Supplementary material Stability analysis of the ECM3 cluster

Neoplastic and stromal cells contribute to an extracellular matrix gene expression profile defining a breast cancer subtype likely to progress

Triulzi T, Casalini P, Sandri M, Ratti M, Carcangiu ML, Colombo MP, Balsari A, Ménard S, Orlandi R and Tagliabue E.

1 Statistical methods used for ECM3 stability analysis

1.1 Missing value imputation

Missing expression values were imputed using the nearest-neighbor averaging method described in [Troyanskaya *et al.* (2001)] and implemented in the knn.impute command of the impute R package [Hastie *et al.* (2011)].

The number of neighbors used in the imputation was k=10, the maximum percent missing data allowed in any row was rowmax=0.50, the maximum percent missing data allowed in any column was colmax=0.13 and the largest block of genes imputed using the knn algorithm was maxp = 1500.

1.2 Data preprocessing

Microarray data matrices were preprocessed using a method similar to the algorithm described in [Kluger *et al.* (2003)]: (a) transform data using using the tail function sign(x) ln(1 + |x|), where |x| is the absolute value of x, (b) perform 5 cycles of row-column standardization.

1.3 Clustering algorithms

For the identification of the ECM3 cluster, three biclustering algorithms were used: the independent row-column clustering (IRCC) based on k-means clustering, a modification of the IRCC clustering based on column clustering of a selected submatrix (CCSS) and the Large Average Submatrix (LAS) method proposed in [Shabalin *et al.* (2009)].

LAS is an iterative algorithm based on a simple significance score that trades off between the size of a submatrix and its average value. It identifies groups of genes that show similar activity patterns under a specific subset of the experimental conditions. This algorithm is implemented in the LAS program available at https://genome.unc.edu/las/. We searched bicluster with positive score setting the number of iterations to 10000, the score cut-off to 0 and the maximum number of biclusters to 30. We defined the ECM3 bicluster as the LAS submatrix with the SPARC gene in one (or more) of the rows and with the highest positive score.

The IRCC algorithm applies k-means clustering independently to the rows and the columns of the data matrix X, finds the row clusters rC_i , $i = 1, 2, ..., k_r$ and the column clusters cC_j , $j = 1, 2, ..., k_c$, then reorders rows and columns so that each cluster forms a contiguous group and finally builds biclusters at the intersection of the row clusters with the column clusters. The ECM3 bicluster is identified as follows: (a) find the row cluster rC_i that contains the SPARC gene; (b) consider the biclusters B_1, \ldots, B_{k_c} defined by the intersection of rC_i with the column clusters cC_1, \ldots, cC_{k_c} ; (c) ECM3 is the bicluster B_j with the highest positive mean expression value.

The CCSS algorithm starts applying k-means clustering to the rows of X (genes), finds the row clusters rC_i , $i = 1, 2, ..., k_r$, selects the row cluster rC_i that contains the SPARC gene and finally applies k-means column clustering to the submatrix X_{rC_i} of X whose rows belong to rC_i . In other words, CCSS does not apply k-means clustering independently to the rows and the columns of the data matrix but applies column clustering to a subset of rows that has been selected by a previous row clustering. The column cluster with the highest positive mean expression value identifies the ECM3 bicluster.

The number of row and column clusters in IRCC were set to 4 for all the analyzed datasets, with the only exception of the Ma et al. (2004) dataset (GDS806) where the rows and the columns were partitioned in 5 and 3 groups, respectively. k-means clustering was performed using the kmeans R command. The maximum number of iterations allowed was iter.max=30, the number of random starts was nstart=20 and the algorithm of Hartigan and Wong was selected (algorithm = "Hartigan-Wong"). Using these settings we were able to find IRCC biclusters that are very similar to LAS biclusters.

In CCSS the number of row clusters was set to 4 (with the exception of Ma et al. (2004) dataset (GDS806) where k=5) and the number of column clusters were selected adaptively using two approaches: the consensus clustering of [Monti *et al.* (2003)] and the prediction strength of [Tibshirani *et al.* (2005)]. The two methods gives similar results for all the analyzed datasets.

Prediction strength was calculated using the prediction.strength command of the fpc R package [Hennig (2010)], applying the k-means clustering algorithm (method="kmeans"), with k ranging from 2 to 7 (Gmin=2, Gmax=7) and with a number of times the dataset is divided into two halves equal to M=200.

Consensus clustering is a resampling-based approach to cluster stability implemented in the R package ConsensusClusterPlus (see [Wilkerson (2011)] and [Wilkerson and Hayes (2010)]). The adopted clustering algorithm was k-means (clusterAlg="km"), with distance = "euclidean". The maximum cluster number was set to maxK = 7 and the number of subsamples to reps = 500. The proportion of items to sample was pItem=0.5 and the proportion of features to sample was pFeature = 1. See the next section for a brief description of the method.

1.4 Stability analysis

1.5 Using different clustering methods

The stability of the ECM3 partition was first evaluated with respect to the use of different clustering algorithms. Row and column elements of the ECM3 bicluster obtained from LAS were compared to row and column elements of IRCC and CCSS. We assessed the similarity between these partitions of the same dataset using the Jaccard index defined as:

$$\gamma(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|},\tag{1}$$

where C_1 and C_2 are two (row or column) partitions and |C| is the number of elements in the C partition. This index ranges from 0 (no common elements in the C_1 and C_2 partitions) to 1 (the elements in the C_1 and C_2 partitions are exactly the same). For details see [Hennig (2007)]. The Jaccard index was calculated using the clujaccard command of the fpc R packages.

1.6 Removing genes or samples

The stability of the ECM3 cluster was also evaluated comparing the results from clustering on the full data to clustering based on:

- removing one gene at a time;
- removing one sample at a time;
- repeatedly and randomly removing B sets of k genes, where $k = 2/3 \cdot n_r$, n_r is the number of rows (genes) and B = 1000.

At each step, after removing one sample or one gene or a set of genes, the partitioning calculated on the full dataset was compared to the partitioning on the reduced dataset and the Jaccard index was calculated. Finally, the histogram and some descriptive statistics about the distribution of the B Jaccard indexes were estimated.

When removing one gene at a time, four additional stability measures were estimated using the **stability** command of the **clValid** R package: average proportion of non-overlap (APN), average distance (AD), average distance between means (ADM) and figure of merit (FOM). The APN measures the average proportion of observations not placed in the same cluster under both cases (i.e. before

and after gene removal). The APN is in the interval [0, 1]. Values close to 0 indicate highly consistent clustering results. The AD measures the average distance between observations placed in the same cluster under both cases and the ADM measures the average distance between cluster centers for observations placed in the same cluster under both cases. These measures have values between zero and ∞ . Smaller values are preferred. The FOM measures the average intra-cluster variance of the observations in the deleted columns (averaged over all removed columns), where the clustering is based on the remaining (undeleted) columns. FOM has values between zero and ∞ and should be minimized.

Using the stability command of the clValid R package with clMethods = "kmeans", metric = "euclidean", iter.max = 30 and nstart = 10 we estimated the above stability measures varying the number of cluster from 2 to 6 (nClust = 2:6) and removing one column at a time.

1.7 Bootstrapping, jittering, adding noise points

In addition, following [Hennig (2007)], we investigated whether the ECM3 cluster remains stable:

- for different data sets drawn from the same underlying distribution (bootstrapping);
- under the addition of a random error to every point of the data set (jittering);
- under the replacement of some point in the data set by "noise points" or outliers.

Data were bootstrapped, jittered and noise points were added producing modified datasets for B times. At each step, the partitioning calculated on the full dataset was compared to the partitioning on the modified dataset and the Jaccard index was calculated. Finally, the histogram and some descriptive statistics about the distribution of the B Jaccard indexes were estimated.

This analysis was performed on the submatrix of X identified by the ECM3 genes. The clusterboot command of the fpc R package was used with the following parameters: B = 1000, bootmethod = c("boot", "jitter", "noise"), clustermethod = kmeansCBI, runs = 10, jittertuning = 0.1, noisetuning = c(0.1, 4). The number of cluster k was set equal to the number of clusters of the CCSS algorithm.

The stability of the discovered ECM3 cluster with respect to sampling variability was also assessed using consensus clustering [Monti *et al.* (2003)]. Working in conjunction with resampling techniques for simulating perturbations of the original data, it provides for a method to represent the consensus across multiple runs of a clustering algorithm. Consensus clustering is based on the notions of connectivity matrix and consensus matrix. Let $X^{(1)}, \ldots, X^{(B)}$ be a collection of perturbed data set obtained by resampling the original X matrix. The connectivity matrix $M^{(b)}$ corresponding to the *b*th dataset is a $N \times N$ matrix whose entries are defined as follows: $M^{(b)}(i,j) = 1$ if items i and j belong to the same cluster and $M^{(b)}(i,j) = 0$ otherwise. The consensus matrix \mathcal{M} is a $N \times N$ matrix is a properly normalized sum of the connectivity matrices of all the perturbed data sets $\{X^{(b)} : b = 1, 2, \ldots, H\}$. Its entries are defined as follows: $\mathcal{M}(i,j) = \sum_b M^{(b)}(i,j) / \sum_b I^{(b)}(i,j)$, where $I^{(b)}(i,j)$ is an $(N \times N)$ indicator matrix such that its (i,j)-th entry is equal to 1 if both items *i* and *j* are present in the dataset $X^{(b)}$, and 0 otherwise.

In other words, a consensus matrix is a matrix that stores, for each pair of items, the proportion of clustering runs in which two items are clustered together. The consensus matrix is used as a visualization tool to help assess the clusters' composition and the number of clusters. Associating a color gradient to the 0-1 range of real numbers of \mathcal{M} , so that white corresponds to 0, and dark blue corresponds to 1, and arranging \mathcal{M} so that items belonging to the same cluster are adjacent to each other (with the same item order used to index both the rows and the columns of the matrix), a matrix corresponding to perfect consensus will be displayed as a color-coded heat map characterized by blue blocks along the diagonal, on a white background.

Plotting a histogram of a consensus matrix entries (i.e., a histogram of the N(N-1)/2 entries $\mathcal{M}(i, j)$'s for i < j), perfect consensus would translate into two bins centered at 0 and 1. Plotting the corresponding empirical cumulative distribution (CDF) defined over the range [0, 1], perfect consensus would translate into a step function with a step around 0 (the magnitude of which is equivalent to the proportion of 0's in the matrix), a flat line reaching across the 0-1 range, and a second step around 1. For more details, see [Handl *et al.* (2005)].

1.8 Internal validation

The internal validation of the ECM3 cluster was performed evaluating measures that reflect the compactness, connectedness, and separation of the cluster partitions.

The Dunn index and silhouette width are measures that combine compactness and separation. The Dunn index is the ratio of the smallest distance between observations not in the same cluster to the largest intra-cluster distance. It has a value between zero and ∞ and should be maximized. The silhouette value measures the degree of confidence in the assignment of a particular observation to a cluster. If silhouette value is close to 1, it means that sample is 'well-clustered' and it was assigned to a very appropriate cluster. If silhouette value is about zero, it means that that sample could be assign to another closest cluster as well, and the sample lies equally far away from both clusters. If silhouette value is close to -1, it means that sample is 'misclassified' and is merely somewhere in between the clusters. The silhouette width of a cluster is the average of the silhouette values of each observation in the cluster. It lies in the interval [-1, 1] and should be maximized. For more details see [Brock *et al.* (2008)].

Connectedness measures to what extent a partitioning places observations in the same cluster as their nearest neighbors in the data space, and is measured by connectivity. Connectivity has a value between zero and ∞ and should be minimized [Brock *et al.* (2008)].

The Dunn index and connectivity of ECM3 were calculated using the dunn and connectivity commands of the clValid R package [Brock *et al.* (2011)]. The size of the neighborhood was neighbSize = 10 and the metric used to determine the distance matrix was method = "euclidean". The silhouette widths were calculated and plotted using the silhouette command of the cluster R package [Maechler *et al.* (2005)].

Using the stability command of the clValid R package with clMethods = "kmeans", metric = "euclidean", iter.max = 30 and nstart = 10 we estimated the above internal measures varying the number of cluster from 2 to 6 (nClust=2:6) and removing one column at a time.

1.9 Statistical significance

An important question about clustering is the need to decide if a given cluster is actually present in the data or if it is an artifact of the natural sampling variation. In our work the statistical significance of the ECM3 cluster was assessed using the SigClust method proposed in [Liu *et al.* (2008)] and implemented in the **sigclust** R package [Huang *et al.* (2010)]. This approach is based on the two-means cluster index (CI), a measure of data non-Gaussianity, defined as the ratio between the within-group sum of squared distances to group means and the overall sum of squared distances to the overall mean:

$$CI = \frac{\sum_{j \in C_1} ||\mathbf{x}_j - \bar{\mathbf{x}}^{(1)}||^2 + \sum_{j \in C_2} ||\mathbf{x}_j - \bar{\mathbf{x}}^{(2)}||^2}{\sum_{j=1}^n ||\mathbf{x}_j - \bar{\mathbf{x}}||^2},$$
(2)

where C_1 and C_2 denote the two clusters, $\bar{\mathbf{x}}^{(1)}$ and $\bar{\mathbf{x}}^{(2)}$ represent the mean of the C_1 and C_2 clusters and $\bar{\mathbf{x}}$ is the overall mean. The smaller the CI, the larger the proportion of the overall variance that is explained by clustering. Using a large number of simulations, the SigClust method obtain an empirical distribution of the CI based on the null hypothesis of absence of clusters and calculate a p-value for the value of CI calculated on the original data set.

In the present study the number of simulations was nsim = 1000 and covariance was estimated by the original background noise thresholded estimate ('hard thresholding', icovest=3).

1.10 Informative genes

The importance of genes in predicting the ECM3 partitioning was estimated using the method based on random forests [Breiman (2001)] and implemented in the party R package [Hothorn *et al.* (2006)].

For each dataset we started fitting a conditional random forests with ntree = 5000 trees using the cforest command. The outcome was the ECM3 sample partitioning found by LAS and the covariates are the genes. The number of randomly preselected variables was set equal to the square root of the number of genes, i.e. mtry = round(sqrt(nrow(X))), as suggested in [Genuer *et al.* (2008)] for high dimensional classification problems. Other settings for the random forests were: teststat = "quad", testtype = "Bonferroni", mincriterion = 0.90, replace = F, fraction = 0.632, minsplit=5, maxsurrogate = 0 and maxdepth = 0.

After fitting random forests, the unconditional 'mean decrease in accuracy' importance was estimated using the varimp command of party. Negative importances were set to zero. A bar plot of the first 50 most informative genes were plotted.

It is interesting to compare this list of informative genes with the consensus list that we found using the COSA algorithm of [Friedman and Meulman (2004)]. A good agreement between the two lists suggests a good stability of the proposed ECM3 consensus list.

References

[Breiman (2001)] Breiman (2001), Random Forests, Machine Learning, 45(1), 5–32

- [Brock et al. (2008)] Brock G., Pihur V., Datta S. and Datta S. (2005), clValid, an R package for cluster validation, Journal of Statistical Software, 25(4). URL http://www.jstatsoft.org/v25/i04
- [Brock et al. (2011)] Brock G., Pihur V., Datta S. and Datta S. (2005), clValid: Validation of Clustering Results, *R package version 0.6-2*, 25(4). URL http://CRAN.R-project.org/package=clValid
- [Friedman and Meulman (2004)] Friedman J. and Meulman J.J. (2004), Clustering objects on subsets of attributes, *Journal of the Royal Statistical Society B*, 66(4), 815–849
- [Genuer et al. (2008)] Genuer R., Poggi J-M. and Tuleau C. (2005), Random Forests: some methodological insights, arXiv:0811.3619v1
- [Handl et al. (2005)] Handl J., Knowles J. and Kell D.B (2005), Computational cluster validation in post-genomic data analysis, *Bioinformatics*, 21(15), 3201–3212
- [Hastie et al. (2011)] Hastie T., Tibshirani R., Narasimhan B. and Chu G. (2011), impute: Imputation for microarray data, *R package version 1.26.0*, URL http://CRAN.R-project.org/package=impute
- [Hennig (2007)] Henning C. (2007), Cluster-wise assessment of cluster stability, Computational Statistics & Data Analysis, 52, 258–271
- [Hennig (2010)] Hennig C. (2010), fpc: Flexible procedures for clustering, *R package version 2.0-3*, URL http://CRAN.R-project.org/package=fpc

- [Hothorn *et al.* (2006)] Hothorn T., Buehlmann P., Dudoit S., Molinaro A. and Van Der Laan M. (2006), Survival Ensembles, *Biostatistics*, 7(3), 355–373
- [Huang et al. (2010)] Huang H., Liu Y. and Marron J.S. (2010), sigclust: Statistical Significance of Clustering, *R package version 1.0.0*, URL http://CRAN.R-project.org/package=sigclust
- [Kluger et al. (2003)] Kluger Y., Basri R., Chang J.T., and Gerstein M. (2003), Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions, Genome Research, 13, 703–716
- [Liu et al. (2008)] Liu Y, Hayes D.N., Nobel A. and Marron J.S. (2008), Statistical Significance of Clustering for High-Dimension, Low-Sample Size Data, Journal of the American Statistical Association, 103(483), 1281–1293
- [Madeira and Oliveria (2004)] Madeira S.C.and Oliveria A.L. (2004), Biclustering Algorithms for Biological Data Analysis: A Survey, *IEEE Transactions on Computational Biology and Bioinformatics*, 1(1), 24–45
- [Maechler *et al.* (2005)] Maechler M., Rousseeuw P., Struyf A. and Hubert M. (2005). Cluster Analysis Basics and Extensions, *Unpublished*
- [Monti et al. (2003)] Monti S., Tamayo P., Jill M. and Golub T. (2003), Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data, *Machine Learning*, 52(1-2), 91–118
- [Shabalin et al. (2009)] Shabalin A.A., Weigman V.J., Perou C.M. and Nobel A.B. (2009), Finding Large Average Submatrices in high dimensional data, The Annals of Applied Statistics, 3(3), 985-1012
- [Tibshirani et al. (2005)] Tibshirani, R. and Walther, G. (2005), Cluster Validation by Prediction Strength, Journal of Computational and Graphical Statistics, 14, 511–528
- [Troyanskaya et al. (2001)] Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D. and Altman R.B. (2001), Missing value estimation methods for DNA microarrays, *Bioinformatics*, 17(6), 520–525
- [Wilkerson (2011)] Wilkerson M.D. (2011), ConsensusClusterPlus, *R package version 1.5.1*, URL http://www.bioconductor.org/packages/ 2.6/bioc/html/ConsensusClusterPlus.html
- [Wilkerson and Hayes (2010)] Wilkerson M.D. and Hayes D.N. (2003), ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, *Bioinformatics*, 26(12), 1572–1573

2 Van'T Veer et al (2002) dataset

2.1 LAS bicluster

Figure 1: Heatmap of the LAS bicluster

Figure 2: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 28 of 34 (82%)

Figure 3: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
15.99	0.32

Table 1: Connectivity validation measure and Dunn Index of LAS partitioning

2.2 IRCC-KM bicluster

Figure 4: Heatmap of the IRCC-KM bicluster

IRCC-KM genes

ADAM12	ADAMTS10	ADAMTS2	ADAMTS5	ADAMTS7	APP	ASAM	ASAM
BGN	CDH11	CDH11	CDH13	CDH24	CDH5	CEECAM1	CHPF
CNTN1	CNTN1	COL10A1	COL11A1	COL12A1	COL12A1	COL14A1	COL14A1
COL15A1	COL18A1	COL18A1	COL1A2	COL3A1	COL5A1	COL5A2	COL5A3
COL6A1	COL6A3	COL8A1	COMP	$CSGlcA_T$	CSPG2	CTHRC1	CTSK
DCN	EFEMP2	EMILIN1	EMILIN1	ESAM	FBLN1	FBLN1	FBLN2
FBLN5	FBN1	FLRT2	FN1	GPC1	GPC6	HABP4	ITGA11
ITGA5	ITGB1	ITGB1	ITGB5	ITGBL1	KLK4	LAMA4	LAMB1
LAMB2	LAMC1	LEPRE1	MATN3	MMP11	MMP13	MMP14	MMP2
MMP23A	MMP23B	NID2	NRP2	NTN4	PCDH12	PCDH18	PCDH18
PCDH7	PCOLCE	PGCP	PLXDC1	PLXDC2	PLXND1	SDC2	SEMA5A
SERPINF1	SERPINH1	SERPINH1	SLIT2	SLIT3	SMOC2	SPARC	SPARCL1
SPG20	SPG3A	SPON1	SPON2	THBS1	THBS2	THBS3	THBS4
TIMP3							

IRCC-KM samples

Sample5 Sample7 Sample10 Sample14 Sample17 Sample18 Sample19 Sample21 Sample26 Sample29 Sample31 Sample32 Sample35 Sample36 Sample39 Sample42 Sample46 Sample47 Sample51 Sample53 Sample59 Sample61 Sample69 Sample72 Sample76 Sample77 Sample78 Sample79

2.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	508	1
ECM3	27	78
Jaccard similarity	0.74	

Table 2: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	48	1
ECM3	7	21
Jaccard similarity	0.72	

Table 3: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)

2.3 IRCC-HC bicluster

Figure 5: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

ADAM10	ADAM12	ADAM19	ADAM22	ADAM9	ADAMTS1
ADAMTS10	ADAMTS2	ADAMTS5	ADAMTS7	APP	ASAM
ASAM	BGN	BST1	CD36	CD47	CDH11
CDH11	CDH13	CDH15	CDH23	CDH24	CDH5
CHL1	CHPF	CHSY1	CNTN1	CNTN1	CNTN1
CNTN3	COL10A1	COL11A1	COL12A1	COL12A1	COL14A1
COL14A1	COL15A1	COL17A1	COL18A1	COL18A1	COL1A2
COL3A1	COL4A1	COL4A2	COL5A2	COL5A3	COL6A1
COL6A3	COL8A1	COMP	CSGlcA_T	CSPG2	CSPG6
CTHRC1	CTSK	CTSO	DCN	DKFZP586H212	DPP4
EFEMP2	EMILIN1	EMILIN1	ENPEP	ESAM	FBLN1
FBLN1	FBLN1	FBLN2	FBLN5	FBN1	FBN2
FLJ25084	FLRT2	FN1	GALNACT-2	GPC1	GPC6
HABP4	HAS1	HAS2	IBSP	ITGA5	ITGA8
ITGAV	ITGB1	ITGB1	ITGB1BP1	ITGB5	ITGBL1
KLK11	KLK12	KLK4	LAMA4	LAMB1	LAMC1
LEPRE1	MASP1	MATN2	MATN3	MCAM	MGP
MME	MME	MME	MMP11	MMP13	MMP14
MMP2	MMP23A	MMP23B	MMP3	NID2	NTN4
NTN4	PAPLN	PCDH12	PCDH17	PCDH18	PCDH18
PCDH21	PCDH7	PCDHB6	PCOLCE	PECAM1	PGCP
PGCP	PLXDC1	PLXDC2	PLXNA2	PLXNC1	PRG1
SDC2	SELE	SEMA3E	SEMA5A	SEMA6D	SERPINE1
SERPINE1	SERPINF1	SERPINF2	SERPING1	SERPINH1	SERPINH1
SGCA	SGCB	SGCE	SLIT2	SLIT3	SLIT3
SLITRK3	SMOC2	SPARC	SPARCL1	SPG20	SPG3A
SPON1	SPON2	STIM2	THBS1	THBS2	THBS3
THBS4	TIMP1	TIMP3	TIMP4	TNC	VWF

IRCC-HC samples

Sample5 Sample7 Sample10 Sample14 Sample17 Sample18 Sample19 Sample21 Sample26 Sample31 Sample35 Sample36 Sample39 Sample42 Sample46 Sample47 Sample51 Sample53 Sample59 Sample61 Sample69 Sample72 Sample76 Sample77 Sample78 Sample79

2.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	445	1
ECM3	90	78
Jaccard similarity	0.46	

Table 4: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	50	1
ECM3	5	21
Jaccard similarity	0.78	

Table 5: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

2.4 CCSS bicluster

Figure 6: Heatmap of the CCSS bicluster

2.4.1 Comparing LAS and CCSS biclusters

	No ECM	ECM3
No ECM3	45	0
ECM3	10	22
Jaccard similarity	0.69	

Table 6: Comparing sample lists: LAS (column) vs. CCSS (row) biclusters

2.4.2 Prediction strength for CCSS

2.4.3 Consensus clustering

Figure 7: Statistical significance of CCSS clustering (Consensus clustering)

2.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	3.1E-09

Table 7: SigClust p-values


```
* Cluster stability assessment *
Cluster method: kmeans
Full clustering results are given as parameter result
of the clusterboot object, which also provides further statistics
of the resampling results.
Number of resampling runs:
                             1000
Number of clusters found in data:
                                   2
 Clusterwise Jaccard bootstrap mean:
[1] 0.7787438 0.8649353
dissolved:
[1] 94 32
recovered:
[1] 606 846
 Clusterwise Jaccard jittering mean:
[1] 1 1
dissolved:
[1] 0 0
recovered:
```

[1] 1000 1000 Clusterwise Jaccard replacement by noise mean: [1] 0.8150483 0.8962224 dissolved: [1] 74 20 recovered: [1] 702 900

Removing one sample

Min.	1st Qu.	Median	Mean 3rd	d Qu.	Max.
0.9697	1.0000	1.0000	0.9953 1	.0000	1.0000

Removing one gene

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9697 0.9706 1.0000 0.9907 1.0000 1.0000

APN AD ADM FOM :0.2125 :10.68 :2.375 :0.6294 Min. Min. Min. Min. 1st Qu.:0.2286 1st Qu.:10.72 1st Qu.:2.556 1st Qu.:0.7733 Median :0.2286 Median :10.72 Median :2.556 Median :0.8604 Mean :0.2330 Mean :10.73 Mean :2.611 Mean :0.8427 3rd Qu.:0.2437 3rd Qu.:10.76 3rd Qu.:2.742 3rd Qu.:0.9247 Max. :0.2437 :10.76 :2.742 :0.9812 Max. Max. Max.

Removing sets of k genes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.7045	0.8611	0.8889	0.8889	0.9167	1.0000

Figure 9: Removing two thirds of the genes: distribution of Jaccard coefficients

2.4.6 Validation measures

Cluster kmeans	ring Me S	ethods:						
Cluster 2 3 4	r sizes 5 6	3:						
Validat	tion Me	easures:						
			2	2	3	4	5	6
kmeans	APN		0.0080)	0.1198	0.0320	0.1266	0.1599
	AD		10.1230)	9.7911	9.1010	8.9703	8.6735
	ADM		0.1152	2	1.3278	0.3305	1.1478	1.3488
	FOM		0.8427	7	0.8114	0.7739	0.7688	0.7420
	Connec	ctivity	23.9448	3 4	41.5837	44.7028	66.4540	70.1206
	Dunn		0.3522	1	0.3714	0.4027	0.4198	0.4184
	Silhou	lette	0.2444	1	0.1501	0.1594	0.1158	0.1209
Optimal	l Score	es:						
		Score	Method	C	lusters			
APN		0.0080	kmeans	2				
AD		8.6735	kmeans	6				
ADM		0.1152	kmeans	2				
FOM		0.7420	kmeans	6				
Connect	tivity	23.9448	kmeans	2				

Dunn 0.4198 kmeans 5 Silhouette 0.2444 kmeans 2

- 3 Chin et al. (2006) dataset
- 3.1 LAS bicluster

Figure 10: Heatmap of the LAS bicluster

Figure 11: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 32 of 34 (94%)

Figure 12: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
17.90	0.38

Table 8: Connectivity validation measure and Dunn Index of LAS partitioning

3.2 IRCC-KM bicluster

Figure 13: Heatmap of the IRCC-KM bicluster

IRCC-KM genes

ADAM12	ADAMTS2	ADAMTS5	BGN	BGN	BGN	CDH11	CDH11
COL10A1	COL11A1	COL11A1	COL14A1	COL15A1	COL16A1	COL18A1	COL18A1
COL1A1	COL1A1	COL1A1	COL1A2	COL1A2	COL3A1	COL3A1	COL3A1
COL5A1	COL5A1	COL5A1	COL5A2	COL5A2	COL5A3	COL5A3	COL6A1
COL6A1	COL6A1	COL6A1	COL6A2	COL6A2	COL6A3	COL8A1	COL8A2
COL8A2	COMP	CPA3	CSPG2	CSPG2	CSPG2	CSPG2	CTSK
DCN	DCN	DCN	DCN	DPP4	DSPG3	EFEMP1	EFEMP2
EFEMP2	ELN	EMILIN1	FBLN1	FBLN1	FBLN1	FBLN2	FBN1
FBN1	FLRT2	FN1	FN1	FN1	FN1	FN1	FN1
GALNACT_2	HSPG2	ITGA5	ITGAV	ITGB1	ITGB5	ITGB5	ITGB5
ITGB5	ITGBL1	LAMA4	LAMA4	LAMB1	LAMC1	LEPRE1	MATN3
MMP11	MMP11	MMP13	MMP14	MMP14	MMP14	MMP14	MMP19
MMP2	NID2	NRP1	NRP1	PCDH7	PCDH7	PCDH7	PCOLCE
PLXDC1	SDC2	SDC2	SDC2	SERPINE1	SERPINE1	SERPINF1	SERPINH1
SGCD	SLIT3	SPARC	SPARCL1	SPON1	SPON1	SPON1	SPON1
SPON2	THBS1	THBS1	THBS1	THBS2	TIMP3	TIMP3	TIMP3
TIMP3							

IRCC-KM samples

b0359	s0107	b0318	b0499	s0026	b0370	s0116	b0334
b0512	s0037	s0141	s0205	s0080	s0077	b0421	s0146
b0428	b0521	b0336	s0100	s0175	b0566	s0086	b0338
b0241	b0374	s0106	s1511	b0772	b0664	b0354	b0668

3.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	702	14
ECM3	9	120
Jaccard similarity	0.84	

Table 9: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	83	3
ECM3	0	32
Jaccard similarity	0.91	

Table 10: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)

3.3 IRCC-HC bicluster

Figure 14: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

ADAM10	ADAM10	ADAM10	ADAM12	ADAM15	ADAM2
ADAM9	ADAMTS2	ADAMTS5	AGT	ALCAM	ALCAM
BGN	BGN	BGN	BST1	BST2	CD164
CD164	CD164	CD36	CD36	CD44	CD44
CD44	CD44	CD44	CD9	CDH1	CDH1
CDH11	CDH11	CDH13	CDH2	CEACAM1	CEACAM1
CEACAM1	CEACAM1	CEACAM1	CEACAM5	CEACAM6	CEACAM7
CHL1	CHPF	CHSY1	CIB1	CLU	CLU
CLU	COL10A1	COL11A1	COL11A1	COL13A1	COL14A1
COL15A1	COL16A1	COL17A1	COL18A1	COL18A1	COL1A1
COL1A1	COL1A1	COL1A2	COL1A2	COL3A1	COL3A1
COL3A1	COL4A1	COL4A1	COL4A2	COL4A2	COL4A3BP
COL4A5	COL5A1	COL5A1	COL5A1	COL5A2	COL5A2
COL5A3	COL5A3	COL6A1	COL6A1	COL6A1	COL6A1
COL6A1	COL6A2	COL6A2	COL6A3	COL7A1	COL8A1
COL8A2	COL8A2	COMP	CPA3	CPD	CPD
CPD	CPD	CPE	CPE	CPM	CSPG2
CSPG2	CSPG2	CSPG2	CSPG6	CSPG6	CSPG6
CTSK	CTSO	DAG1	DAG1	DCN	DCN
DCN	DCN	DCN	DKFZP586H212	DPP4	DPP4
DPP4	DSPG3	ECM1	EFEMP1	EFEMP1	EFEMP2
EFEMP2	ELN	ELN	EMTLTN1	ENPEP	ENPEP
FRLN1	FBLN1	FBLN1	FRI.N2	FBLN5	FBN1
FBN1	FBN2	FLRT2	FN1	FN1	FN1
FN1	FN1	FN1	GALNACT 2	GPC3	GPC4
GPC4	HSPG2	HSPG2	TBSP	TTGA2	TTGA5
TTGA6	TTGA6	TTGA7	TTGA7	TTGAV	TTGR1
TTGB1	TTGB3	TTGB3BP	TTGB5	TTGB5	ITGB5
ITGB5	TTGB6	ITGB6	TTGBL1	LAMA2	LAMA4
I.AMA4	LAMA4	LAMA4	LAMB1	LAMR2	LAMC1
LAMC1	LAMC3	LEPRE1	MATN2	MATN3	MCAM
MCAM	MCAM	MCAM	MGEA5	MGEA5	MGP
MMF	MME	MMP10	MMP11	MMP11	MMP13
MMP14	MMP14	MMP14	MMP14	MMP19	MMP2
MMP23B	MMP28	NTD2	NRP1	NRP1	NRXN2
OSGEPL1	PCDH12	PCDH17	PCDH7	PCDH7	PCDH7
PCDH9	PCDHA12	PCDHGA1	PCDHGA11	PCDHGA3	PCDHGB7
PCDHGC3	PCDHGC3	PCOLCE	PGCP	PGCP	PLXDC1
PL XDC1	PL XNC1	PI XND1	PI XND1	PBG1	RNPFP
SDC2	SDC2	SDC2	SDF2	SEMARC	SEMASC
SEMASA	SERDINAS	SFRPINA5	SFRPINR1	SERPINE1	SERPINE1
SERPINE1	SERPINE1	SERTINH1	SGCB	SGCD	SCCD
SGCD	SGCE	SLIT2	SUT3	SUTT3	SPARC
SPARCI 1	SPG20	SPON1	SPON1	SPON1	SPON1
SPON2	STAG1	STAG1	THRS1	THRS1	THRS1
THRS2	THRSA	TTMP1	TTMP3	TIMPS	TIMPS
TIMPS	TTMP4	TNN	TNXR	TNXR	TNYR
TNXB		- 1111		11112	1 1921

IRCC-HC samples

s0107b0318b0499s0026b0370s0116b0334b0512s0037s0205s0080b0427s0077b0421s0146b0428b0521b0336s0100b0566s0086b0338b0241b0374s0088s0170s0106s1511b0664s0033b0668

3.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	561	1
ECM3	150	133
Jaccard similarity	0.47	

Table 11: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	79	8
ECM3	4	27
Jaccard similarity	0.69	

Table 12: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

Figure 15: Heatmap of the CCSS bicluster

Comparing LAS and CCSS biclusters 3.4.1

	No ECM	ECM3
No ECM3	83	5
ECM3	0	30
Jaccard similarity	0.86	

Table 13: Comparing sample lists: LAS (column) vs. IRCC-2 (row) biclusters

Prediction strength for CCSS 3.4.2

Number of clusters

3.4.3 Consensus clustering

Figure 16: Statistical significance of CCSS clustering (Consensus clustering)

3.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	2.4 E- 14

Table 14: SigClust p-values

* Cluster stability assessment *
Cluster method: kmeans
Full clustering results are given as parameter result
of the clusterboot object, which also provides further statistics
of the resampling results.
Number of resampling runs: 1000
Number of clusters found in data: 3
Clusterwise Jaccard bootstrap mean:
[1] 0.5352050 0.6171207 0.5754993
dissolved:
[1] 501 181 373
recovered:
[1] 208 169 131

Clusterwise Jaccard jittering mean: [1] 0.9151124 0.8961530 0.8692155

dissolved: [1] 9 0 9

recovered:

[1] 991 989 989 Clusterwise Jaccard replacement by noise mean: [1] 0.5563464 0.6676355 0.6586267 dissolved: [1] 480 74 201 recovered: [1] 260 272 297

Removing one sample

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.8750	1.0000	1.0000	0.9924	1.0000	1.0000

Removing one gene

Figure 17: Removing one sample (left) and one gene (right) at a time: distributions of Jaccard coefficients

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9394 1.0000 1.0000 0.9951 1.0000 1.0000

APN AD ADM FOM :0.3492 :14.74 :6.578 :0.6077 Min. Min. Min. Min. 1st Qu.:0.3492 1st Qu.:14.74 1st Qu.:6.578 1st Qu.:0.7276 Median :6.578 Median :0.3492 Median :14.74 Median :0.8593 Mean :0.3492 Mean :14.74 Mean :6.578 :0.8351 Mean 3rd Qu.:0.3492 3rd Qu.:14.74 3rd Qu.:6.578 3rd Qu.:0.9301 Max. :0.3492 :14.74 :6.578 :0.9893 Max. Max. Max.

Removing sets of k genes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.7941	0.8857	0.9118	0.9166	0.9412	1.0000

Figure 18: Removing two thirds of the genes: distribution of Jaccard coefficients

3.4.6 Validation measures

Cluste kmean	Clustering Methods: kmeans								
Cluste 2 3 4	Cluster sizes: 2 3 4 5 6								
Valida	tion Me	easures:		_			_		
				2	3	4	5	6	
kmeans	APN		0.04	15	0.0042	0.0656	0.0866	0.2005	
	AD		0.958	80	0.9338	0.9060	0.8707	0.8668	
	ADM		0.614	42	0.0585	0.7094	0.9381	1.8927	
	FOM		0.830	07	0.7572	0.7383	0.7278	0.7187	
	Conneo	ctivity	88.538	35	155.1917	166.7317	172.5540	182.4409	
	Dunn		0.208	86	0.2214	0.2086	0.2421	0.2437	
	Silhou	lette	0.068	36	0.0370	0.0356	0.0461	0.0373	
Optima	l Score	es:							
		Score	Method	C	lusters				
APN		0.0042	kmeans	3					
AD		0.8668	kmeans	6					
ADM		0.0585	kmeans	3					
FOM		0.7187	kmeans	6					
Connec	tivity	88.5385	kmeans	2					
Dunn		0.2437	kmeans	6					
Silhou	ette	0.0686	kmeans	2					

4 Perou et al. (2000) dataset

4.1 LAS bicluster

Figure 19: Heatmap of the LAS bicluster

Figure 20: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 19 of 34 (56%)

Figure 21: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
17.95	0.19

Table 15: Connectivity validation measure and Dunn Index of LAS partitioning

4.2 IRCC-KM bicluster

Figure 22: Heatmap of the IRCC-KM bicluster

IRCC-KM genes

BGN	THBS2	CSPG2	MMP13	COL1A2	COL6A3	SERPING1	SPARC
FN1	CSPG2	COL1A1	FBLN1	SPARC	ITGB5	FN1	FN1
FBN1	COL3A1	COL5A2	FBLN1	ITGA6	ITGA6	SPARC	COL5A2
FN1	NID2	COL5A1	COL6A2	COL1A2	MCAM	CTSK	COL16A1
THBS1	COL11A1	CDH11	COL6A2	FBLN1	ITGAV	COL3A1	ITGAV
SPON1	MMP3	TIMP3	ITGB5	FBLN2	COL3A1	TIMP3	CSPG2
COL6A1	ITGB5	COL5A2	COL6A1	FBN1	TIMP2	SERPING1	FN1
COL3A1	FBN1	COL3A1	MMP9	BST1	SPARC	CDH11	

IRCC-KM samples

GSM1851	GSM1855	GSM1856	GSM1866	GSM1877	GSM1882	GSM1888	GSM1889
GSM1890	GSM1895	GSM1896	GSM1897	GSM1899	GSM1909	GSM1914	GSM1917
GSM1845	GSM1861	GSM1862	GSM1907	GSM1857	GSM1891	GSM1908	GSM1911

4.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	255	0
ECM3	14	49
Jaccard similarity	0.78	

Table 16: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	37	4
ECM3	6	18
Jaccard similarity	0.64	

Table 17: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)

4.3 IRCC-HC bicluster

Figure 23: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

APP	BGN	BST1	CDH11	CDH11	CDH13	CDH13	CDH8
CNTN1	COL11A1	COL16A1	COL1A1	COL1A2	COL1A2	COL3A1	COL3A1
COL3A1	COL3A1	COL3A1	COL4A1	COL4A1	COL4A1	COL4A1	COL4A2
COL5A1	COL5A2	COL5A2	COL5A2	COL6A1	COL6A1	COL6A2	COL6A3
CSPG2	CSPG2	CSPG2	CSPG4	CTSD	CTSE	CTSK	ECM1
FBLN1	FBLN1	FBLN1	FBLN2	FBN1	FBN1	FBN1	FN1
FN1	FN1	FN1	FN1	ITGA2	ITGA2	ITGA3	ITGA3
ITGA6	ITGA6	ITGAV	ITGAV	ITGB1	ITGB1	ITGB5	ITGB5
ITGB5	LAMC1	MCAM	MMP13	MMP3	MMP9	NID2	NRP2
PCDHGC3	PLXNA2	SDC2	SERPINA7	SERPINE1	SERPINF1	SGCB	SPARC
SPARC	SPARC	SPARC	SPON1	THBS1	THBS1	THBS2	TIMP2
TIMP3	TIMP3	TNXB					

IRCC-HC samples

GSM1851 GSM1856 GSM1866 GSM1877 GSM1882 GSM1888 GSM1895 GSM1896 GSM1897 GSM1899 GSM1909 GSM1914 GSM1917 GSM1845 GSM1907 GSM1857 GSM1891 GSM1908 GSM1911

4.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	227	0
ECM3	42	49
Jaccard similarity	0.54	

Table 18: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	39	7
ECM3	4	15
Jaccard similarity	0.58	

Table 19: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

Figure 24: Heatmap of the CCSS bicluster

Comparing LAS and CCSS biclusters 4.4.1

	No ECM	ECM3
No ECM3	30	0
ECM3	13	22
Jaccard similarity	0.63	

Table 20: Comparing sample lists: LAS (column) vs. CCSS (row) biclusters

Prediction strength for CCSS 4.4.2

Number of clusters

4.4.3 Consensus clustering

Figure 25: Statistical significance of CCSS clustering (Consensus clustering)

4.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	2.3E-08

Table 21: SigClust p-values

* Cluster stability assessment * Cluster method: kmeans Full clustering results are given as parameter result of the clusterboot object, which also provides further statistics of the resampling results. Number of resampling runs: 1000 Number of clusters found in data: 2 Clusterwise Jaccard bootstrap mean: [1] 0.7579851 0.7579400 dissolved: [1] 153 99 recovered: [1] 530 500 Clusterwise Jaccard jittering mean: [1] 0.9987586 0.9988750 dissolved:

[1] 0 0 recovered: [1] 997 997 Clusterwise Jaccard replacement by noise mean: [1] 0.7614243 0.7630827 dissolved: [1] 190 126 recovered: [1] 576 552

Removing one sample

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.9697	1.0000	1.0000	0.9941	1.0000	1.0000

Removing one gene

Figure 26: Removing one sample (left) and one gene (right) at a time: distributions of Jaccard coefficients

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9706 0.9714 1.0000 0.9865 1.0000 1.0000

APN AD ADM FOM :0.2519 :8.306 :2.478 :0.5847 Min. Min. Min. Min. 1st Qu.:0.2662 1st Qu.:8.349 1st Qu.:2.665 1st Qu.:0.7072 Median :0.2662 Median :8.349 Median :2.665 Median :0.8328 Mean :0.2684 Mean :8.355 Mean :2.684 Mean :0.8130 3rd Qu.:0.2791 3rd Qu.:8.387 3rd Qu.:2.807 3rd Qu.:0.8998 Max. :0.2791 :8.387 Max. :2.807 :0.9886 Max. Max.

Removing sets of k genes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.5714	0.8684	0.9118	0.8981	0.9412	1.0000

Figure 27: Removing two thirds of the genes: distribution of Jaccard coefficients

4.4.6 Validation measures

Clustering Me kmeans	ethods:					
Cluster sizes 2 3 4 5 6	s:					
Validation Me	easures:	2	2 3	4	5	6
kmeans APN		0.0140	0.0272	0.1325	0.1264	0.1242
AD		7.6754	4 7.1799	7.0374	6.6685	6.5174
ADM		0.1559	0.2487	1.0008	0.9022	0.8359
FOM		0.8130	0.7705	0.7644	0.7333	0.7242
Conne	ctivity	10.2766	5 24.3758	28.1075	35.2214	38.0075
Dunn	-	0.3951	0.4836	0.4418	0.5190	0.5306
Silho	uette	0.2902	2 0.1801	0.1582	0.1697	0.1666
Optimal Score	es:					
	Score	Method	Clusters			
APN	0.0140	kmeans	2			
AD	6.5174	kmeans	6			
ADM	0.1559	kmeans	2			
FOM	0.7242	kmeans	6			
Connectivity	10.2766	kmeans	2			
Dunn	0.5306	kmeans	6			
Silhouette	0.2902	kmeans	2			

- 5 Ma et al. (2004) dataset (GDS806)
- 5.1 LAS bicluster

Figure 28: Heatmap of the LAS bicluster

Figure 29: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 21 of 34 (62%)

Figure 30: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
7.42	0.53

Table 22: Connectivity validation measure and Dunn Index of LAS partitioning

5.2 IRCC-KM bicluster

Figure 31: Heatmap of the IRCC-KM bicluster

IRCC-KM genes

ADAM12	ADAM19	ADAM23	ADAM7	ADAMTS12	ADAMTS2	ADAMTS4	ADAMTS6
ASAM	BGN	CDH11	CDH2	CDH3	CHST3	CHST6	CNTN6
CNTNAP1	COL10A1	COL11A1	COL12A1	COL13A1	COL18A1	COL1A1	COL1A2
COL27A1	COL4A1	COL4A2	COL5A1	COL5A2	COL5A3	COL6A1	COL6A3
COL7A1	COL8A1	CORIN	$CSGlcA_T$	CTHRC1	CTSK	DCN	DCN
EFEMP2	EMILIN1	EMILIN1	FBLN1	FBLN2	FBN1	GPC6	HABP4
HAS2	HSPG2	HTRA1	ITGA11	ITGA5	ITGA8	ITGB5	ITGBL1
ITGBL1	LAMA4	LEPRE1	MMP11	MMP11	MMP13	MMP14	MMP16
MMP2	MMP28	NID2	NRP1	NRP2	PCDH7	PCDHB14	PCDHB16
PCDHB2	PCDHB6	PCDHB7	PCDHB8	PCDHGA3	PCOLCE	PLXDC2	PLXNA1
PLXNA2	PLXNB3	SEMA3A	SEMA5A	SERPINF1	SERPINH1	SGCB	SGCD
SLIT2	SPARC	SPG21	SPOCK1	SPON1	SPON2	SPON2	THBS1
THBS2	THBS3	TIMP2	TIMP3	TNC	TSPAN18	TSPAN2	TSPAN9
TSPAN9	VCAN						

IRCC-KM samples

GSM22453 GSM22465 GSM22466 GSM22469 GSM22481 GSM22485 GSM22487 GSM22488 GSM22493 GSM22494 GSM22497 GSM22498 GSM22505 GSM22506 GSM22507 GSM22450 GSM22452 GSM22454 GSM22462 GSM22467 GSM22480 GSM22491 GSM22496

5.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	524	61
ECM3	56	50
Jaccard similarity	0.30	

Table 23: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	37	0
ECM3	5	18
Jaccard similarity	0.78	

Table 24: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)

5.3 IRCC-HC bicluster

Figure 32: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

ADAM12	ADAM23	ADAM30	ADAM33	ADAMTS1	ADAMTS12
ADAMTS2	ADAMTS3	ADAMTS4	ADAMTS6	ADAMTS8	ADAMTS9
ADAMTSL1	ADIPOQ	AGT	APP	APP	ASAM
BCAN	BGN	BST1	BST2	CD36	CD36
CD47	CD47	CDH11	CDH17	CDH18	CDH22
CDH3	CDH5	CDH6	CEACAM1	ChGn	CHL1
CHST1	CHST3	CHST6	CHST7	CHST9	CHSY1
CIB2	CNTN1	CNTN6	CNTNAP3	COL10A1	COL11A1
COL11A2	COL12A1	COL14A1	COL15A1	COL17A1	COL18A1
COL1A1	COL1A2	COL21A1	COL23A1	COL4A1	COL4A2
COL5A1	COL5A2	COL5A3	COL6A1	COL6A2	COL6A3
COL7A1	COL8A1	COLQ	COMP	CORIN	CPA3
CPE	CSGlcA_T	CTHRC1	CTSG	CTSK	CTSO
DCN	DCN	DKFZP586H212	EFEMP2	ELN	EMILIN1
EMILIN1	EMILIN2	ESAM	FBLN1	FBLN2	FBLN5
FBN1	FLRT2	GPC3	GPC6	HABP4	HAS1
HAS2	HSPG2	HTRA1	ITFG2	ITGA10	ITGA11
ITGA5	ITGA7	ITGA8	ITGA9	ITGAV	ITGAX
ITGB6	ITGBL1	ITGBL1	KLK1	KLK3	KLK5
KLK6	KLK7	KLK7	LAMA2	LAMA4	LAMB3
LAMC1	LAMC2	LEPRE1	MASP1	MATN2	MATN2
MATN3	MCAM	MME	MMP10	MMP11	MMP11
MMP13	MMP14	MMP16	MMP19	MMP2	MMP23B
MMP23B	MMP27	MMP28	MMP3	MMP7	NAALAD2
NAALADL1	NID2	NRP1	NRXN2	P11	PAPLN
PCDH12	PCDH17	PCDH17	PCDH18	PCDH19	PCDH7
PCDH9	PCDHB13	PCDHB14	PCDHB15	PCDHB16	PCDHB17
PCDHB18	PCDHB2	PCDHB4	PCDHB5	PCDHB6	PCDHB7
PCDHB8	PCDHGA12	PCDHGA12	PCDHGA3	PCOLCE	PCOLCE2
PECAM1	PGCP	PLXNA1	PLXNA2	PLXNA4A	PLXNC1
ROBO1	ROBO3	ROBO4	SDC2	SELE	SELP
SEMA3C	SERPINA2	SERPINB1	SERPINE1	SERPINE2	SERPINF1
SERPING1	SERPINH1	SGCB	SGCD	SGCG	SLIT2
SLIT2	SLIT3	SLIT3	SMOC2	SNED1	SPARC
SPARCL1	SPG21	SPG3A	SPOCK1	SPON1	SPON2
SPON2	THBS1	THBS2	THBS3	THBS4	TIMP2
TIMP3	TIMP4	TMPRSS3	TNC	TNN	TSPAN18
TSPAN2	TSPAN7	TSPAN8	VCAN	VWF	XPNPEP2

IRCC-HC samples

GSM22453 GSM22465 GSM22466 GSM22469 GSM22481 GSM22485 GSM22488 GSM22493 GSM22494 GSM22497 GSM22505 GSM22506 GSM22450 GSM22452 GSM22454 GSM22467 GSM22480 GSM22491

5.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	450	13
ECM3	130	98
Jaccard similarity	0.41	

Table 25: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	40	2
ECM3	2	16
Jaccard similarity	0.80	

Table 26: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

Figure 33: Heatmap of the CCSS bicluster

5.4.1 Comparing LAS and CCSS biclusters

	No ECM	ECM3
No ECM3	38	6
ECM3	4	12
Jaccard similarity	0.55	

Table 27: Comparing sample lists: LAS (column) vs. CCSS (row) biclusters

5.4.2 Prediction strength for CCSS

5.4.3 Consensus clustering

Figure 34: Statistical significance of CCSS clustering (Consensus clustering)

5.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	2.5E-06

Table 28: SigClust p-values

* Cluster stability assessment * Cluster method: kmeans Full clustering results are given as parameter result of the clusterboot object, which also provides further statistics of the resampling results. Number of resampling runs: 1000 Number of clusters found in data: 2 Clusterwise Jaccard bootstrap mean: [1] 0.9199726 0.9118352 dissolved: [1] 0 0 recovered: [1] 996 983 Clusterwise Jaccard jittering mean: [1] 0.9981930 0.9981273 dissolved: [1] 0 0 recovered:

[1] 1000 1000 Clusterwise Jaccard replacement by noise mean: [1] 0.9133471 0.8996397 dissolved: [1] 0 0 recovered: [1] 995 958

Removing one sample

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.9048	1.0000	1.0000	0.9921	1.0000	1.0000

Removing one gene

Figure 35: Removing one sample (left) and one gene (right) at a time: distributions of Jaccard coefficients

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9091 1.0000 1.0000 0.9992 1.0000 1.0000

APN	AD	ADM	FOM
Min. :0.06349	Min. :13.00	Min. :0.8571	Min. :0.6482
1st Qu.:0.06349	1st Qu.:13.00	1st Qu.:0.8571	1st Qu.:0.8715
Median :0.06349	Median :13.00	Median :0.8571	Median :0.9158
Mean :0.06401	Mean :13.00	Mean :0.8625	Mean :0.9005
3rd Qu.:0.06349	3rd Qu.:13.00	3rd Qu.:0.8571	3rd Qu.:0.9404
Max. :0.12063	Max. :13.13	Max. :1.4569	Max. :0.9916

Removing sets of k genes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.4762	0.7692	0.8333	0.8170	0.9091	1.0000

Figure 36: Removing two thirds of the genes: distribution of Jaccard coefficients

5.4.6 Validation measures

Clustering Me kmeans	ethods:					
Cluster sizes 2 3 4 5 6	3:					
Validation Me	easures:					
		2	2 3	4	5	6
kmeans APN		0.0638	0.0006	0.1486	0.1582	0.1054
AD		13.0425	11.9173	11.8692	11.5951	11.1700
ADM		0.9246	0.0079	1.6336	1.6651	1.2240
FOM		0.9065	0.8428	0.8386	0.8315	0.8225
Conneo	ctivitv	9.0968	17.1563	36.6698	39.4595	55.3802
Dunn	5	0.5243	0.6137	0.5997	0.5521	0.5964
Silhou	lette	0.1796	0.1473	0.1246	0.1068	0.0851
Optimal Score	es:					
	Score	Method	Clusters			
APN	0.0006	kmeans	3			
AD	11.1700	kmeans	6			
ADM	0.0079	kmeans	3			
FOM	0.8225	kmeans	6			
Connectivity	9.0968	kmeans	2			
Dunn	0.6137	kmeans	3			
Silhouette	0.1796	kmeans	2			

6 Desmedt et al (2007) dataset

6.1 LAS bicluster

Figure 37: Heatmap of the LAS bicluster

Figure 38: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 32 of 34 (94%)

Figure 39: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
53.52	0.35

Table 29: Connectivity validation measure and Dunn Index of LAS partitioning

6.2 IRCC-KM bicluster

Figure 40: Heatmap of the IRCC-KM bicluster

IRCC-KM genes

MMP14	SPARC	LAMC1	LAMC1	MMP2	THBS1	THBS1
THBS1	TIMP3	TIMP3	TIMP3	TIMP3	HTRA1	BGN
BGN	ITGA5	COL6A3	LAMB1	TNC	HSPG2	HSPG2
FBLN1	COL3A1	DCN	NID1	NID1	LAMA4	SERPINF1
COL1A1	COL1A1	SPOCK1	COL1A2	COL1A2	CTSK	PCOLCE
SERPINE1	GPC1	FBN1	FBN1	MMP14	MMP14	ADAM12
FBLN1	FBLN1	THBS2	COL5A1	COL15A1	SLIT3	MMP11
MMP11	FBLN2	NID2	COL7A1	EMILIN1	COL11A1	COL16A1
FLRT2	FLRT2	CDH13	SEMA5A	ITGBL1	PCDH7	PCDH7
COMP	MMP3	COL10A1	MMP13	EFEMP2	CDH11	CDH11
SERPINH1	COL18A1	COL18A1	COL6A2	DCN	EFEMP2	SPON1
SPON1	THBS3	SLIT2	PCDH7	FN1	NRP1	COL3A1
CNTN1	LAMB1	FN1	DCN	NRP2	ITGB1	DCN
COL6A1	NRP1	FN1	COL5A1	COL5A1	SPARC	ELN
COL6A1	COL6A1	COL6A1	PLXNC1	COL6A2	COL6A1	SNED1
SPON1	SPON1	PLXDC1	ITGA8	ADAMTS2	SGCD	COL8A1
NRP2	FN1	FN1	ITGBL1	COL3A1	FN1	COL10A1
COL1A1	SPON2	COL5A3	PLXDC1	ADAMTS5	CORIN	LEPRE1
COL5A2	COL5A2	COL8A2	COL11A1	COL5A3	COL8A2	

IRCC-KM samples

 GSM177887
 GSM177892
 GSM177894
 GSM177911
 GSM177921
 GSM177924
 GSM177927

 GSM177928
 GSM177930
 GSM177938
 GSM177944
 GSM177947
 GSM177958
 GSM177961

 GSM177964
 GSM177966
 GSM177976
 GSM177989
 GSM177992
 GSM177993
 GSM177994

 GSM177996
 GSM177997
 GSM177976
 GSM177989
 GSM177992
 GSM177993
 GSM178005

 GSM177996
 GSM177997
 GSM177998
 GSM178000
 GSM178002
 GSM178004
 GSM178005

 GSM178006
 GSM178007
 GSM178008
 GSM178009
 GSM178014
 GSM178015
 GSM178016

 GSM178019
 GSM178027
 GSM178028
 GSM178029
 GSM178030
 GSM178032
 GSM178033

 GSM178035
 GSM178036
 GSM178039
 GSM178040
 GSM178030
 GSM178032
 GSM178033

 GSM178045
 GSM178046
 GSM178047
 GSM178051
 GSM178054
 GSM178055
 GSM178062

 GSM178067
 GSM178073
 GSM178074
 GSM178076
 GSM178055
 GSM178062

6.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	744	31
ECM3	11	121
Jaccard similarity	0.74	

Table 30: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	134	3
ECM3	12	49
Jaccard similarity	0.77	

Table 31: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)
6.3 IRCC-HC bicluster

Figure 41: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

ADAM12	ADAM8	ADAMTS1	ADAMTS2	ADAMTS2	ADAMTS5
ADIPOQ	BGN	BGN	CD36	CD36	CDH11
CDH11	CDH13	CDH2	CDH2	CDH5	CHL1
CHPF	CLU	CLU	CLU	CNTN1	CNTNAP1
COL10A1	COL10A1	COL11A1	COL11A1	COL13A1	COL13A1
COL13A1	COL14A1	COL14A1	COL14A1	COL15A1	COL16A1
COL17A1	COL18A1	COL18A1	COL1A1	COL1A1	COL1A1
COL1A2	COL1A2	COL3A1	COL3A1	COL3A1	COL4A1
COL4A1	COL4A2	COL4A2	COL5A1	COL5A1	COL5A1
COL5A2	COL5A2	COL5A3	COL5A3	COL6A1	COL6A1
COL6A1	COL6A1	COL6A1	COL6A2	COL6A2	COL6A3
COL7A1	COL7A1	COL8A1	COL8A2	COL8A2	COMP
CORIN	CPA3	CSGlcA_T	CSGlcA_T	CSPG4	CSPG4
CTSG	CTSK	DCN	DCN	DCN	DCN
DKFZP586H212	DPP4	DPP4	DPP4	EFEMP1	EFEMP1
EFEMP2	EFEMP2	ELN	ELN	EMILIN1	FBLN1
FBLN1	FBLN1	FBLN2	FBLN5	FBN1	FBN1
FLRT2	FLRT2	FN1	FN1	FN1	FN1
FN1	FN1	GPC1	GPC1	HSPG2	HSPG2
HTRA1	HYAL1	ITGA2	ITGA5	ITGA7	ITGA7
ITGB3	ITGB3	ITGB4	ITGB4	ITGB4	ITGBL1
ITGBL1	LAMA2	LAMA2	LAMA2	LAMA4	LAMA4
LAMA4	LAMA5	LAMB1	LAMB1	LAMC1	LAMC1
LEPRE1	MATN2	MCAM	MCAM	MCAM	MCAM
MME	MME	MMP11	MMP11	MMP13	MMP14
MMP14	MMP14	MMP14	MMP15	MMP17	MMP2
MMP3	NID1	NID1	NID2	NRP1	NRP1
NRP2	NRP2	NRXN2	PCDH12	PCDH17	PCDH7
PCDH7	PCDH7	PCOLCE	PCOLCE2	PLXDC1	PLXDC1
PLXNA1	PLXNA2	PLXNA3	PLXNB2	PLXNB3	PLXND1
PLXND1	PRSS22	SELE	SELP	SEMA3G	SEMA5A
SEMA5A	SERPINE1	SERPINE1	SERPINE2	SERPINF1	SERPING1
SERPINH1	SGCD	SGCD	SLIT2	SLIT3	SNED1
SNED1	SPARC	SPARC	SPARCL1	SPOCK1	SPON1
SPON1	SPON1	SPON1	SPON2	THBS1	THBS1
THBS1	THBS1	THBS2	THBS3	THBS4	TIMP1
TIMP3	TIMP3	TIMP3	TIMP3	TIMP4	TNN
TNXB	TNXB	TNXB	TSPAN7	TSPAN9	TSPAN9
VWF					

IRCC-HC samples

GSM177890 GSM177892 GSM177894 GSM177911 GSM177921 GSM177924 GSM177928 GSM177930 GSM177938 GSM177945 GSM177947 GSM177950 GSM177958 GSM177961 GSM177962 GSM177964 GSM177965 GSM177969 GSM177974 GSM177986 GSM177987 GSM177989 GSM177996 GSM177997 GSM177998 GSM178000 GSM178002 GSM178004 GSM178005 GSM178006 GSM178007 GSM178008 GSM178009 GSM178014 GSM178015 GSM178016 GSM178019 GSM178027 GSM178028 GSM178029 GSM178030 GSM178031 GSM178032 GSM178033 GSM178036 GSM178037 GSM178039 GSM178040 GSM178041 GSM178042 GSM178043 GSM178045 GSM178046 GSM178047 GSM178051 GSM178054 GSM178062 GSM178067 GSM178072 GSM178074 GSM178076

6.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	667	11
ECM3	88	141
Jaccard similarity	0.59	

Table 32: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	129	8
ECM3	17	44
Jaccard similarity	0.64	

Table 33: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

Figure 42: Heatmap of the CCSS bicluster

6.4.1 Comparing LAS and CCSS biclusters

	No ECM	ECM3
No ECM3	137	0
ECM3	9	52
Jaccard similarity	0.85	

Table 34: Comparing sample lists: LAS (column) vs. CCSS (row) biclusters

6.4.2 Prediction strength for CCSS

6.4.3 Consensus clustering

Figure 43: Statistical significance of CCSS clustering (Consensus clustering)

6.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	4.3E-06

Table 35: SigClust p-values

* Cluster stability assessment * Cluster method: kmeans Full clustering results are given as parameter result of the clusterboot object, which also provides further statistics of the resampling results. Number of resampling runs: 1000 Number of clusters found in data: 2 Clusterwise Jaccard bootstrap mean: [1] 0.6648033 0.6885693 dissolved: [1] 270 163 recovered: [1] 387 386 Clusterwise Jaccard jittering mean: [1] 0.9868980 0.9864249 dissolved: [1] 0 0 recovered:

[1] 981 975 Clusterwise Jaccard replacement by noise mean: [1] 0.7334420 0.7464246 dissolved: [1] 208 125 recovered: [1] 555 545

Removing one sample

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1	1	1	1	1	1

Removing one gene

Figure 44: Removing one sample (left) and one gene (right) at a time: distributions of Jaccard coefficients

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9818 1.0000 1.0000 0.9990 1.0000 1.0000

APN AD ADM FOM :0.3603 :16.92 :5.044 :0.9655 Min. Min. Min. Min. 1st Qu.:5.072 1st Qu.:0.3631 1st Qu.:16.95 1st Qu.:0.9942 Median :0.3631 Median :16.95 Median :5.072 Median :1.0005 Mean :0.3633 Mean :16.95 Mean :5.076 Mean :0.9971 3rd Qu.:0.3631 3rd Qu.:16.95 3rd Qu.:5.072 3rd Qu.:1.0037 Max. :0.3653 :5.114 :1.0045 Max. :16.97 Max. Max.

Removing sets of k genes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.5432	0.8000	0.8475	0.8401	0.8909	0.9821

Figure 45: Removing two thirds of the genes: distribution of Jaccard coefficients

6.4.6 Validation measures

Cluste: kmeans	ring Me s	ethods:						
Cluste 2 3 4	r size: 5 6	5:						
Valida	tion Me	easures:						
				2	3	4	5	6
kmeans	APN		0.018	37	0.0227	0.0755	0.1782	0.2505
	AD		15.110	03	14.3905	14.1193	14.0215	13.8292
	ADM		0.273	34	0.2917	0.7709	1.7650	2.3576
	FOM		0.884	45	0.8452	0.8288	0.8166	0.8030
	Conneo	ctivity	51.430	06	107.7202	131.1516	143.7472	155.8504
	Dunn		0.42	21	0.3990	0.3982	0.4320	0.4480
	Silhou	uette	0.189	93	0.1140	0.0852	0.0931	0.0880
Optima	l Score	es:						
		Score	Method	C	lusters			
APN		0.0187	kmeans	2				
AD		13.8292	kmeans	6				
ADM		0.2734	kmeans	2				
FOM		0.8030	kmeans	6				
Connec	tivity	51.4306	kmeans	2				
Dunn		0.4480	kmeans	6				
Silhou	ette	0.1893	kmeans	2				

7 Sotiriou et al. (2006) dataset

7.1 LAS bicluster

Figure 46: Heatmap of the LAS bicluster

LAS genes

ADAM10	ADAM12	ADAM12	ADAM18	ADAM19	ADAM22	ADAM22	ADAM23
ADAM29	ADAM7	ADAM8	ADAMTS1	ADAMTS3	ADAMTS5	ADAMTS6	ADIPOQ
ALCAM	APP	BGN	BGN	BGN	BST2	CD209	CD300C
CD44	CD6	CD6	CD6	CDH11	CDH11	CDH16	CDH18
CDH20	CDH4	CDH8	CEACAM3	CEACAM3	CEACAM4	CEACAM7	CELSR1
CHL1	CHST1	CHST11	CHST2	CHST3	CHST4	CHST8	CLU
CNTN1	COL10A1	COL10A1	COL11A1	COL11A1	COL11A2	COL14A1	COL15A1
COL16A1	COL17A1	COL18A1	COL18A1	COL19A1	COL1A1	COL1A1	COL1A1
COL1A1	COL1A2	COL1A2	COL3A1	COL3A1	COL3A1	COL4A1	COL4A2
COL4A3	COL4A4	COL4A6	COL4A6	COL5A1	COL5A1	COL5A1	COL5A2
COL5A2	COL5A3	COL6A1	COL6A1	COL6A1	COL6A1	COL6A1	COL6A2
COL6A2	COL6A3	COL7A1	COL8A1	COL8A2	COL8A2	COL9A1	COLQ
COMP	CORIN	CPE	CSPG5	CTSG	CTSO	CTSW	CTSZ
CTSZ	DAG1	DCN	DCN	DCN	DSCAM	ECM1	EFEMP2
EFEMP2	ELA2A	ELN	EMILIN1	FBLN1	FBLN1	FBLN1	FBLN2
FBN1	FBN1	FBN2	FLRT1	FLRT3	FN1	FN1	FN1
FN1	GPC1	GZMH	HABP4	HAPLN2	HAS1	HPN	HSPG2
HSPG2	HTRA1	HYAL2	ITGA10	ITGA3	ITGA5	ITGA7	ITGA7
ITGA8	ITGA9	ITGAM	ITGAX	ITGB3	ITGB4	ITGB5	ITGB5
ITGB8	ITGBL1	ITGBL1	KEL	KLK1	KLK13	KLK14	KLK2
KLK3	KLKB1	LAMA2	LAMA2	LAMA4	LAMA4	LAMB1	LAMB2
LAMB4	LAMC1	LAMC2	LEPRE1	MASP1	MASP2	MASP2	MBTPS2
MCAM	MCAM	MMP11	MMP11	MMP11	MMP13	MMP14	MMP14
MMP14	MMP14	MMP16	MMP17	MMP19	MMP19	MMP2	MMP24
MMP24	MMP25	MMP26	MMP3	MMP8	NAALADL1	NCAM1	NID2
NRP1	NRP2	NRXN2	NRXN3	NRXN3	NRXN3	NTN1	OPCML
PCDH1	PCDH12	PCDH21	PCDH7	PCDH7	PCDHA2	PCDHB1	PCDHGA1
PCDHGA1	PCDHGA3	PCDHGA9	PCDHGB5	PCOLCE	PECAM1	PLXNA1	PLXNA1
PLXNB1	PLXNB2	PLXNB2	PLXNC1	PLXNC1	PLXNC1	PLXND1	PRG2
PRSS1	PRSS3	ROBO3	ROBO4	SDC2	SELE	SEMA3B	SEMA3C
SEMA3F	SEMA3G	SEMA4C	SEMA4G	SEMA5A	SEMA5A	SEMA7A	SERPINA1
SERPINA3	SERPINB1	SERPINB10	SERPINB13	SERPINB13	SERPINB3	SERPINB3	SERPINC1
SERPINE1	SERPINE2	SERPINF1	SERPINF2	SERPING1	SERPINH1	SERPINI2	SGCA
SGCD	SGCD	SGCD	SGCG	SIGLEC5	SIGLEC6	SIGLEC7	SIGLEC8
SIGLEC8	SIGLEC9	SLIT3	SMC3	SMC3	SNED1	SNED1	SPAM1
SPARC	SPARC	SPARCL1	SPOCK1	SPON1	SPON1	SPON1	SPON1
SPON2	SPPL2B	STAG1	STIM1	TGM2	TGM5	THBS1	THBS2
THBS3	THBS4	TIMP1	TIMP3	TIMP3	TIMP3	TIMP3	TMPRSS6
TNR	TNXB	TNXB	TSPAN31	VWF	XPNPEP2		

LAS samples

 GSM65753
 GSM65754
 GSM65756
 GSM65757
 GSM65758
 GSM65762
 GSM65763
 GSM65764

 GSM65765
 GSM65766
 GSM65767
 GSM65768
 GSM65769
 GSM65770
 GSM65771
 GSM65772

 GSM65773
 GSM65774
 GSM65775
 GSM65776
 GSM65779
 GSM65780
 GSM65782
 GSM65783

 GSM65784
 GSM65785
 GSM65786
 GSM65787
 GSM65788
 GSM65789
 GSM65790
 GSM65791

 GSM65793
 GSM65796
 GSM65797
 GSM65798
 GSM65799
 GSM65800
 GSM65801
 GSM65803

 GSM65805
 GSM65807
 GSM65808
 GSM65810
 GSM65811
 GSM65812
 GSM65813
 GSM65814

Figure 47: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 29 of 34 (85%)

Figure 48: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
12.88	0.38

Table 36: Connectivity validation measure and Dunn Index of LAS partitioning

7.2 IRCC-KM bicluster

Figure 49: Heatmap of the IRCC-KM bicluster

IRCC-KM genes

ADAM12	ADAM12	ADAMTS1	ADAMTS5	ADAMTSL2	ADIPOQ	ALCAM	ALCAM
APP	APP	BGN	BGN	BGN	CD36	CDH11	CDH11
CDH5	CELSR1	CHL1	CHST10	CHSY1	CLU	CLU	COL10A1
COL10A1	COL11A1	COL11A1	COL14A1	COL15A1	COL16A1	COL18A1	COL1A1
COL1A1	COL1A1	COL1A2	COL1A2	COL3A1	COL3A1	COL3A1	COL4A1
COL4A5	COL4A6	COL5A1	COL5A1	COL5A1	COL5A2	COL5A2	COL5A3
COL5A3	COL6A1	COL6A1	COL6A1	COL6A1	COL6A2	COL6A2	COL6A3
COL8A1	COL8A2	COL8A2	COMP	CORIN	CPE	CTSK	CTSO
DAG1	DCN	DCN	DCN	DCN	ECM1	EFEMP1	EFEMP2
EFEMP2	ELN	EMILIN1	ENPEP	FBLN1	FBLN1	FBLN1	FBLN2
FBLN5	FBN1	FBN1	FLRT2	FLRT2	FN1	FN1	FN1
FN1	FN1	GPC1	HSPG2	HSPG2	HTRA1	HYAL2	ITGB1
ITGB5	ITGB5	ITGBL1	ITGBL1	LAMA2	LAMA2	LAMA2	LAMA4
LAMA4	LAMB1	LAMB1	LAMB2	LAMC1	LAMC1	LEPRE1	MATN3
MCAM	MCAM	MCAM	MGEA5	MMP11	MMP11	MMP13	MMP14
MMP14	MMP16	MMP19	MMP2	MMP3	NID1	NID1	NID2
NRP1	PCDH1	PCDH7	PCDH7	PCDHGA1	PCDHGA1	PCDHGA1	PCDHGA1
PCOLCE	PECAM1	PLXNA1	PLXNB1	PLXNB2	PLXNC1	PLXND1	PLXND1
PLXDC1	PRSS16	ROBO1	SDC4	SEMA3C	SEMA3G	SEMA5A	SEMA5A
SERPINA3	SERPINB1	SERPINE1	SERPINE2	SERPINF1	SERPING1	SERPINH1	SGCB
SGCE	SLIT2	SLIT3	SNED1	SPARC	SPARC	SPARCL1	SPG20
SPOCK1	SPON1	SPON1	SPON1	SPON1	SPON2	STAG1	THBS2
THBS3	THBS4	TIMP3	TIMP3	TIMP3	TIMP3	TNXB	TSPAN15
VWF							

IRCC-KM samples

GSM65753 GSM65754 GSM65757 GSM65758 GSM65762 GSM65763 GSM65764 GSM65766 GSM65768 GSM65769 GSM65770 GSM65771 GSM65773 GSM65774 GSM65775 GSM65776 GSM65779 GSM65780 GSM65782 GSM65783 GSM65784 GSM65785 GSM65786 GSM65787 GSM65788 GSM65789 GSM65790 GSM65791 GSM65793 GSM65796 GSM65797 GSM65798 GSM65799 GSM65800 GSM65801 GSM65803 GSM65807 GSM65808 GSM65810 GSM65811 GSM65812 GSM65814 GSM65815 GSM65817 GSM65818

7.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	553	171
ECM3	46	139
Jaccard similarity	0.39	

Table 37: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	73	6
ECM3	0	45
Jaccard similarity	0.88	

Table 38: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)

7.3 IRCC-HC bicluster

Figure 50: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

ADAM12	ADAM12	ADAM18	ADAM19	ADAM20	ADAM22	ADAM22	ADAM23
ADAM29	ADAM7	ADAM8	ADAMTS1	ADAMTS3	ADAMTS5	ADAMTS6	ADIPOQ
APP	APP	APP	BGN	BGN	BGN	CD209	CD300C
CD44	CD6	CD6	CD6	CDH11	CDH11	CDH16	CDH18
CDH20	CDH4	CDH8	CEACAM3	CEACAM3	CEACAM4	CEACAM7	CELSR1
CHL1	CHST11	CHST2	CHST3	CHST4	CHST8	CHSY1	CNTN1
CNTN6	COL10A1	COL10A1	COL11A1	COL11A1	COL11A2	COL14A1	COL15A1
COL16A1	COL17A1	COL18A1	COL18A1	COL19A1	COL1A1	COL1A1	COL1A1
COL1A1	COL1A2	COL1A2	COL3A1	COL3A1	COL3A1	COL4A1	COL4A1
COL4A2	COL4A2	COL4A3	COL4A4	COL4A6	COL5A1	COL5A1	COL5A1
COL5A2	COL5A2	COL5A3	COL5A3	COL6A1	COL6A1	COL6A1	COL6A1
COL6A1	COL6A1	COL6A2	COL6A2	COL6A3	COL7A1	COL8A1	COL8A2
COL8A2	COL9A1	COL9A3	COLQ	COMP	CORIN	CSPG4	CSPG4
CSPG5	CTSB	CTSG	CTSK	CTSO	CTSZ	CTSZ	DCN
DCN	DCN	DCN	DSCAM	EFEMP2	EFEMP2	ELA2A	ELN
EMILIN1	FBLN1	FBLN1	FBLN1	FBLN2	FBLN5	FBN1	FBN1
FBN2	FBN2	FLRT1	FLRT2	FLRT2	FLRT3	FN1	FN1
FN1	FN1	GPC1	HABP4	HAPLN2	HAS1	HPN	HSPG2
HSPG2	HTRA1	ITGA10	ITGA3	ITGA5	ITGA7	ITGA7	ITGA8
ITGA9	ITGAM	ITGAX	ITGB1	ITGB3	ITGB3	ITGB3	ITGB4
ITGB4	ITGB5	ITGB5	ITGB8	ITGBL1	ITGBL1	KEL	KLK1
KLK13	KLK2	KLK3	KLKB1	LAMA2	LAMA2	LAMA2	LAMA4
LAMA4	LAMA4	LAMB1	LAMB1	LAMB4	LAMC1	LAMC1	LAMC2
LEPRE1	MASP1	MASP2	MASP2	MATN3	MBTPS2	MCAM	MCAM
MCAM	MGEA5	MMP11	MMP11	MMP11	MMP13	MMP14	MMP14
MMP14	MMP14	MMP16	MMP17	MMP19	MMP19	MMP2	MMP24
MMP24	MMP25	MMP26	MMP3	MMP8	NAALADL1	NCAM1	NCAM1
NID1	NID2	NRP1	NRP2	NRP2	NRXN2	NRXN3	NRXN3
NRXN3	NTN1	OPCML	P11	PCDH1	PCDH12	PCDH21	PCDH7
PCDH7	PCDHA2	PCDHB1	PCDHGA1	PCDHGA1	PCDHGA1	PCDHGA1	PCDHGA3
PCDHGA9	PCDHGB5	PCOLCE	PECAM1	PLXNA1	PLXNA1	PLXNB1	PLXNB2
PLXNB2	PLXNC1	PLXNC1	PLXNC1	PLXND1	PLXND1	PRG2	PRSS1
PRSS16	PRSS3	ROBO1	ROBO3	ROBO4	SDC2	SELE	SEMA3B
SEMA3F	SEMA3G	SEMA4G	SEMA5A	SEMA5A	SEMA7A	SERBP1	SERPINA1
SERPINB10	SERPINB13	SERPINB13	SERPINB3	SERPINB3	SERPINB4	SERPINB7	SERPINB8
SERPINC1	SERPIND1	SERPINE1	SERPINE1	SERPINE2	SERPINF1	SERPINF2	SERPING1
SERPINH1	SERPINI2	SGCA	SGCB	SGCB	SGCD	SGCD	SGCD
SGCE	SGCG	SIGLEC5	SIGLEC6	SIGLEC7	SIGLEC7	SIGLEC8	SIGLEC8
SIGLEC9	SLIT2	SLIT3	SMC3	SMC3	SNED1	SNED1	SPAM1
SPAM1	SPARC	SPARC	SPARCL1	SPG20	SPOCK1	SPON1	SPON1
SPON1	SPON1	SPON2	SPPL2B	STAG1	STIM1	TGM5	THBS1
THBS2	THBS3	THBS4	TIMP1	TIMP2	TIMP3	TIMP3	TIMP3
TIMP3	TMPRSS6	TNR	TNXB	TNXB	TSPAN12	TSPAN31	TSPAN32
VWF	XPNPEP2						

IRCC-HC samples

 GSM65753
 GSM65754
 GSM65756
 GSM65757
 GSM65758
 GSM65762
 GSM65763
 GSM65764

 GSM65765
 GSM65766
 GSM65767
 GSM65768
 GSM65769
 GSM65770
 GSM65771
 GSM65772

 GSM65773
 GSM65774
 GSM65775
 GSM65776
 GSM65779
 GSM65780
 GSM65782
 GSM65783

 GSM65784
 GSM65785
 GSM65786
 GSM65787
 GSM65788
 GSM65789
 GSM65790
 GSM65791

 GSM65793
 GSM65796
 GSM65797
 GSM65798
 GSM65799
 GSM65800
 GSM65801
 GSM65803

 GSM65807
 GSM65808
 GSM65810
 GSM65811
 GSM65812
 GSM65813
 GSM65814
 GSM65815

 GSM65817
 GSM65818
 GSM65819
 GSM65819
 GSM65819
 GSM65819

7.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	544	19
ECM3	55	291
Jaccard similarity	0.80	

Table 39: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	72	1
ECM3	1	50
Jaccard similarity	0.96	

Table 40: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

7.4 CCSS bicluster

Figure 51: Heatmap of the CCSS bicluster

7.4.1 Comparing LAS and CCSS biclusters

	No ECM	ECM3
No ECM3	60	0
ECM3	13	51
Jaccard similarity	0.80	

Table 41: Comparing sample lists: LAS (column) vs. CCSS (row) biclusters

7.4.2 Prediction strength for CCSS

7.4.3 Consensus clustering

Figure 52: Statistical significance of CCSS clustering (Consensus clustering)

7.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	4.7E-46

Table 42: SigClust p-values

* Cluster stability assessment * Cluster method: kmeans Full clustering results are given as parameter result of the clusterboot object, which also provides further statistics of the resampling results. Number of resampling runs: 1000 Number of clusters found in data: 2 Clusterwise Jaccard bootstrap mean: [1] 0.9632207 0.9702989 dissolved: [1] 0 0 recovered: [1] 1000 1000 Clusterwise Jaccard jittering mean: [1] 1 1 dissolved: [1] 0 0 recovered:

```
[1] 1000 1000
Clusterwise Jaccard replacement by noise mean:
[1] 0.9684621 0.9744983
dissolved:
[1] 0 0
recovered:
[1] 1000 1000
```

Removing one sample

Min.	1st	Qu.	Median	Mean	3rd Qu.	Max.
1		1	1	1	1	1

Removing one gene

Figure 53: Removing one sample (left) and one gene (right) at a time: distributions of Jaccard coefficients

Min. 1st Qu. Mean 3rd Qu. Median Max. 1 1 1 1 1 1 APN AD ADM FOM :0.1723 :20.32 :5.148 Min. :0.2008 Min. Min. Min. 1st Qu.:5.148 1st Qu.:0.1723 1st Qu.:20.32 1st Qu.:0.6111 Median :0.1723 Median :20.32 Median :5.148 Median :0.8099 Mean :0.1723 Mean :20.32 Mean :5.148 Mean :0.7572 3rd Qu.:0.1723 3rd Qu.:20.32 3rd Qu.:5.148 3rd Qu.:0.9171 Max. :0.1723 :20.32 :5.148 :1.0077 Max. Max. Max.

Removing sets of k genes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.8750	1.0000	1.0000	0.9999	1.0000	1.0000

Figure 54: Removing two thirds of the genes: distribution of Jaccard coefficients

7.4.6 Validation measures

Clustering Me kmeans	ethods:					
Cluster sizes 2 3 4 5 6	3:					
Validation Me	easures:	2	2 3	3 4	5	6
kmeans APN		0.000	0.0019	0.0016	0.0065	0.0054
AD		18.8528	3 17.6381	16.9014	16.4625	16.0267
ADM		0.000	0.0433	0.0312	0.0979	0.0851
FOM		0.7572	2 0.7133	0.6855	0.6715	0.6614
Connec	ctivity	0.000	0 16.6972	2 45.2095	55.7548	61.4861
Dunn		0.5753	3 0.4334	0.5102	0.5065	0.5062
Silhou	lette	0.3458	3 0.2590	0.1643	0.1208	0.1130
Optimal Score	es:					
	Score	Method	Clusters	5		
APN	0.0000	kmeans	2			
AD	16.0267	kmeans	6			
ADM	0.0000	kmeans	2			
FOM	0.6614	kmeans	6			
Connectivity	0.0000	kmeans	2			
Dunn	0.5753	kmeans	2			
Silhouette	0.3458	kmeans	2			

8 Ma et al. (2004) dataset (GDS807)

8.1 LAS bicluster

Figure 55: Heatmap of the LAS bicluster

Figure 56: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 20 of 34 (59%)

Figure 57: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
12.97	0.39

Table 43: Connectivity validation measure and Dunn Index of LAS partitioning

8.2 IRCC-KM bicluster

Figure 58: Heatmap of the IRCC-KM bicluster

IRCC-KM genes

ADAM19	ADAMTS1	ADAMTS12	ADAMTS2	ADAMTS6	CD300A
CD36	CD36	CDH11	CDH6	CHST11	CHST11
CHST2	COL10A1	COL11A1	COL12A1	COL14A1	COL15A1
COL18A1	COL1A1	COL1A2	COL4A1	COL4A2	COL5A1
COL5A2	COL5A3	COL6A1	COL6A3	COL8A1	COMP
CORIN	CPE	CTHRC1	CTSK	CTSS	CTSZ
DCN	DCN	EMILIN1	EMILIN1	ESAM	FBLN2
FBLN5	FBN1	FLRT2	GZMA	GZMH	GZMK
HAPLN3	HSPG2	HTRA1	ITGA11	ITGA5	ITGA7
ITGA8	ITGB2	ITGBL1	ITGBL1	LAMA2	LAMA4
MCAM	MME	MMP1	MMP11	MMP11	MMP13
MMP2	MMP3	NID2	PCDH12	PCDH17	PCDH17
PCDH18	PCDH7	PCOLCE	PCOLCE2	PLXNB3	ROBO4
SELE	SELP	SELPLG	SEMA4A	SERPINE2	SERPINF1
SERPING1	SERPINH1	SGCD	SLIT2	SLIT2	SPARC
SPARCL1	SPOCK1	SPOCK2	SPON1	SPON2	SPON2
THBS2	THBS4	TIMP3	TNN	TSPAN7	VCAM1
VWF	VCAN				

IRCC-KM samples

GSM22369 GSM22382 GSM22384 GSM22390 GSM22401 GSM22404 GSM22405 GSM22367 GSM22368 GSM22370 GSM22375 GSM22395 GSM22411

8.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	582	5
ECM3	25	79
Jaccard similarity	0.72	

Table 44: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	46	1
ECM3	1	12
Jaccard similarity	0.86	

Table 45: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)

8.3 IRCC-HC bicluster

Figure 59: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

ADAM19	ADAMDEC1	ADAMTS1	ADAMTS12	ADAMTS2	ADAMTS4
ADAMTSL1	ADIPOQ	CD300A	CD36	CD36	CD6
CDH11	CDH17	CDH26	CDH5	CHL1	CHST11
CHST11	CHST2	CNTN1	COL10A1	COL11A1	COL14A1
COL18A1	COL1A1	COL1A2	COL4A1	COL4A2	COL5A1
COL5A2	COL5A3	COL6A1	COL6A3	COL8A1	COL9A2
COMP	CTHRC1	CTSC	CTSH	CTSH	CTSK
CTSZ	DCN	DCN	EMILIN1	EMILIN1	ESAM
FBN1	FLRT2	GPC6	GZMA	GZMH	GZMK
HAPLN3	HAS1	HAS2	HSPG2	HTRA1	ICAM2
ITGA11	ITGA7	ITGA8	ITGB2	ITGBL1	ITGBL1
KLK15	LAMA2	LAMA4	MARCO	MATN3	MCAM
MMP1	MMP11	MMP11	MMP13	MMP2	MMP3
MMP9	NAALAD2	NAALADL1	NAPSB	NID2	PCDH12
PCDH17	PCDH17	PCDH18	PCDHB13	PCDHB18	PCOLCE
PCOLCE2	PECAM1	PLXDC1	RNPEP	ROBO4	SELE
SELP	SELPLG	SEMA4D	SEMA7A	SERPINE2	SERPINF1
SERPING1	SERPINH1	SGCD	SIGLEC7	SLIT2	SLIT2
SPARC	SPARCL1	SPG21	SPOCK1	SPOCK2	SPON1
SPON2	SPON2	STAG3	THBS2	THBS4	TSPAN32
VCAM1	VCAN	VWF	XPNPEP2		

IRCC-HC samples

GSM22369	GSM22382	GSM22384	GSM22390	GSM22401	GSM22404
GSM22405	GSM22408	GSM22423	GSM22366	GSM22367	GSM22368
GSM22370	GSM22375	GSM22380	GSM22386	GSM22391	GSM22395
GSM22411	GSM22415				

8.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	558	9
ECM3	49	75
Jaccard similarity	0.56	

Table 46: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	40	0
ECM3	7	13
Jaccard similarity	0.65	

Table 47: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

Figure 60: Heatmap of the CCSS bicluster
8.4.1 Comparing LAS and CCSS biclusters

	No ECM	ECM3
No ECM3	40	0
ECM3	7	13
Jaccard similarity	0.65	

Table 48: Comparing sample lists: LAS (column) vs. CCSS (row) biclusters

8.4.2 Prediction strength for CCSS

8.4.3 Consensus clustering

Figure 61: Statistical significance of CCSS clustering (Consensus clustering)

8.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	6.1E-07

Table 49: SigClust p-values

* Cluster stability assessment * Cluster method: kmeans Full clustering results are given as parameter result of the clusterboot object, which also provides further statistics of the resampling results. Number of resampling runs: 1000 Number of clusters found in data: 2 Clusterwise Jaccard bootstrap mean: [1] 0.8940155 0.9342179 dissolved: [1] 5 2 recovered: [1] 909 982 Clusterwise Jaccard jittering mean: [1] 0.9997000 0.9998364 dissolved: [1] 0 0

recovered:

[1] 1000 1000 Clusterwise Jaccard replacement by noise mean: [1] 0.9112561 0.9445279 dissolved: [1] 6 1 recovered: [1] 967 986

Removing one sample

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.3220	0.3220	0.3390	0.3333	0.3390	0.3390

Removing one gene

Figure 62: Removing one sample (left) and one gene (right) at a time: distributions of Jaccard coefficients

Min. 1st Qu. Mean 3rd Qu. Median Max. 1 1 1 1 1 1 APN AD ADM FOM :0.1986 :11.39 :2.22 Min. :0.6757 Min. Min. Min. 1st Qu.:0.1986 1st Qu.:11.39 1st Qu.:2.22 1st Qu.:0.8271 Median :0.1986 Median :11.39 Median :2.22 Median :0.8893 Mean :0.1986 Mean :11.39 Mean :2.22 Mean :0.8765 3rd Qu.:0.1986 3rd Qu.:11.39 3rd Qu.:2.22 3rd Qu.:0.9376 Max. :0.1986 :11.39 :2.22 :1.0003 Max. Max. Max.

Removing sets of k genes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.3824	0.6000	0.6500	0.6647	0.7500	1.0000

Figure 63: Removing two thirds of the genes: distribution of Jaccard coefficients

8.4.6 Validation measures

Clustering Me kmeans	ethods:					
Cluster sizes 2 3 4 5 6	5:					
Validation Me	easures:	2	2 3	4	5	6
kmeans APN		0.000	0.0148	0.1365	0.3117	0.2067
AD		0.9662	2 0.8833	0.8672	0.8641	0.8125
ADM		0.000	0.1591	1.2190	2.4579	1.6711
FOM		0.8765	5 0.8270	0.8155	0.7987	0.7874
Connec	ctivity	56.7460	0 69.4218	86.0329	80.4929	94.1976
Dunn		0.3129	9 0.3448	0.3436	0.3651	0.3436
Silhou	uette	0.0302	2 0.0689	0.0478	0.0589	0.0533
Optimal Score	es:					
	Score	Method	Clusters			
APN	0.0000	kmeans	2			
AD	0.8125	kmeans	6			
ADM	0.0000	kmeans	2			
FOM	0.7874	kmeans	6			
Connectivity	56.7460	kmeans	2			
Dunn	0.3651	kmeans	5			
Silhouette	0.0689	kmeans	3			

- 9 Boersma et al. (2008) (microdissected stromal samples)
- 9.1 LAS bicluster

Figure 64: Heatmap of the LAS bicluster

Figure 65: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 32 of 34 (94%)

Figure 66: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
8.98	0.48

Table 50: Connectivity validation measure and Dunn Index of LAS partitioning

9.2 IRCC-KM bicluster

Figure 67: Heatmap of the IRCC-KM bicluster

IRCC-KM genes

MMP14	SPARC	CTSD	CTSB	CTSB	CD9
MMP2	BGN	BGN	THBS1	THBS1	THBS1
THBS1	ITGB5	ITGB5	TIMP3	TIMP3	TIMP3
TIMP3	HTRA1	COL6A3	CTSC	LAMB1	TNC
TIMP1	COL3A1	DCN	CPD	CPD	ALCAM
ALCAM	NID1	NID1	CHPF	SERPINF1	COL1A1
COL1A1	ITGAV	SPOCK1	ADAM9	COL1A2	COL1A2
CTSK	PRSS23	PCOLCE	ADAM10	SERPINE1	SERPINE1
GPC1	FBN1	FBN1	ITGB2	MMP14	MMP14
CTSS	CTSS	ADAM12	FBLN1	THBS2	SDF2
TIMP2	FBN2	TSPAN31	COL5A1	PGCP	CTSO
SEMA3C	SEMA3C	MMP11	MMP11	MMP9	NID2
EMILIN1	COL11A1	MMP1	MMP12	ITGB3	GPC4
GPC4	ITGAE	SGCB	ITGBL1	PCDH7	PCDH7
CPA3	COMP	ITGAM	MMP3	ITGA4	COL10A1
MMP13	MATN3	PLXNC1	EFEMP2	CDH11	CDH11
SIGLEC7	SERPINH1	CD164	PGCP	CD164	COL6A2
CTSZ	DCN	EFEMP2	ECM1	SPON1	SPON1
SERPINB9	ADAM19	CD300A	ITGAX	SGCD	SGCD
FN1	COL3A1	COL13A1	DPP4	FN1	DCN
NRP2	DCN	ITGB1	COL6A1	SDC2	SDC2
SDC2	FN1	COL5A1	COL5A1	SPARC	COL6A1
ROB01	PLXNC1	CTSB	CTSB	COL6A2	ITGA4
COL6A1	SGCD	SERPINB1	BGN	SPON1	SPON1
ITGB5	ITGB5	PLXDC1	ADAMTS2	SGCD	NRP2
FN1	FN1	ITGBL1	APP	COL3A1	ADAM12
FBN2	THBS1	FN1	MMP14	COL10A1	COL1A1
SPG21	SPON2	CHST12	CHST11	PLXDC1	CORIN
KLK14	LEPRE1	ITFG1	COL5A2	COL5A2	$CSGlcA_T$
COL8A2	COL11A1	COL8A2	CSGlcA_T		

IRCC-KM samples

stroma_44_IB stroma_8_non stroma_12_no stroma_14_no stroma_11_no stroma_32_no stroma_17_no stroma_19_no stroma_25_no stroma_27_no stroma_34_no

9.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	689	36
ECM3	66	112
Jaccard similarity	0.52	

Table 51: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	34	2
ECM3	1	10
Jaccard similarity	0.77	

Table 52: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)

9.3 IRCC-HC bicluster

Figure 68: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

ADAM10	ADAM10	ADAM12	ADAM8	ADAM9	ADAMDEC1
ADAMTS2	ADRM1	BGN	BGN	BGN	BST1
CD164	CD164	CD164	CD300A	CD300A	CD44
CD44	CD44	CD44	CD44	CD44	CD44
CDH11	CDH11	CHPF	CHST11	CHST7	COL10A1
COL10A1	COL11A1	COL11A1	COL1A1	COL1A1	COL1A1
COL1A2	COL1A2	COL3A1	COL3A1	COL3A1	COL4A3BP
COL5A1	COL5A1	COL5A1	COL5A2	COL5A2	COL6A1
COL6A1	COL6A1	COL6A2	COL6A2	COL6A3	COL7A1
COL8A1	COL8A2	COL8A2	COMP	CORIN	CPA3
CPD	CPM	CSGlcA_T	$CSGlcA_T$	CTSB	CTSB
CTSB	CTSB	CTSC	CTSD	CTSF	CTSH
CTSK	CTSS	CTSS	CTSZ	DCN	DCN
DCN	DCN	DPP4	DPP4	DPP4	ECM1
EFEMP2	EFEMP2	EMILIN1	FBLN1	FBLN1	FBN1
FBN1	FCN1	FN1	FN1	FN1	FN1
FN1	FN1	GPC4	GPC4	HTRA1	ITGA3
ITGA5	ITGAE	ITGAL	ITGAM	ITGAV	ITGAX
ITGB1	ITGB1BP1	ITGB2	ITGB3	ITGB3	ITGB5
ITGB5	ITGB5	ITGB5	ITGB7	ITGBL1	ITGBL1
LAMA4	LAMB1	LAMB1	LAMB2	LEPRE1	MATN3
MME	MME	MMP1	MMP11	MMP12	MMP13
MMP14	MMP14	MMP14	MMP19	MMP19	MMP2
MMP9	NID1	NID1	NID2	NRP1	NRP2
NRP2	PCDH7	PCDH7	PCOLCE	PGCP	PGCP
PLXDC1	PLXDC1	PLXNA1	PLXNA2	PLXNB2	PLXNC1
PLXNC1	PLXNC1	PLXND1	PLXND1	PREP	PREP
PRG2	PRSS23	PSMC4	SDC2	SDC2	SDC2
SELPLG	SEMA3C	SERPINB1	SERPINB1	SERPINE1	SERPINE1
SERPINF1	SERPINH1	SGCD	SGCD	SGCD	SGCD
SIGLEC7	SPARC	SPARC	SPOCK1	SPON1	SPON1
SPON1	SPON1	SPON2	TGM2	THBS1	THBS1
THBS1	THBS1	THBS1	THBS2	THBS3	TIMP1
TIMP2	TIMP3	TIMP3	TIMP3	TIMP3	TSPAN2
TSPAN3	TSPAN3	TSPAN31	TSPAN31	TSPAN4	TSPAN4
XPNPEP2					

IRCC-HC samples

stroma_44_IB stroma_8_non stroma_12_no stroma_14_no stroma_11_no stroma_32_no stroma_17_no stroma_19_no stroma_20_no stroma_22_no stroma_25_no stroma_27_no stroma_34_no

9.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	647	45
ECM3	108	103
Jaccard similarity	0.40	

Table 53: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	33	1
ECM3	2	11
Jaccard similarity	0.79	

Table 54: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

9.4 CCSS bicluster

Figure 69: Heatmap of the CCSS bicluster

9.4.1 Comparing LAS and CCSS biclusters

	No ECM	ECM3
No ECM3	23	0
ECM3	12	12
Jaccard similarity	0.50	

Table 55: Comparing sample lists: LAS (column) vs. CCSS (row) biclusters

9.4.2 Prediction strength for CCSS

9.4.3 Consensus clustering

Figure 70: Statistical significance of CCSS clustering (Consensus clustering)

9.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	2.0E-05

Table 56: SigClust p-values

[1] 1000 1000 Clusterwise Jaccard replacement by noise mean: [1] 0.8409090 0.8565614 dissolved: [1] 1 1 recovered: [1] 798 909

Removing one sample

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.9412	0.9444	1.0000	0.9795	1.0000	1.0000

Removing one gene

Figure 71: Removing one sample (left) and one gene (right) at a time: distributions of Jaccard coefficients

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9444 0.9444 1.0000 0.9824 1.0000 1.0000

APN AD ADM FOM :0.1824 :14.82 :2.759 :0.6602 Min. Min. Min. Min. 1st Qu.:0.1824 1st Qu.:14.82 1st Qu.:2.759 1st Qu.:0.8317 Median :0.2116 Median :14.90 Median :3.116 Median :0.8855 Mean :0.2023 Mean :14.87 Mean :3.003 Mean :0.8784 3rd Qu.:0.2116 3rd Qu.:14.90 3rd Qu.:3.116 3rd Qu.:0.9403 Max. :0.2116 :14.90 :3.116 :1.0012 Max. Max. Max.

Removing sets of k genes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.5769	0.8333	0.8889	0.8788	0.9444	1.0000

Figure 72: Removing two thirds of the genes: distribution of Jaccard coefficients

9.4.6 Validation measures

Clustering Me kmeans	ethods:					
Cluster sizes 2 3 4 5 6	5:					
Validation Me	easures:	c) 3	Д	Б	6
		2	2 0	т	0	0
kmeans APN		0.0128	3 0.0110	0.0357	0.0391	0.0821
AD		0.9731	L 0.8851	0.8341	0.7806	0.7606
ADM		0.2520	0.1921	0.4987	0.5343	1.0879
FOM		0.8784	1 0.8298	0.7906	0.7779	0.7580
Connec	ctivity	57.8988	8 65.3385	68.7929	71.1440	74.5341
Dunn		0.2775	5 0.2785	0.3473	0.3473	0.3438
Silhou	uette	0.0093	3 0.0402	0.0361	0.0498	0.0381
Optimal Score	es:					
	Score	Method	Clusters			
APN	0.0110	kmeans	3			
AD	0.7606	kmeans	6			
ADM	0.1921	kmeans	3			
FOM	0.7580	kmeans	6			
Connectivity	57.8988	kmeans	2			
Dunn	0.3473	kmeans	4			
Silhouette	0.0498	kmeans	5			

10 Boersma et al. (2008) (microdissected tumor cell samples)

10.1 LAS bicluster

Figure 73: Heatmap of the LAS bicluster

Figure 74: Most informative genes for the LAS bicluster

Number of informative genes of the LAS bicluster that also belong to the ECM3 consensus list: 28 of 34 (82%)

Figure 75: Silhoutte plot for the LAS bicluster

Connectivity	Dunn Index
11.62	0.34

Table 57: Connectivity validation measure and Dunn Index of LAS partitioning

10.2 IRCC-KM bicluster

Figure 76: Heatmap of the IRCC-KM bicluster

 $IRCC\text{-}KM \ genes$

SPARC	CTSD	LAMC1	LAMC1	SPARCL1	CTSB
CTSB	SERPING1	TGM2	MMP2	BGN	BGN
THBS1	THBS1	CPE	ITGB5	ITGB5	TIMP3
TIMP3	TIMP3	TIMP3	HTRA1	ITGA5	COL6A3
CTSC	LAMB1	TNC	HSPG2	HSPG2	TIMP1
EFEMP1	COL3A1	DCN	CPD	NID1	NID1
VWF	LAMA4	TSPAN7	SERPINF1	STAG1	CTSH
COL1A1	COL1A1	MATN2	ITGAV	SPOCK1	COL1A2
COL1A2	CTSK	PCOLCE	SERPINE1	SERPINE1	FBN1
FBN1	ITGB2	MMP14	CTSS	CTSS	ADAM12
FBLN1	FBLN1	CHSY1	THBS2	FBLN5	TIMP2
COL5A1	ITGB1BP1	MME	MME	COL15A1	PGCP
DPP4	DPP4	CTSO	SEMA3C	SLIT3	VCAM1
FBLN2	MMP9	NID2	EMILIN1	COL16A1	FLRT2
FLRT2	SELL	MMP19	MMP12	CHL1	ITGB3
ITGB3	CDH5	ICAM2	CDH13	ENPEP	ENPEP
GPC4	GPC4	LAMA2	ADAM8	FCN1	SEMA5A
ITGBL1	GZMA	CDH6	CPA3	PCDH17	NCAM2
COMP	BST1	ADAM17	ITGAM	ITGA4	SELP
CPM	ADAMDEC1	SELE	HAS2	PLXNC1	CD36
EFEMP2	CHST7	CDH11	CDH11	ADIPOQ	SIGLEC7
CD209	HAS1	ADAM28	PGCP	TNXB	PECAM1
PECAM1	PECAM1	COL18A1	COL18A1	MCAM	COL6A2
GPC3	SMC3	TSPAN4	TSPAN4	CTSZ	LAMA4
DCN	EFEMP2	ECM1	SPON1	SPON1	CD36
SERPINB9	ADAM19	SELPLG	SLIT2	CD300A	ITGAX
SGCD	FN1	NRP1	MCAM	CD44	TGM2
COL3A1	MCAM	DPP4	LAMB1	FN1	DCN
DCN	ITGB1	COL4A2	COL4A2	COL4A1	COL4A1
COL6A1	SDC2	SDC2	SDC2	SERPINE2	PLXND1
NRP1	FN1	COL5A1	COL5A1	SPG20	SPARC
ELN	COL14A1	COL6A1	SEMA5A	PLXNC1	CTSB
CTSB	COL6A2	ITGA4	COL6A1	ITGAL	SNED1
SNED1	LAMA2	ADAM17	SGCD	ICAM2	BGN
SPON1	SPON1	ITGB5	ITGB5	PLXDC1	OPCML
SGCD	SPG7	FN1	ADAMTS3	ITGBL1	COL3A1
ITGB3	TNN	THBS1	TNC	LAMB2	ITGA7
FN1	LAMA2	CD300A	MMP14	COL1A1	SPON2
CHST12	COL5A3	SIGLEC1	COL4A3BP	CHST11	PCDH12
SEMA3G	PLXDC1	MMP28	ADAMTS5	ADAMTS9	CORIN
LEPRE1	ADAMTS6	TMPRSS5	PLXNA1	COL5A2	COL5A2
$CSGlcA_T$	CLU	NAALAD2	ADAMTS1	PLXND1	COL5A3
CSGlcA_T					

$IRCC\text{-}KM \ samples$

tumor...40_I tumor...42_I tumor...46_I tumor...48_I tumor...4_no tumor...8_no tumor...17_n tumor...22_n tumor...25_n tumor...26_n tumor...34_n

10.2.1 Comparing LAS and IRCC-KM biclusters

	No ECM	ECM3
No ECM3	649	1
ECM3	144	109
Jaccard similarity	0.43	

Table 58: Comparing gene lists: LAS (column) vs. IRCC-KM bicluster (row)

	No ECM	ECM3
No ECM3	31	6
ECM3	3	8
Jaccard similarity	0.47	

Table 59: Comparing sample lists: LAS (column) vs. IRCC-KM bicluster (row)

10.3 IRCC-HC bicluster

Figure 77: Heatmap of the IRCC-HC bicluster

IRCC-HC genes

ADAM12	ADAM12	ADAM17	ADAM17	ADAM19	ADAM28
ADAM28	ADAM3A	ADAM8	ADAMDEC1	ADAMTS1	ADAMTS2
ADAMTS5	ADAMTS9	ADIPOQ	BGN	BGN	BGN
BST1	CD209	CD300A	CD300A	CD36	CD36
CD6	CDH11	CDH11	CDH13	CDH5	CDH6
CHL1	CHST11	CHST12	CHST2	CHST7	COL10A1
COL10A1	COL11A1	COL11A1	COL14A1	COL15A1	COL16A1
COL18A1	COL18A1	COL1A1	COL1A1	COL1A1	COL1A2
COL1A2	COL3A1	COL3A1	COL3A1	COL4A1	COL4A1
COL4A2	COL4A2	COL4A3BP	COL5A1	COL5A1	COL5A1
COL5A2	COL5A2	COL5A3	COL5A3	COL6A1	COL6A1
COL6A1	COL6A2	COL6A2	COL6A3	COL8A2	COL8A2
COMP	CORIN	CPA3	CPM	CPM	CTSB
CTSB	CTSB	CTSB	CTSC	CTSD	CTSG
CTSH	CTSK	CTSS	CTSS	CTSW	CTSZ
DCN	DCN	DCN	DCN	DKFZP586H212	DPP4
DPP4	DPP4	EFEMP2	EFEMP2	EMILIN1	ENPEP
ENPEP	FBLN1	FBLN1	FBLN2	FBN1	FBN1
FCN1	FLRT2	FLRT2	FN1	FN1	FN1
FN1	GZMA	GZMB	GZMH	GZMK	HAS1
HAS2	HSPG2	HTRA1	HYAL2	ICAM1	ICAM1
ICAM2	ICAM2	ITGA10	ITGA3	ITGA4	ITGA4
ITGA5	ITGA7	ITGAE	ITGAL	ITGAM	ITGAX
ITGB1	ITGB2	ITGB3	ITGB3	ITGB3	ITGB7
ITGBL1	ITGBL1	LAMA2	LAMA2	LAMA2	LAMA4
LAMB1	LAMB1	LEPRE1	MARCO	MATN1	MATN2
MATN3	MCAM	MCAM	MCAM	MCAM	MME
MME	MMP11	MMP11	MMP12	MMP13	MMP14
MMP14	MMP16	MMP19	MMP2	MMP28	MMP7
MMP9	NAALAD2	NCAM2	NID1	NID1	NID2
NRP1	NRP1	NRP2	OPCML	PCDH12	PCDH17
PCOLCE	PECAM1	PECAM1	PECAM1	PLXDC1	PLXDC1
PLXNA1	PLXNA1	PLXNC1	PLXNC1	PLXND1	PLXND1
ROB01	SELE	SELL	SELP	SELPLG	SEMA3C
SEMA3C	SEMA3G	SEMA4D	SEMA5A	SEMA5A	SERPINB9
SERPINE1	SERPINE1	SERPINF1	SERPING1	SERPINH1	SGCD
SGCD	SGCD	SGCD	SIGLEC1	SIGLEC1	SIGLEC7
SIGLEC9	SLIT2	SLIT3	SNED1	SNED1	SPARC
SPARC	SPARCL1	SPOCK1	SPOCK2	SPOCK2	SPOCK3
SPON1	SPON1	SPON1	SPON1	SPON2	TGM2
TGM2	THBS1	THBS1	THBS1	THBS1	THBS1
THBS2	THBS4	TIMP1	TIMP2	TIMP3	TIMP3
TIMP3	TIMP3	TNC	TNC	TNXB	TSPAN3
TSPAN3	TSPAN4	TSPAN4	TSPAN7	VCAM1	VWF

IRCC-HC samples

tumor...40_I tumor...42_I tumor...46_I tumor...48_I tumor...1_no tumor...4_no tumor...8_no tumor...17_n tumor...22_n tumor...25_n tumor...26_n tumor...34_n

10.3.1 Comparing LAS and IRCC-HC biclusters

	No ECM	ECM3
No ECM3	632	7
ECM3	161	103
Jaccard similarity	0.38	

Table 60: Comparing gene lists: LAS (column) vs. IRCC-HC bicluster (row)

	No ECM	ECM3
No ECM3	30	6
ECM3	4	8
Jaccard similarity	0.44	

Table 61: Comparing sample lists: LAS (column) vs. IRCC-HC bicluster (row)

Figure 78: Heatmap of the CCSS bicluster

10.4.1 Comparing LAS and CCSS biclusters

	No ECM	ECM3
No ECM3	23	0
ECM3	11	14
Jaccard similarity	0.56	

Table 62: Comparing sample lists: LAS (column) vs. CCSS (row) biclusters

10.4.2 Prediction strength for CCSS

10.4.3 Consensus clustering

Figure 79: Statistical significance of CCSS clustering (Consensus clustering)

10.4.4 Statistical significance

P-value	P-vNorm
0.0E + 00	4.4E-05

Table 63: SigClust p-values

[1] 1000 1000 Clusterwise Jaccard replacement by noise mean: [1] 0.7869988 0.7863675 dissolved: [1] 90 35 recovered: [1] 684 653

Removing one sample

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.5106	0.5106	0.5106	0.5208	0.5319	0.5319

Removing one gene

Figure 80: Removing one sample (left) and one gene (right) at a time: distributions of Jaccard coefficients

Max.

1

FOM APN AD ADM :0.31 :12.66 :4.739 Min. :0.5776 Min. Min. Min. 1st Qu.:0.31 1st Qu.:12.66 1st Qu.:4.739 1st Qu.:0.7176 Median :0.31 Median :12.66 Median :4.739 Median :0.7984 Mean :0.31 Mean :12.66 Mean :4.739 Mean :0.8010 3rd Qu.:0.31 3rd Qu.:12.66 3rd Qu.:4.739 3rd Qu.:0.8822 Max. :0.31 Max. :12.66 :4.739 :1.0121 Max. Max.

Mean 3rd Qu.

1

1

Removing sets of k genes

Min. 1st Qu.

1

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.7812	0.9231	0.9615	0.9517	1.0000	1.0000

Median

1

1

Figure 81: Removing two thirds of the genes: distribution of Jaccard coefficients

10.4.6 Validation measures

Cluster kmeans	ring Me s	ethods:					
Cluster 2 3 4	r sizes 5 6	5:					
Validation Measures:		2	3	4	5	6	
kmeans	APN		0.0000	0.0722	0.0548	0.0730	0.1391
	AD		0.9436	0.9306	0.8485	0.8202	0.7896
	ADM		0.0000	0.9645	0.6306	0.7693	1.3773
	FOM		0.8010	0.7575	0.7290	0.7062	0.6943
	Conneo	ctivity	43.6552	71.5976	67.5746	77.8921	77.0595
	Dunn		0.2697	0.2286	0.2697	0.2697	0.2697
	Silhou	lette	0.0641	0.0131	0.0532	0.0213	0.0236
Optimal Scores:							
		Score	Method	Clusters			
APN		0.0000	kmeans	2			
AD		0.7896	kmeans	6			
ADM		0.0000	kmeans	2			
FOM		0.6943	kmeans	6			
Connectivity 43.6552		kmeans	2				
Dunn		0.2697	kmeans	2			

0.0641 kmeans 2

Silhouette