J774 cells ($\sim 1 \times 10^5$ cells) was seeded into each well of a six-well culture plate and incubated overnight at 37 °C. Infection was performed by adding 100 µl of bacterial cells ($\sim 1 \times 10^6$ cells) to each well and incubated for 2 h. Cells were collected by scrapping and suspended in SDS-loading buffer for detection of actin by Western blot analysis.

- Metcalf WW, et al. (1996) Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. *Plasmid* 35(1): 1–13.
- Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170(6):2575–2583.
- Davies BW, Bogard RW, Mekalanos JJ (2011) Mapping the regulon of Vibrio cholerae ferric uptake regulator expands its known network of gene regulation. Proc Natl Acad Sci USA 108(30):12467–12472.
- Dong TG, Mekalanos JJ (2012) Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in *Vibrio cholerae* O37 strain V52. *Nucleic Acids Res* 40(16):7766–7775.
- 5. Goodman AL, et al. (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. *Cell Host Microbe* 6(3):279–289.
- Goodman AL, Wu M, Gordon JI (2011) Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. *Nat Protoc* 6 (12):1969–1980.

- Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628.
- MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 107(45): 19520–19524.
- Pukatzki S, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103(5):1528–1533.
- Zheng J, Ho B, Mekalanos JJ (2011) Genetic analysis of anti-amoebae and antibacterial activities of the type VI secretion system in *Vibrio cholerae*. *PLoS ONE* 6(8): e23876.
- Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104(39):15508–15513.
- Ma AT, McAuley S, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5(3):234–243.

Table S1.	Candidate	immunity	genes	identified	by Tn-seq
-----------	-----------	----------	-------	------------	-----------

Gene	Gene length (bp)	Function	RPKM		P value
Gene			T6SS ⁺	T6SS ⁻	/ value
VC0821	1140	Hypothetical protein	2	53	0.012
VC1419	744	Hypothetical protein	0	71	0.001
VC1733	204	Hypothetical protein	0	126	0.003
VC1747	225	Hypothetical protein	5	210	0.003
VC1838	441	tolR membrane protein	20	179	0.012
VCA0021	729	Hypothetical protein	15	455	0.005
VCA0124	369	Hypothetical protein	0	401	0.023
VCA0431	396	Hypothetical protein	26	284	0.025

The normalized value for transposon insertions per gene is represented by RPKM. A lower RPKM value indicates there are less events of transposon insertion in the target gene.

Table S2. Comparison of *V. cholerae* effector–immunity pairs with other known T6SS immunity and effector proteins

Organism	Effector-immunity	Gene no.	Protein length (aa)	MW (kDa)	Source
P. aeruginosa	Tse1–Tsi1	PA1844-1855	154–172	16.4–18.8	(1)
	Tse2–Tsi2	PA2702-2703	158–77	17.7–8.5	
	Tse3–Tsi3	PA3484-3485	408–145	44.4–15.8	
Serratia marcescens	Ssp1–Rap1a	SM2261-2260	163–127	18.2–14.2	(2)
	Ssp2–Rap2a	SM2264-2265	158–124	17.9–13.6	
V. cholerae	TseL–TsiV1	VC1418-1419	641–247	72.2–28.5	Present study
	VasX–TsiV2	VCA0020-0021	1085–242	121–27.9	
	VgrG3–TsiV3	VCA0123-0124	1107–122	113.0–13.7	

1. Hood RD, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7(1):25-37.

2. English G, et al. (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol 86(4):921-936.

Table S3. Strains and plasmids in this study

SANG SANG

Strain and plasmid	Genotype or phenotype	Source	
V. cholerae			
V52	Serotype 37 clinical isolate from Sudan	(1)	
T6SS mutants	Nonpolar deletion mutants of V52	(2)	
V52rhh	V52 lacking rtxA, hylE, and hapA	(3)	
vgrG1	V52rhh lacking vgrG1	(3)	
tsiV1	V52 lacking genes VC1417-21	(2)	
tsiV2	V52 lacking genes VCA0019-21	(2)	
tsiV3	V52 lacking genes VCA0123-24	This study	
pTsiV1	tsiV1 complemented with VC1419 (TsiV1)	This study	
pTsiV2	tsiV2 complemented with VCA0021 (TsiV2)	This study	
pTsiV3	tsiV3 complemented with VCA0124 (TsiV3)	This study	
tseL	V52rhh lacking VC1418 (TseL)	This study	
vasX	V52rhh lacking VCA0020 (VasX)	This study	
tseL & vasX	V52rhh lacking genes tseL and vasX	This study	
tseL & vgrG3	V52rhh lacking genes tseL and vgrG3	This study	
vasX & vgrG3	V52rhh lacking genes vasX and vgrG3	This study	
tseL,vasX, & vgrG3	V52rhh triple mutant lacking tseL, vasX and vgrG3	This study	
E. coli			
SM10 λpir	thi thr leu tonA lac Y supE recA::RP4-2-Tc::Mu	(4)	
Plasmid			
pWM91	Suicidal conjugation vector	(5)	
pSAMDGm	Transposon vector	Gift from Stephen Lory,	
		Harvard Medical School,	
		Boston	
pBAD18V5	Expression vector with 3xV5 epitope tag at the C terminus	(6)	
pTsiV1	pBAD18V5 expressing tsiV1	This study	
pTsiV2	pBAD18V5 expressing tsiV2	This study	
pTsiV3	pBAD18V5 expressing tsiV3	This study	
pTseL	pBAD18V5 expressing TseL	This study	
pTseL(D425A)	pBAD18V5 expressing TseL ^{D425A}	This study	
pVgrG3	pBAD24 expressing VgrG3	This study	
pVgrG3(D842A)	pBAD24 expressing VgrG3 ^{D842A}	This study	

1. Pukatzki S, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103(5): 1528–1533.

2. Zheng J, Shin OS, Cameron DE, Mekalanos JJ (2010) Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci USA 107(49):21128–21133.

3. Ma AT, McAuley S, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5(3): 234–243.

4. Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170(6):2575–2583.

Metcalf WW, et al. (1996) Conditionally replicative and conjugative plasmids carrying *lacZ* alpha for cloning, mutagenesis, and allele replacement in bacteria. *Plasmid* 35(1):1–13.
Davies BW, Bogard RW, Mekalanos JJ (2011) Mapping the regulon of *Vibrio cholerae* ferric uptake regulator expands its known network of gene regulation. *Proc Natl Acad Sci USA* 108 (30):12467–12472.