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A. Supplemental Figure Legends 
 
Figure S1. A. Significantly mutated genes in 160 CLL samples, related to Figure 1. A-S. 
Type (missense, splice-site, nonsense) and location of mutations in the significantly mutated 
genes discovered among the 160 CLL samples (top) compared to previously reported mutations 
in literature or in the COSMIC database (v76) (bottom). Dashed boxes in A, C, D, J, O and P 
indicate mutations localizing to a discrete gene territory. Please refer to previous publication for 
mutation information for FBXW7(Wang et al., 2011) B. Mutation sites in 14 significantly 
mutated genes are localized to conserved regions of genes.  Where available, alignments of gene 
sequences around each mutation are shown for human, mouse, zebrafish, C.elegans and S.pombe 
genes (USCS Genomic Bioinformatics: http://genome.ucsc.edu).   
 

Figure S2. Whole exome sequencing allelic fraction estimates are consistent with deep 
sequencing and RNA sequencing measurements, related to Figure 2.  A.  Comparison of 
ploidy estimates by ABSOLUTE with flow analyses for DNA content of 7 CLL samples and one 
normal B cell control (not analyzed by ABSOLUTE).  Vertical lines indicate 95% confidence 
intervals of ploidy measurements by FACS.  B. Comparison of measurements of allelic fraction 
of 256 gene mutations detected by WES compared to detection using Fluidigm-based 
amplification following by deep sequencing (average 4200x coverage) using a MiSeq instrument. 
Significantly different estimates were assigned open circles.  C.  Comparison of allelic fraction 
measured for 74 validated sites from 16 CLL samples by WES or RNA sequencing. D. 
Comparison of mutational spectrum between subclonal and clonal sSNVs (detected in 149 
CLLs). Rates were calculated as the fraction of the total number of sSNVs in the set with a 
particular mutation variant. 

 
Figure S3. Co-occurrence of mutations, related to Figure 3. The commonly occurring 
mutations, sorted in the order of decreasing frequency of affected. The top panel - the total 
number of mutations (red) and the number of subclonal mutations (blue) per sample. Bottom 
panel - co-occurring CLL driver events (y-axis) are marked per individual CLL sample (x-axis). 
Color spectrum (light yellow to black) corresponds to CCF; white boxes - no driver mutation 
identified; grey - mutations whose CCF was not estimated (i.e. mutations involving the X 
chromosome and indels other than in NOTCH1, currently not evaluated with ABSOLUTE).  

 
Figure S4.  Characterization of CLL clonal evolution through analysis of subclonal 
mutations at two timepoints in 18 patients, related to Figure 4.  A-B. Unclustered results for 
18 longitudinally studied CLLs, comparing CCF at two timepoints, Red color denotes a mutation 
with an increase in CCF greater than 0.2 (with probability >0.5). Six CLLs with no interval 
treatment (A) and 12 CLLs with intervening treatment (B) were classified as non-evolvers or 
evolvers, based on the presence of mutations with a statistically significant increase in CCF. C. 
Deep sequencing validation of 6 of the 18 CLLs. For each set of samples, allelic frequency (AF) 
by WES (red) (with 95% CI by binofit shown by cross bars) is shown on the left and AF by deep 
sequencing (blue) (with 95% CI by binofit shown by cross bars) is shown on the right. Deep 
sequencing was performed to an average coverage of 4200x. D. RNA pyrosequencing 
demonstrates a change in mRNA transcript levels that are consistent with changes in DNA allelic 
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frequencies. E. Genetic changes correlate with transcript level of pre-defined gene sets expected 
to be altered as a result of the genetic lesion. These include change in expression level in the 
nonsense-mediated mRNA decay (NMD) pathway gene set, expected to be increased in 
association with splicing abnormalities such as SF3B1 mutations (Table S10B).  In addition, 
changes in expression level of the NRASQ61 gene set (Table S10A) accompany the shift in 
allelic frequency for the NRAS mutations.  

 
Figure S5.  The presence of a subclonal driver is associated with shorter FFS_Sample when 
added to known clinical high risk indicators (related to Figure 6).   FFS_Sample plots of the 
patient groups based on presence or absence of a subclonal driver (‘+/- SC driver’) and their (A) 
IGHV mutation status; (B) exposure to prior therapy; (C) presence or absence of del(11q) and 
(D) presence or absence of del(17p). 
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B. Supplemental Tables 
 
Table S1. Summary of the clinical characteristics of 160 patients whose leukemia samples underwent 
whole-exome sequencing and of the associations between patient characteristics and the number of clonal 
or subclonal mutations detected per sample for the 149 patients for whom ABSOLUTE output was 
available.  
 

 WES 
N (%) N (%) 

Number of 
Clonal Muts 

Median (Range) 
P-valueǂ 

Number of 
Subclonal Muts 
Median (Range) 

P-valueǂ 

N 160 149     
Age (median =54)       
      <54 yrs. 87 (64) 72 (46) 7.5 (0, 21) <0.001 7 (0, 30) 0.63 
      ≥54 yrs. 73 (46) 77 (54) 12 (1, 30)  8 (0, 25)  
Sex       
      Female 61 (38) 59 (40) 10 (0, 27) 0.60 7 (0, 25) 0.46 
      Male   99 (62) 90 (60) 9.5 (1, 30)  8 (0, 30)  
Rai Stage at Sample       
     0-1 117 (73) 110 (74) 10 (0, 30) 0.081 7 (0, 25) 0.070 
     2-4 37 (23) 34 (23) 9 (1, 19)  8.5 (1, 30)  
     Unknown 6 (4) 5 (3)     
Treatment Status at time of Sample       
         Chemotherapy naïve 127 (79) 120 (81) 9.5 (1, 30) 0.63 7 (0, 25) 0.015 
         Prior Treatment 33 (21) 29 (19) 10 (0, 27)  10 (1, 30)  
Number of Prior Therapies at Sample       
          0 127 (79) 120 (81) 9.5 (1, 30) 0.88 7 (0, 25) 0.011 
          1-3 27 (17) 24 (16) 10.5 (0, 19)  9 (1, 29)  
          4-6    6 (4) 5 (3) 7 (4, 27)  21 (5, 30)  
IGHV status       
        Mutated 84 (53) 82 (55) 11 (1, 30) 0.054 7 (0, 25) 0.61 
        Unmutated 51 (32) 47 (32) 9 (0, 19)  8 (0, 29)  
        Unknown 25 (15) 20 (13)     
ZAP-70 expression        
         Negative 53 (33) 73 (49) 10 (0, 30) 0.78 7 (0, 29) 0.55 
         Positive 76 (48) 47 (32) 10 (1, 27)  8 (0, 30)  
         Unknown 31 (19) 29 (19)     
FISH (Dohner Classification)†   

N (%) 
     

          del(17p) (worst) 20 (13) 19 (13) 13 (5, 27) 0.002 7 (1, 29) 0.62 
          del(11q)  24 (15) 21 (14) 9 (1, 12)  9 (0, 30)  
          Trisomy 12 14 (9) 16 (11) 7 (2, 16)  7 (1, 19)  
           Normal karyotype 23 (14) 22 (15) 8 (0, 27)  7 (1, 16)  
           del(13q) (best)  58 (36) 56 (38) 11 (1, 30)  7 (0, 25)  
          Unknown 20 (13) 15 (10)     
       

†Data known for 134 patients;15 unknown. ǂTest excludes unknowns 
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Table S6. Clinical characteristics of 18 patients for whom longitudinal samples were studied. 
 

CLL IDs Age Therapy IGHV 
mutation 

status 

ZAP70 
status 

FISH 
Cytogenetics 

Years 
between 
samples At timepoint 1 Between 

timepoints 1 & 2 

CLL018 71 None None Y - del(13q) 2.4 
CLL026 50 None None Y - del(13q) 4.5 
CLL020 54 None None Y + del(13q) 2.5 
CLL019 52 None None Y - del(13q) 3.2 
CLL030 54 None None Y + del(13q) 3.5 
CLL082 77 None None N + del(13q,17p), 

tri12 
3.1 

CLL011 41 None FCR N + del(13q) 5 
CLL088 60 None FCR, Alem+R N - tri12 4.5 
CLL116 36 None FCR N + tri12 4.3 
CLL169 69 None FR Y + del(13q) 4.7 
CLL167 56 None FR Y - del(13q),tri12 2.7 
CLL016 59 None FR N + del(13q) 3.4 
CLL001 58 None FR N + del(11q, 13q) 3.5 
CLL065 75 FCR Alem+R,R N + del(13q),del(17

p) 
3.1 

CLL006 67 FC, Chloram Alem+R, FR, 
exp. 

N - del(13q),del(11
q) 

4.6 

CLL014 65 R FR Y - del(13q) 2.9 
CLL066 70 FR, Chloram R-CVP Y - del(13q) 3.5 
CLL040 60 FCR FCR, Alem+R N + del(13q),del(11

q) 
3 

Abbreviations: Y- Yes, N- No, Mut.- Mutated, FISH-Fluorescence In Situ Hybridization, F- 
Fludarabine, C- Cyclophosphamide, R-Rituximab, V-Vincristine, Chloram- Chlorambucil, Alem 
– Alemtuzumab; Rev – Revlimid; exp - experimental  
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Table S8. The 149 CLL samples could be divided into two groups, based on presence or absence 
of subclonal driver. A. Patient characteristics; B. Driver events that participated in the analysis of 
subclonal drivers as a predictor of clinical outcome (related to Figure 6) 
 
A. Patient characteristics at diagnosis  

  Total 
Subclonal 
driver not-

detected 

Subclonal 
driver 

detected  
P-

value 
N (%) N (%) N (%) 

N 149 81 (54) 68 (46)   
Age (years) at 

Diagnosis, median 
(range) 

54 (34, 
77) 55 (34, 77) 53 (36, 76) 0.52 

Age ≥54 yrs.  77 (52) 45 (56) 32 (47) 0.33 

Sex      

Female 59 (40) 25 (30) 34 (51) 0.02 

Male 90 (60) 56 (69) 34 (50)  

Rai Stage at Sample     

     0-1 110 (74) 63 (78) 47 (69) 0.12 

     2-4 34 (23) 14 (17) 20 (29)  

     Unknown 5 (3) 4 (5) 1 (1)  

Treatment Status at 
time of Sample      

    Chemotherapy 
naïve 120 (81) 73 (90) 47 (69) 0.002 

 Prior Treatment 29 (19) 8 (10) 21 (31)  

Number of Prior 
Therapies at 

Sample 
    

          0 120 (81) 73 (90) 47 (69) 0.003 

          1-3 24 (16) 7 (9) 17 (25)  

          4-6    5 (3) 1 (1) 4 (6)  
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B. Driver genetic events used in the analysis of subclonal drivers as a predictor of clinical 
outcome. For each driver, the number of CLL samples out of the cohort of 149 harboring a 
subclonal specified event is provided. Driver events were defined as being included within the 
Cancer Gene Census(Futreal et al., 2004) (‘CGC’) and affecting a highly conserved location; or 
as within the list of significantly occurring events in CLL (Figure 1A).  For CGC and 
CLL_Drivers, 1-yes; 0-no. 
 

Driver ID Number of samples 
harboring a subclonal driver	
  

CGC CLL_Driver 

 ATM 4 1 1 
CHD2 4 0 1 
EGR2 1 0 1 
FBXW7 3 1 1 
ITPKB 1 0 1 
KRAS 3 1 1 
NRAS 3 1 1 
POT1 2 0 1 
RIPK1 1 0 1 
SF3B1 10 1 1 
TP53 9 1 1 
XPO1 1 1 1 
DICER1 1 1 0 
IDH1 2 1 0 
MLL2 1 1 0 
NOTCH1 4 1 1 
NSD1 1 1 0 
PBRM1 1 1 0 
PTPN11 1 1 0 
SDHB 1 1 0 
TSC2 1 1 0 
del(11q) 12 0 1 
del(13q) 
(het) 

18 0 1 

del(13q) 
(hom) 

7 0 1 

del(17p) 8 0 1 
del(8p) 5 0 1 
trisomy 12 1 0 1 
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Table S9.  Statistical modeling for the effect of the presence of clonal and subclonal drivers 
on FFS_Sample and FFS_Rx. 
A. Kaplan Meier analysis for the effect of the presence of a subclonal or a clonal driver on the 
following 2 outcome measures: (i) FFS_Sample: time from WES sampling to the first treatment 
after sampling or death, and (ii) FFS-Rx: time from the first treatment after sampling to the 
second treatment after sampling or death. FFS_Sample was analyzed in 149 patients, while FFS-
Rx was analyzed in 67 patients who were treated after sampling. Kaplan Meier analysis of FFS-
Sample restricted to 132/149 CLL samples with at least 1 driver event (irrespective of cancer cell 
fraction) detected and of FFS-Rx restricted to 62 CLLs patients treated after sampling with at 
least 1 driver event is also shown. 

 N  Median FFS_Sample 
Months (95% CI)† P-value N  Median FFS_Rx 

Months (95% CI)† P-value 

N 149   67   

Clonal Driver       
    Absent 36 NR (NR, NR) 0.026 12 NR (13, NR) 0.38   
    Present 113 27 (16, NR)  55 43 (33, 48)  
Subclonal Driver       
    Absent 81 NR (49, 74) <0.001 28 NR (44, NR) 0.006 
    Present  68 15 (6, 27)  39 33 (14, 45)  
Including only Patients with 
at least one driver identified 132   62   

Clonal Driver        
    Absent 19 NR (15, NR) 0.20 7 18 (13, NR) 0.78 
    Present 113 27 (16, NR)  55 43 (33, 48)  
Subclonal Driver       
    Absent 64 NR (29, NR) <0.001 23 48 (35, NR) 0.021 
    Present 68 15 (6, 27)  39 33 (14, 45)  

†NR=Median not reached 
 

B. Adjusted Cox Modeling for FFS_Rx for known high-risk prognostic features in CLL 
restricted to the 62 patients who had at least one driver identified 

 
 HR (95% CI) p-value 
FFS_Rx   
Subclonal driver present vs. absent 3.34 (1.31, 8.52) 0.012 
IGHV Unmutated vs. Mutated 2.02 (0.69, 5.91) 0.20 
           Missing vs. Mutated 1.37 (0.25, 7.51) 0.72 
del(11q) present vs. absent 1.40 (0.57, 3.45) 0.47 
del(17p) present vs. absent 5.03 (1.77, 14.30) 0.002 
Prior therapy vs. None 1.65 (0.72, 3.81) 0.24 

 

 

C. Adjusted Cox Modeling for FFS_Sample for known high-risk prognostic features in CLL 
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 HR (95% CI) p-value 

FFS_Sample   
Subclonal driver present vs. absent 1.66 (0.98, 2.79) 0.058 
IGHV Unmutated vs. Mutated 2.87 (1.54, 5.36) <0.001 

           Missing vs. Mutated 1.02 (0.39, 2.63) 0.98 
del(11q) present vs. absent 2.03 (1.11, 3.70) 0.021 
del(17p) present vs. absent 1.22 (0.65, 2.28) 0.54 
Prior therapy vs. None 3.42 (1.78, 6.57) <0.001 
Clonal Driver vs. None 1.25 (0.65, 2.41) 0.50 
IGHV Unmutated vs. Mutated 2.99 (1.60 5.58) <0.001 

Missing vs. Mutated 1.01 (0.40, 2.55) 0.99 
del(11q) vs. None 1.95 (1.07, 3.53) 0.029 
del(17p) vs. None 1.13 (0.61, 2.08) 0.70 
Prior Trt vs. None 3.98 (2.13, 7.43) <0.001 

 

 
D. Adjusted and unadjusted hazard ratios (HR) for the effect of the number of subclonal or 
clonal drivers on FFS_Rx 
 

 Unadjusted 
HR (95% CI) P-value Adjusted† 

HR (95% CI) P-value 

FFS_Rx     
No. of Subclonal Driver Events     
       1-2 vs. none 2.73 (1.11, 6.70) 0.029 3.46 (1.28, 9.40) 0.015 
       3-5 vs. none 7.31 (2.28, 23.40) <0.001 4.02 (1.08, 14.95) 0.038 
No. of Clonal Driver Events     
       1-2 vs. none 1.73 (0.52, 5.76) 0.37 1.29 (0.37, 4.52) 0.69 
       3-5 vs. none 1.35 (0.22, 8.11) 0.74 0.45 (0.07, 3.10) 0.42 

 †Adjusted for IGHV mutation status, del(17p), del(11q), prior treatment at time of sample  
 
E. Cox Modeling for FFS_Rx adjusting for high-risk mutations (TP53, ATM and SF3B1) 

 HR (95% CI) P-value 

FFS_Rx   
Subclonal Driver vs. None 2.76 (1.08, 7.01) 0.033 
SF3B1 present vs. absent 0.83 (0.27, 2.58) 0.74 
ATM present vs. absent 1.94 (0.54, 6.98) 0.31 

TP53 present vs. absent 8.75 (3.14, 24.39) <0.001 
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Table S10A. Geneset and expression values for 44 genes specific for NRAS Q61 
mutations.  These genes were compiled by Eskandarpour, M., et al (Table S1 
(Eskandarpour et al., 2009)) and reflect genes downregulated by more than -1.41 fold 
after RNAi-mediated silencing of the NRAS Q61 mutant in 224 cell lines. Tumor cells 
from CLL088 harbored an NRAS Q61 mutation, and displayed is the difference in gene 
expression between timepoint 1 vs. timepoint 2 of CLL088. Average and standard 
deviation of gene expression difference between timepoints 1 and 2 is given for all other 
longitudinal sample pairs. 
 

Gene symbol CLL088 

All other longitudinal samples 
(17 pairs) 

Average  Standard 
deviation 

NPPC -0.04578799 -0.007210208 0.514616415 
COL13A1 0.134673459 -0.04659692 0.254756387 

CDC42EP3 0.959816072 0.082498719 0.396245179 
ENC1 -0.131627188 -0.008812696 0.560586955 
SET 0.243856478 0.017019055 0.163422427 

TMEM2 -0.633168048 0.056473858 0.486765405 
CTGF 0.446446876 0.062380273 0.350426395 

PHLDA1 0.0856608 -0.11617691 0.242079319 
PVRL3 0.051635241 -0.071360125 0.309077828 
NEDD4 0.372647977 -0.065753321 0.293381482 
HMGA1 0.721592229 0.014810233 0.294059124 
IGFBP3 0.285836175 0.113474904 0.221068564 
SPRY4 -0.427121219 0.05373157 0.195213896 
DLD 0.658330384 0.0623254 0.339485653 

HCCS 0.29885353 -0.07203308 0.356171393 
DPYSL2 0.821204985 -0.053448441 0.973626504 
EPHA2 -0.310446211 -0.061035231 0.350962757 
THBS1 0.614908738 0.237633954 0.398663855 
LSM7 0.243760925 0.059988504 0.3344074 
NIP7 1.252496702 0.049585749 0.502407045 

MGLL 2.768195308 0.015144031 0.390774595 
PTX3 1.171309917 0.313612997 0.683123534 

KCNN4 -0.47768552 -0.100262781 0.391350388 
LPXN 0.300270992 -0.035757494 0.350558014 

CDC42EP3.1 0.959816072 0.082498719 0.396245179 
DUSP6 -0.782740031 0.577139524 1.037845647 
ETF1 0.531177079 0.026704345 0.446412676 
LEF1 -0.112434288 -0.031090606 0.737631178 

RHOBTB3 0.088565447 0.087647222 0.361094271 
CPD 0.338056607 0.242027513 0.314157079 

MKRN2 0.048507309 -0.027646317 0.234771743 
PLAUR 1.568611765 0.428891808 0.488058773 
STK17A -0.852885509 0.127270233 0.435271027 

CCDC85B 0.125112267 -0.132016138 0.303754024 
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FZD7 0.760598355 -0.135184117 0.510611289 
PLAUR.1 1.568611765 0.428891808 0.488058773 

SET.1 0.243856478 0.017019055 0.163422427 
CCNE2 0.302043507 0.031955004 0.262347119 

FNDC3B 0.493904857 0.216358443 0.228289601 
IFRD1 0.419114097 -0.142779223 0.483899647 
DDX21 0.616773364 0.096081169 0.357469727 
FTSJ1 0.361269841 -0.012203281 0.190033873 

PDLIM5 0.567478758 0.044486012 0.269337671 
RRM2 1.566222249 0.205188047 0.698854981 

Average 0.414030014 0.059806165 0.121855537 

 
 
Table S10B. Geneset and expression values for 34 genes involved in RNA export from 
the nucleus and extended nonsense mRNA degradation (NMD), that have been associated 
with mutated SF3B1 (taken from Table S7 of the report by Yoshida et al.(Yoshida et al., 
2011)). Tumor cells from CLL040 harbored a spliceosome mutation, SF3B1; displayed is 
the difference in gene expression between timepoint 1 vs. timepoint 2 of CLL040.  
Average and standard deviation of gene expression difference between timepoints 1 and 2 
is given for all other longitudinal sample pairs. 
 

Gene 
symbol CLL040 

All other longitudinal samples 
(17 pairs) 

Average  Standard 
deviation 

SMG5 0.011920117 0.023259127 0.178168824 
DHX34 0.025891448 -0.062902083 0.116567172 
UPF1 0.21578735 -0.055402974 0.233816043 
SMG1 0.570738034 -0.000372049 0.282293591 

UPF3B 0.078425721 -0.047789483 0.24001489 
UPF2 0.82684527 0.058484108 0.1991368 
SMG7 0.137850743 -0.038354666 0.191155824 

MAGOH -0.572093408 0.091763238 0.536068491 
SMG6 -0.28288667 0.027035851 0.147910467 

UPF3A 0.426259455 -0.0991856 0.371500187 
CASC3 0.178042037 0.04766774 0.104753942 
RBM8A 0.190297511 0.028176467 0.201891218 
WIBG 0.024652918 -0.065314855 0.295338558 

EIF4A3 -0.00796301 0.04062118 0.457332467 
SMG5.1 0.011920117 0.023259127 0.178168824 
UPF1.1 0.21578735 -0.055402974 0.233816043 
DDX19B -0.129049993 0.05381727 0.26148355 
SMG1.1 0.570738034 -0.000372049 0.282293591 
NCBP2 0.213822866 -0.004671586 0.257585504 
DDX39 0.411741289 -0.012796232 0.283422242 
UPF2.1 0.82684527 0.058484108 0.1991368 
NUDT4 0.50454556 -1.95E-05 0.248457474 
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SMG7.1 0.137850743 -0.038354666 0.191155824 
RAE1 0.067685754 -0.017983112 0.214508052 

SMG6.1 -0.28288667 0.027035851 0.147910467 
TSC1 0.44211296 -0.00022797 0.276786249 
BAT1 0.685210093 -0.080364706 0.270842978 

KHDRBS1 -0.160256707 -0.013673409 0.193125482 
NUP160 0.909274188 -0.026037476 0.392210773 

NXF5 -0.212514266 0.102488019 0.250391443 
EIF5A -0.14573319 -0.117388335 0.568603045 
DDX25 0.527897747 -0.033354581 0.208245641 
NUP133 0.006008087 -0.031510117 0.35409961 
NUP107 0.127921893 -0.040181016 0.263752523 
Average 0.192726137 -0.007634335 0.047087437 
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C. Extended Experimental Procedures 

Human samples: Heparinized blood, skin biopsies and saliva were obtained from 
patients enrolled on clinical research protocols at the Dana-Farber Harvard Cancer Center 
(DFHCC) approved by the DFHCC Human Subjects Protection Committee. The 
diagnosis of CLL according to WHO criteria was confirmed in all cases by flow 
cytometry, or by lymph node or bone marrow biopsy. Peripheral blood mononuclear cells 

(PBMC) from normal donors and patients were isolated by Ficoll/Hypaque density 
gradient centrifugation. Mononuclear cells were used fresh or cryopreserved with FBS 
10% DMSO and stored in vapour-phase liquid nitrogen until the time of analysis.  
Primary skin fibroblast lines were generated from skin punch biopsies as previously 
described(Wang et al., 2011). The patients included in the cohort represent the broad 
clinical spectrum of CLL (Table S1). 

 
Established CLL prognostic factor analysis: Immunoglobulin heavy-chain variable 
(IGHV) homology (unmutated was defined as greater than or equal to 98% homology to 
the closest germline match) and ZAP-70 expression (high risk defined as >20% positive) 
were determined(Rassenti et al., 2008). Cytogenetics were evaluated by FISH for the 
most common CLL abnormalities (del(13q), trisomy 12, del(11q), del(17p), 
rearrangements of chromosome 14) (all probes from Vysis, Des Plaines, IL, performed at 
the Brigham and Women’s Hospital Cytogenetics Laboratory, Boston MA).   Samples 
were scored positive for a chromosomal aberration based on consensus cytogenetic 
scoring(Smoley et al., 2010).   
 

DNA quality control: We used standard Broad Institute protocols as recently described 
(Berger et al., 2011; Chapman et al., 2011). Tumor and normal DNA concentration were 
measured using PicoGreen® dsDNA Quantitation Reagent (Invitrogen, Carlsbad, CA). A 
minimum DNA concentration of 60 ng/µl was required for sequencing. In select cases 
where concentration was <60 ng/µl, ethanol precipitation and re-suspension was 
performed. Gel electrophoresis confirmed that the large majority of DNA was high 
molecular weight. All Illumina sequencing libraries were created with the native DNA. 
The identities of all tumor and normal DNA samples (native and WGA product) were 
confirmed by mass spectrometric fingerprint genotyping of 24 common SNPs (Sequenom, 
San Diego, CA). 

 
Whole-exome DNA sequencing: Informed consent on DFCI IRB-approved protocols for 
whole exome sequencing of patients’ samples was obtained prior to the initiation of 
sequencing studies. DNA was extracted from blood or marrow-derived lymphocytes 
(tumor) and saliva, fibroblasts or granulocytes (normal), as previously described (Wang 
et al., 2011). Libraries for whole exome (WE) sequencing were constructed and 
sequenced on either an Illumina HiSeq 2000 or Illumina GA-IIX using 76 bp paired-end 
reads.   Details of whole exome library construction have been detailed elsewhere (Fisher 
et al., 2011). Standard quality control metrics, including error rates, percentage passing 
filter reads, and total Gb produced, were used to characterize process performance before 
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downstream analysis. Average exome coverage depth was 132x/146x for tumor/germline. 
The Illumina pipeline generates data files (BAM files) that contain the reads together with 
quality parameters. Of the 160 CLL samples reported in the current manuscript, 82 were 
included in a previous study (Wang et al., 2011). 340 CLL and germline samples were 
sequenced overall.  These include 160 CLL and matched germline DNA samples as well 
as timepoint 2 samples for 17 of 160 CLLs, and an additional sample pair and germline 
for a longitudinal sample pair not included in the 160 cohort (CLL020).   
 

Identification of somatic mutations: Output from Illumina software was processed by 
the “Picard” data processing pipeline to yield BAM files containing aligned reads (via 
MAQ, to the NCBI Human Reference Genome Build hg18) with well-calibrated quality 
scores (Chapman et al., 2011; DePristo et al., 2011). For 51 of the 160 CLL samples 
included in the analysis, sequencing was performed on capture libraries generated from 
whole genome amplified  (WGA) samples.  For those samples, 100 ng inputs of samples 
were whole genome amplified with the Qiagen REPLI-g Midi Kit (Valencia, CA).    
From the sequencing data, somatic alterations were identified using a set of tools within 
the “Firehose” pipeline, developed at the Broad Institute 
(www.broadinstitute.org/cancer/cga). The details of our sequencing data processing have 
been described elsewhere (Berger et al., 2011; Chapman et al., 2011). Somatic single 
nucleotide variations (sSNVs) were detected using MuTect [V119, 	
  
http://www.broadinstitute.org/cancer/cga/mutect, (Cibulskis et al, under review)]; 
somatic small insertions and deletions (indels) were detected using Indelocator [v61, 
http://www.broadinstitute.org/cancer/cga/indelocator, (Wang et al., 2011)].   All 
mutations identified in longitudinal samples were confirmed by manual inspection of the 
sequencing data (Robinson et al., 2011). An estimated contamination threshold of 5% 
was used for all samples based on the highest contamination values seen in a formal 
contamination analysis done with ContEst based on matched SNP arrays (Cibulskis et al., 
2011). Ig loci mutations were not included in this analysis.  All somatic mutations 
detected in the 160 CLL samples are listed in Table S2.  WES data is deposited in dbGaP 
(phs000435.v1.p1).	
  
  

Significance analysis for recurrently mutated genes: The prioritization of somatic 
mutations in terms of conferring selective advantage was done with the statistical method 
MutSig2.0 (Lohr et al., 2012). In short, the algorithm takes an aggregated list of 
mutations and tries to detect genes that are affected more than expected by chance, as 
those likely reflect positive selection (i.e driver events). There are two main components 
to MutSig2.0:  

1. The first component attempts to model the background mutation rate for each 
gene, while taking into account various different factors. Namely, it takes into 
account the fact that the background mutation rate may vary depending on the 
base context and base change of the mutation, as well as the fact that the 
background rate of a gene can also vary across different patients. Given these 
factors and the background model, it uses convolutions of binomial distributions 
to calculate a P value, which represents the probability that we obtain the 
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observed configuration of mutations, or a more significant one. 
2. The second component of the algorithm focuses on the positional configuration of 

mutations and their sequence conservation (Lohr et al., 2012). For each gene, the 
algorithm permutes the mutations preserving their tri-nucleotide context, and for 
each permutation calculates two metrics: one that measures the degree of 
clustering into hotspots along the coding length of the gene, and one that 
measures the average conservation of mutations in the gene. These two null 
models are then combined into a joint distribution, which is used to calculate a P 
value that reflects the probability by chance that we can obtain by chance the 
observed mutational degree of clustering and conservation, or a more significant 
outcome.  

The two P values that are produced by the two components are then combined using 
Fisher-Combine (Fisher, 1932) which yields a final P value which is used to sort the 
genes by degree of mutational significance. This is subsequently corrected for multi-
hypothesis using the Benjamini Hochberg procedure.  
 

Genome-wide copy number analysis: Genome-wide copy number profiles of 111 CLL 
samples and their patient-matched germline DNA were obtained using the Genome-wide 
Human SNP Array 6.0 (Affymetrix), according to the manufacturer’s protocol (Genetic 
Analysis Platform, Broad Institute, Cambridge MA). SNP array data were deposited in 
dbGaP (phs000435.v1.p1). Allele-specific analysis also allowed for the identification of 
copy neutral LOH events as well as quantification of the homologous copy-ratios 
(HSCSs) [HAPSEG(Carter, 2011)]. Significant recurrent chromosomal abnormalities 
were identified using the GISTIC2.0 algorithm ((Mermel et al., 2011),v87). Regions with 
germline copy number variants were excluded from the analysis.  
For CLL samples with no available SNP arrays (38/160), sCNAs were estimated directly 
from the WES data, based on the ratio of CLL sample read-depth to the average read-
depth observed in normal samples for that region. 11/160 samples were excluded from 
this analysis due to inability to obtain copy number information from the WES data. See 
Fig. 2A for outline of sample processing.  

 
Validation deep sequencing: Validation targeted resequencing of 256 selected somatic 
mutations sSNVs was performed using microfluidic PCR.   Target specific primers with 
Fluidigm-compatible tails were designed to flank sites of interest and produce amplicons 
of 200  +/-20bp.    Molecular barcoded, Illumina-compatible oligonucleotides, containing 
sequences complementary to the primer tails were added to the Fluidigm Access Array 
chip (San Francisco, CA) in the same well as the genomic DNA samples (20 - 50 ng of 
input) such that all amplicons for a given genomic sample shared the same index, 
and PCR was performed according to the manufacturer’s recommendations.  Indexed 
libraries were recovered for each sample in a single collection well on the Fluidigm chip, 
quantified using picogreen and then normalized for uniformity across 
libraries.   Resulting normalized libraries were loaded on a MiSeq instrument (Illumina) 
and sequenced using paired end 150bp sequencing reads. 95.2% of called sSNVs were 
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detected in the validation experiment (Table S4). For 91.8% of the mutations, the allelic 
fraction estimates were concordant (with the discordant events enriched in sites of lower 
WES coverage).   
 

RNA sequencing (dUTP Library Construction): 5µg of total RNA was poly-A 
selected using oligo-dT beads to extract the desired mRNA.  The purified mRNA is 
treated with DNAse, and cleaned up using SPRI (Solid Phase Reversible Immobilization) 
beads according to the manufacturers’ protocol. Selected Poly-A RNA was then 
fragmented into ~450 bp fragments in an acetate buffer at high heat.  Fragmented RNA 
was cleaned with SPRI and primed with random hexamers before first strand cDNA 
synthesis.  The first strand was reverse transcribed off the RNA template in the presence 
of Actinomycin D to prevent hairpinning and purified using SPRI beads.  The RNA in the 
RNA-DNA complex was then digested using RNase H.  The second strand was next 
synthesized with a dNTP mixture in which dTTPs had been replaced with dUTPs.  After 
another SPRI bead purification, the resultant cDNA was processed using Illumina library 
construction according to manufacturers protocol (end repair, phosphorylation, 
adenylation, and adaptor ligation with indexed adaptors).   SPRI-based size selection was 
performed to remove adapter dimers present in the newly constructed cDNA 
library.  Libraries were then treated with Uracil-Specific Excision Reagent (USER) to 
nick the second strand at every incorporated Uracil (dUTP).  Subsequently, libraries were 
enriched with 8 cycles of PCR using the entire volume of sample as template.  After 
enrichment, the library is quantified using pico green, and the fragment size is measured 
using the Agilent Bioanalyzer according to manufactures protocol.  Samples were pooled 
and sequenced using either 76 or 101bp paired end reads.  

 
RNASeq data analysis: RNAseq BAMs were aligned to the hg18 genome using the 
TopHat suite. Each somatic base substitution detected by WES was compared to reads at 
the same location in RNAseq.  Based on the number of alternate and reference reads, a 
power calculation was obtained with beta-binomial distribution (power threshold used 
was greater than 80%). Mutation calls were deemed validated if 2 or greater alternate 
allele reads were observed in RNA-Seq at the site, as long as RNAseq was powered to 
detect an event at the specified location.  

 
FACS validation of ploidy estimates with ABSOLUTE: Consistent with published 
studies of CLL(Brown et al., 2012; Edelmann et al., 2012), ABSOLUTE measured all 
CLL samples to be near diploid (Table S3B; median - 2, range 1.95-2.1).  We confirmed 
the measurements using a standard assay for measuring DNA content.  For this analysis, 
peripheral blood mononuclear cells from normal volunteers and CLL patients and cell 
lines are first stained with anti-CD5 FITC and anti-CD19 PE antibodies in a PBS buffer 
containing 1% BSA for 30 minutes on ice. After extensive washes, the cells were then 
stained with a PBS buffer contained 1% BSA, 0.03% saponin (Sigma) and 250ug/ml 7-
AAD (Invitrogen) for 1 hour on ice, followed by analysis on a Beckman Coulter FC500 
machine (Figure S2A). 
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Estimation of mutation cancer cell fraction using ABSOLUTE: We used the 
ABSOLUTE algorithm to calculate the purity, ploidy, and absolute DNA copy-numbers 
of each sample (Carter et al., 2012).  Modifications were made to the algorithm, which 
are implemented in version 1.05 of the software, available for download at 
https://confluence.broadinstitute.org/display/CGATools/ABSOLUTE.  Specifically, we 
added to the ability to determine sample purity from sSNVs alone, in samples where no 
sCNAs are present (the ploidy of such samples is 2N).  In addition, estimates of sample 
purity and absolute copy-numbers are used to compute distributions over cancer cell 
fraction (CCF) values of each sSNV, as described (Experimental Procedures), and for 
sCNAs (described below).  

The current implementation of ABSOLUTE does not automatically correct for sCNA 
subclonality when computing CCF distributions of sSNVs (this is an area of ongoing 
development). Fortunately, the few sCNAs that occurred in our CLL samples were 
predominantly clonal.  Manual corrections were made for CLL driver sSNVs occurring at 
site of subclonal sCNAs (5 TP53 sSNVs and 1 ATM sSNV), based on the sample purity, 
allelic fraction and the copy ratio of the matching sCNA.   

Each sSNV was classified as clonal or subclonal based on the probability that the CCF 
exceeded 0.95. A probability threshold of 0.5 was used throughout the manuscript. 
However, as the histogram in Figure 2A shows, the distribution of events around the 
threshold was observed to be fairly uniform and results were not significantly affected 
across a range of thresholds. For example, the results of our analyses were unchanged 
when we altered our definition of clonal mutations to be (Pr(CCF>0.95)) > 0.75, and 
subclonal when Pr(CCF>0.95) was < 0.25, leaving uncertain mutations unclassified. 
Using these thresholds, CLLs with mutated IGHV and age were associated with a higher 
number of clonal mutations (P values of 0.05 and <0.0001, respectively). CLLs treated 
prior to sample collection had a higher number of subclonal mutations (P=0.01) and the 
subclonal set was enriched with putative drivers (P =0.0019). Importantly, the results of 
the clinical analysis also remained unchanged. FFS_Rx was shorter in samples in which a 
subclonal driver was detected (P=0.007) and regression models examining known poor 
prognostic indicators in CLL yielded an adjusted P value of 0.009.  

One of the recurrent CLL cancer genes, NOTCH1, had 15 mutations, 14 of which were 
the identical canonical 2 base-pair deletions.  Unlike sSNVs, the observed allelic 
fractions of indels events were not modeled as binomial sampling of reference and 
alternate sequence reads according to their true concentration in the sample(Carter et al., 
2012).  This was due to biases affecting the alignment of the short sequencing reads, 
which generally favor reference over alternate alleles.  To measure the magnitude of this 
effect, we examined the allelic fraction (AF) of 514 germline 2bp deletions called in 4 
normal germline WES samples.  We observed that the distribution (data not shown) of 
allelic-fractions for heterozygous events was peaked at 0.41, as opposed to the expected 
mode of 0.5, with nearly all AFs between 0.3 to 0.6.  Therefore, the bias factor towards 
reference is peaked at 0.82 but may range from 0.6 to 1 (unlikely to be greater than 1).  
CCF distributions for the 14 somatic indels in NOTCH1 were calculated using bias 
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factors of 1.0 (no bias), 0.82 (bias point-estimate), and 0.6 (worst case observed).  
Reassuringly, the classification of NOTCH1 indels as clonal or subclonal was highly 
robust and was essentially the same using the three values -- only a single case (CLL155) 
was ambiguous and was classified as subclonal using 1.0 and 0.82, and clonal using 0.6. 
Taking a conservative approach, not classifying a mutation as sub-clonal unless there is 
clear evidence for it, we decided to call this event as clonal for downstream analysis. 

 
Estimation of CCF values for subclonal sCNAs is implemented (ABSOLUTEv1.05) in a 
manner analogous to the procedure for sSNVs (Experimental Procedures), although the 
transformation is more complex, due to the need for assumptions of the subclonal 
structure and the error model of microarray based copy-number data. Segmental sCNAs 
are defined as subclonal based on the mixture model used in ABSOLUTE (Carter et al., 
2012). Let the functions ℎ 𝑥  and ℎ′ 𝑥  denote a variance stabilizing transformation and 
its derivative, respectively.  For SNP microarray data, these are defined as: ℎ 𝑥 =

sinh!! 𝑏𝑥 , where 𝑏 =
!!!

!
!!

!
!

!!
, and ℎ! 𝑥 = !

!! !" !
!
!
 (Huber et al., 2002).  The values 

𝜎! and 𝜎! denote additive and multiplicative noise scales, respectively, for the microarray 
hybridization being analyzed; these are estimated by HAPSEG (Carter et al., 2011). The 
calibrated probe-level microarray data become approximately normal under this 
transformation, which is used by HAPSEG to estimate the segmental allelic copy-ratios 𝑟! 
and the posterior standard deviation of their mean (under the transformation), 𝜎! (Carter, 
2011).  An additional parameter 𝜎! is estimated by ABSOLUTE(Carter et al., 2012), 
which represents additional sample-level variance corresponding to regional biases not 
captured in the probe-level model. 
For a subclonal segment i, let qc denote the absolute copy number in the unaffected cells, 
and qs denote the absolute copy number in the altered cells. Both of these values are 
unknown but we used a simplifying assumption that the difference between qc and qs is 
one copy with qc being closer to the modal copy-number. Therefore, for subclonal 
deletions (copy ratios below the ratio of modal copy number), qs was set to the nearest 
copy number below the measured value, and qc=qs+1. For subclonal gains (ratios above 
the modal number), qs was set to the nearest copy number above the measured value, and 
qc=qs-1. Because the CLL genomes analyzed here were universally near diploid, this was 
nearly equivalent to assuming that subclonal deletions had qs=0 in the affected cells and 
gains qs=2, with qc=1 in both cases (in allelic units). However, we note that these 
assumptions would not be strictly correct in genomes after doubling, or in cases of high-
level amplification.  In these cases, calculation of posterior CCF distributions will require 
integration over qs and qc, averaging over the set of plausible subclonal genomic 
configurations.  
Let rc and rs be the theoretical copy ratio values corresponding to qc and qs (accounting 
for sample purity, ploidy, and the modeled attenuation rate of the microarray (Carter et al., 
2011; Carter et al., 2012)). Let 𝑑 = 𝑟! − 𝑟!, then, for CCF c, let 𝑟! 𝑐 = 𝑑𝑐 + 𝑟!. Then 
𝑃 𝑐 ∝𝒩 ℎ 𝑟! 𝑐   |  ℎ(𝑟!), (𝜎! + 𝜎!)!    ℎ! 𝑟! 𝑐 . The absolute value of the derivative 
is required due to the change of coordinates from x to h(x). The distribution over CCF is 
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obtained by calculating these values over a regular grid of 100 c values and normalizing. 
We note that, when copy numbers are estimated directly from sequencing data, the 
calculation is simpler, as there is no attenuation effect and ℎ 𝑥 = 𝑥.   These calculations 
were used to generate the 95% confidence intervals on the CCF of subclonal driver 
sCNAs shown in Figure 4 and Figure S4A,B. 

 
Cancer gene census list and conservation annotations: Conservation of a specific 
mutated site was adapted from UCSC conservation score track. A scale of 0-100 was 
linearly converted from the -6 to 6 scale used in the phastCons track(Siepel et al., 2005). 
To confirm that driver mutations are more likely to occur in conserved sites, we 
quantified the conservation in the COSMIC database (Forbes et al., 2008) hotspots and 
compared it to non-COSMIC hotspots coding location. We matched conservation 
information for 5085 sites that had greater than 3 exact hits reported in mutations 
deposited in the COSMIC database, and compared it to conservation found for a set of 
non-overlapping 5085 randomly sampled coding sites. The conservation was higher in 
the COSMIC sites than in the non-COSMIC coding sites set (mean conservation 82.39 
and 62.15, respectively, p<1e-50). We noted that the distribution of events was not 
uniform, and nearly one half of COSMIC hotspots had a conservation measure greater 
than 95 (49.65%, compared to 15.5% in the non-COSMIC set, p<1e-50). For our 
calculations, we used a cut off of >95 to designate conserved sites likely to contain higher 
proportion of cancer drivers. We complemented the analysis for putative driver event 
enrichment by matching the altered genes to the Cancer Gene Census (Futreal et al., 
2004).  

 
Clustering analysis of sSNVs in 18 CLL sample pairs: In order to better resolve the 
true cancer cell fraction (CCF) of sSNVs detected in longitudinal samples, we employed 
a previously described Bayesian clustering procedure (Escobar and West, 1995).  This 
approach exploits the assumption that the observed subclonal sSNV CCF values were 
sampled from a smaller number of subclonal cell populations (subclones).  All remaining 
uncertainty (including the exact number of clusters) was integrated out using a mixture of 
Dirichlet processes, which was fit using a Gibbs sampling approach, building on a 
previously described framework (Escobar and West, 1995).  

The inputs to this procedure are the posterior CCF distributions for each sSNV being 
considered.  We note that the CCF distributions for sCNAs could be added into the model, 
however we did not attempt this in the present study.  CCF distributions are represented 
as 100-bin histograms over the unit interval; the two-dimensional CCF distributions used 
for the 2D clustering of longitudinal samples were obtained as the outer product of the 
matched histogram pairs for each mutation, resulting in 10,000-bin histograms  (Figure 
S4).  We note that the use of histograms to represent posterior distributions on CCF, 
although computationally less efficient than parametric forms, has the advantage that 
CCFs of different mutation classes may be easily combined in the model, even though 
their posteriors may have very different forms.  We also note that the algorithm 
implementation is identical for the single sample and paired (longitudinal) sample cases, 
although only the latter was used in the present study. 
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At each iteration of the Gibbs sampler, each mutation is assigned to a unique cluster and 
the posterior CCF distribution of each cluster is computed using Bayes’ rule, as opposed 
to drawing a sample from the posterior (a uniform prior on CCF from 0.01 to 1 is used). 
When considering the probability of a mutation to join an existing cluster, the likelihood 
calculation of the mutation arising from the cluster is integrated over the uncertainty in 
the cluster CCF.  This allows for rapid convergence of the Gibbs sampler to its stationary 
distribution, which was typically obtained in fewer than 100 iterations for the analysis 
presented in this study.  We ran the Gibbs sampler for 1,000 iterations, of which the first 
500 were discarded before summarization. 
Because of the small number of clonal mutations in some WES samples, we make an 
additional modification to the standard Dirichlet process model by adding a fixed clonal 
cluster that persists even if no mutation is assigned to it.  This reflects our prior 
knowledge that clonal mutations must exist, even if they are the minority of detected 
mutations. For the samples analyzed here, this modification had very little effect. 

A key aspect of implementing the Dirichlet process model on WES datasets is re-
parameterization of prior distributions on the number of subclones k as priors on the 
concentration parameter 𝛼 of the Dirichlet process model.  Importantly, this must take 
into account the number of mutations N input to the model, as the effect of 𝛼 on k is 
strongly dependent on N (Escobar and West, 1995). We accomplish this by constructing a 
map from a regular grid over 𝛼 to expected values of k, given N, using the fact that: 
𝑃 𝑘 𝛼,𝑁 = 𝑐! 𝑘 𝑁!𝛼! !(!)

!(!!!)
 (Escobar and West, 1995), where the 𝑐! 𝑘  factors 

correspond to the unsigned Stirling numbers of the first kind.  With this map in hand, we 
perform an optimization procedure to find parameters a and b of a prior Gamma 
distribution over 𝛼  resulting in the minimal Kullback-Leibler divergence with the 
specified prior over k (the divergence was computed numerically on the histograms). 
Once the prior over 𝛼 has been represented as a Gamma distribution, learning about 𝛼 
(and therefore k) from the data can be directly incorporated into the Gibbs sampling 
procedure, resulting in a continuous mixture of Dirichlet processes (Escobar and West, 
1995). This allows consistent parameterization of prior knowledge (or lack thereof) on 
the number of subclonal populations in the face of vastly different numbers of input 
mutations, which is necessary for making consistent inferences across differing datasets 
(e.g. WES vs. WGS).  We note that taking uncertainty about 𝛼 into account is necessary 
for inferences on the number of subclonal populations to be strictly valid, since 
implementations with fixed values of 𝛼 result in an implicit prior over k that depends 
upon N (this is especially important for smaller values of N).  For the application 
presented in this study (Figure 4), we specified a weak prior on k using a negative 
binomial distribution with r=10, μ=2 (these values favored 1-10 clusters).  We note that 
these are the only two parameters of the clustering analysis. 
Upon termination of the Gibbs sampler, we summarized the posterior probability over the 
CCF of each sSNV by averaging the posterior cluster distribution for all clusters to which 
the sSNV was assigned during sampling.  This allowed shrinkage of the CCF probability 
distributions (as shown in Fig. 4; pre-clustering results are shown in Fig. S4A-B), 
without having to choose an exact number of subclonal clusters. Note that the 18 
longitudinal sample pairs contain 1 CLL sample pair not initially included in the 160 
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CLLs (CLL020).  
 

Gene Expression Profiling: Total RNA was isolated from viably frozen PBMCs or B 
cells from CLL patients that were followed longitudinally (Midi kit; Qiagen, Valencia 
CA), and hybridized to the U133Plus 2.0 array (Affymetrix, Santa Cruz, CA) at the DFCI 
Microarray Core Facility. All expression profiles were processed using RMA, 
implemented by the PreprocessDataset module in GenePattern 
(http://www.broadinstitute.org/cancer/software/genepattern/) (Irizarry et al., 2003; Reich 
et al., 2006). Probes were collapsed to unique genes by selecting the probe with the 
maximal average expression for each gene. Batch effects were further removed using the 
ComBat module in GenePattern(Johnson et al., 2007) (Reich et al., 2006). Visualizations 
in GENE-E (http://www.broadinstitute.org/cancer/software/GENE-E) were based on 
logarithmic transformation (log2) of the data and centering each gene (zero mean). These 
data can be accessed at http://www.ncbi.nlm.nih.gov/geo/info/linking.html with accession 
number GSE37168. 
 

RNA pyrosequencing for mutation confirmation: Quantitative targeted sequencing to 
detect somatic mutation within cDNA was performed, as previously described 
(Armistead et al., 2008). In brief, biotinylated amplicons generated from PCR of the 
regions of transcript surrounding the mutation of interest were generated. Immobilized 
biotinylated single-stranded DNA fragments were isolated per manufacturer’s protocol, 
and sequencing undertaken using an automated pyrosequencing instrument (PSQ96; 
Qiagen, Valencia CA), followed by quantitative analysis using Pyrosequencing software 
(Qiagen).   
 
Statistical methods Statistical analysis was performed with MATLAB (MathWorks, 
Natick, MA), R version 2.11.1 and SAS version 9.2 (SAS Institute, Cary, NC). 
Categorical variables were compared using the Fisher Exact test, and continuous 
variables were compared using the Student’s t-test, Wilcoxon rank sum test, or Kruskal 
Wallis test as appropriate; the association between two continuous variables was assessed 
by the Pearson correlation coefficient. The time from the date of sample to first therapy 
or death (failure-free survival from sample time or FFS_Sample) was calculated as the 
time from sample to the time of the first treatment after the sample or death and was 
censored at the date of last contact. FFS_Rx (failure-free survival from first treatment 
after sampling) was defined as the time to the 2nd treatment or death from the 1st 
treatment following sampling, was calculated only for those patients who had a 1st 
treatment after the sample and was censored at the date of last contact for those who had 
only one treatment after the sample.  Time to event data were estimated by the method of 
Kaplan and Meier, and differences between groups were assessed using the log-rank test.  
Unadjusted and adjusted Cox modeling was performed to assess the impact of the 
presence of a subclonal driver and a driver irrespective of the CCF on FFS_Sample and 
FFS_Rx. A chi-square test with 1 degree of freedom and the -2 Log-likelihood statistic 
was used to test the prognostic independence of subclonal status in Cox modeling using a 
full model and one without subclonal status included. We also formally tested for non-
proportionality of the hazards in Figure 6B First, we plotted the log(-log(survival) versus 
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log(time) for the two categories, and demonstrated that curves do not cross, which 
supports the fact that they are proportional. Second, we also tested for non-
proportionality by including a time varying covariate for each variable in the model. 
None of these were significant indicating that the hazards are proportional. Models were 
adjusted for known prognostic factors for CLL treatment including the presence of a 17p 
deletion, the presence of a 11q deletion, IGHV mutational status, and prior treatment at 
the time of sample. Cytogenetic abnormalities were primarily assessed by FISH and if 
unknown, genomic data were included. For unknown IGHV mutational status an 
indicator was included in adjusted modeling and was not found to be significant. All P-
values are two-sided and considered significant at the 0.05 level unless otherwise noted. 	
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