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FIGURE S1 Monolayer cultured chondrocyte nuclei with hyper- (A1) and normally- (A2) 

condensed chromatin as the source images, both with a region of interest drawn across the 

nuclei (yellow). Image after Sobel algorithm (B), Sobel image post-thresholding (C), 

thresholded image post-thinning morphological operation (D), region of interest (yellow) 

showing the inner part of the nucleus (E). From this quantification method, the nucleus with 

hyper-condesed chromatin has an chromatin condensation parameter of 4.86%, whereas the 

nucleus without hyper-condensed chromatin has an chromatin condensation parameter of 

0.16%. (F) The intensity profile across the nucleus with hyper- (A1, ) and normally-  

(A2, ) condensed chromatin, arrows showing the intensity dips (Bar: 5 μm). 

 



 
FIGURE S2 Images of monolayer cultured chondrocytes expressing H2B-GFP fusion-protein 

in an isoosmotic environment (300 mOsm/kg), followed by hypoosmotic challenge (100 

mOsm/kg), which was then brought back to the isoosmotic conditions. Images were 

thresholded using the Iterative Self Organizing Data algorithm (Bar: 5 μm).  

 

 
FIGURE S3 Images of monolayer cultured chondrocytes expressing H2B-GFP fusion-protein 

in an isoosmotic environment (300 mOsm/kg), followed by isoosmotic challenge (300 

mOsm/kg), which was then brought back to the isoosmotic conditions. Images were 

thresholded using the Iterative Self Organizing Data algorithm (Bar: 5 μm).  



 
FIGURE S4 Images of monolayer cultured chondrocytes expressing H2B-GFP fusion-protein 

in an isoosmotic environment (300 mOsm/kg), followed by hyperosmotic challenge (400 

mOsm/kg), which was then brought back to the isoosmotic conditions. Images were 

thresholded using the Iterative Self Organizing Data algorithm (Bar: 5 μm).  

 

 
FIGURE S5 Images of monolayer cultured chondrocytes expressing H2B-GFP fusion-protein 

in an isoosmotic environment (300 mOsm/kg), followed by hyperosmotic challenge (500 

mOsm/kg), which was then brought back to the isoosmotic conditions. Images were 

thresholded using the Iterative Self Organizing Data algorithm (Bar: 5 μm). 



 
FIGURE S6 Images of monolayer cultured chondrocytes expressing H2B-GFP fusion-protein 

in an isoosmotic environment (300 mOsm/kg), followed by hyperosmotic challenge (700 

mOsm/kg), which was then brought back to the isoosmotic conditions. Images were 

thresholded using the Iterative Self Organizing Data algorithm (Bar: 5 μm).  

 

 

 

 



 
FIGURE S7 Average projection images of monolayer cultured chondrocytes expressing 

actin-RFP and H2B-GFP fusion-protein in an isoosmotic environment (300 mOsm/kg), 

followed with hypoosmotic challenge (100 mOsm/kg) (Bar: 10 µm). 

 



 
FIGURE S8 Average projection images of monolayer cultured chondrocytes expressing 

actin-RFP and H2B-GFP fusion-protein in an isoosmotic environment (300 mOsm/kg), 

followed with isoosmotic challenge (300 mOsm/kg) (Bar: 10 µm). 

 



 
FIGURE S9 Average projection images of monolayer cultured chondrocytes expressing 

actin-RFP and H2B-GFP fusion-protein in an isoosmotic environment (300 mOsm/kg), 

followed with hyperosmotic challenge (500 mOsm/kg) (Bar: 10 µm). 

 


