Supplementary information for Bocker et al. "Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster".

Supplementary Figure S1

Ingenuity Pathway Analysis of differentially methylated genes of NT2 cells after 14 days of RA treatment. The bar diagrams show the five most enriched molecular and cellular functions (right) and physiological functions (left) found correlated with differentially methylated genes.

Histone modifications in the HOXA1 region before and after RA treatment. Chromatin immunoprecipitation (ChIP) analysis of the *HOXA1* gene in control (cont.) NT2 cells and cells treated for 3 days, 7 days and 14 days with RA. ChIP was repeated at least three times with chromatin from biological replicates using ChIP-grade antibodies specific for H3K27me3 and H3K4me3. Immunoprecipitated DNA was analyzed by real time PCR using two primer pairs specific for the *HOXA1* promoter region and the second exon. The sketch above the diagrams shows the positions of the primers. The primer pair in the second exon covers a potential NANOG/OCT4 binding site³⁷. Enrichments are shown as percentage of the total input. Standard deviations are indicated by error bars.

The effect of DNMT1 depletion on *HOXA* gene expression. Quantitative RT-PCR expression analysis of *HOXA1*, *HOXA2*, *HOXA3* and *DNMT1* after 3 days of DNMT1 knock down with a specific siRNA pool in NT2 cells. The diagrams shows fold differences compared to the scrambled control (non-targeting pool). Quantitative RT-PCR measurements are from two independent experiments and were internally normalised to the corresponding *lamin-b* and β -*actin* expression levels. The range is indicated by error bars.

Examples of negative control experiments for gene specific MeDIP experiments. DNA immunoprecipitated with antibodies specific for 5mC or 5hmC using genomic DNA from NT2 cells or mouse tissues was amplified using primer pairs specific for the human unmethylated control regions⁵² *UEB2B* (**a**) and *HIST1H3B* (**b**) or mouse unmethylated control regions *Gapdh* (**c**) and *β*-*actin* (**d**). No significant enrichments were found. Diagrams show the results of at least three independent experiments. Standard deviations are indicated by error bars.

Expression of *Hoxa* **genes is reduced in mouse** *Tet2^{<i>t*-} **tissues.** qRT-PCR expression analysis of *Hoxa* and *Tet* genes in three more tissues from the *Tet2^{<i>t*-} mouse. Diagrams show the expression as fold change relative to the wild type (=1). For *Tet2*, two different primer pairs were used³⁹. (a) spinal chord, (b) uterus and (c) ovary. Standard deviations of three replicates are indicated by error bars

A model describing the role of DNA methylation during the activation of the HOXA cluster. The inactive cluster in pluripotent cells is part of an inactive higher order structure that is incompatible with transcription. The cluster is mainly marked by 5mC on the DNA level. During RA-induced differentiation HOXA genes move progressively into an active compartment, which is accompanied by 5mC-5hmC conversion.

Supplementary Table S1. HiSeq reads.

	Reads #	sample	reads per sample	mapped reads
		Control-1	45.246 x 10 ⁶	31.513 x 10 ⁶ (70%)
MeDIP-pool	92.393 x 10 ⁶	14d RA-1	47.147 x 10 ⁶	31.690 x 10 ⁶ (68%)
		Control-2	10.839 x 10 ⁶	6.461 x 10 ⁶ (68%)
hMeDIP-pool	38.373 x 10 ⁶	14d RA-2	27.534 x 10 ⁶	20.606 x 10 ⁶ (75%)

Supplementary Table S2. RT-PCR primer pairs.

gene	forward primer	reverse primer	
human HOXA1	GCCGTACTCTCCAACTTTC	CTCGCCTCAATACATTCACC	
human HOXA2	TGCAGCATCTGAATTACTAAAAACA	CCAAATAAAAGAAGGCAAAACC	
human HOXA3	TGCTTTGTGTTTTGTCGAGACTC	CAACCCTACCCCTGCCAAC	
human HOXA4	ATGAAGAAGATCCATGTCAGC	CAGACAAACAGAGCGTGTGG	
human HOXA5	TGAAGTGGAACTCCTTCTCCAGC	CGCAAGCTGCACATAAGTCATG	
human HOXA6	TGGGCTGCGTGGAATTGATGAGC	GATGCAGCGCATGAACTCCTGCG	
human OCT4	CTGACAACAATGAAAATCTTCAG	GTTACAGAACCACACTCGGAC	
human β-actin	GATCAAGATCATTGCTCCTCCTG	CTAGAAGCATTTGCGGTGGAC	
human lamin-b	CTGGAAATGTTTGCATCGAAGA	GCCTCCCATTGGTTGATCC	
human DNMT1	Hs_DNMT1_1_SG QuantiTect Primer Assay (Qiagen)		
human DNMT3a	Rn_Dnmt3a_2_SG QuantiTect Primer Assay (Qiagen)		
human DNMT3b	Hs_DNMT3B_1_SG QuantiTect Primer Assay (Qiagen)		
human TET1	TCTGTTGTTGTGCCTCTGGA	GCCTTTAAAACTTTGGGCTTC	
human TET2	AAAGATGAAGGTCCTTTTTATACCC	TTTACCCTTCTGTCCAAACCTT	
human TET3	CCATTGCAAAGTGGGTGA	CGCACCAGGCAGAGTAGC	
mouse Hoxa1 ¹	CCTTGGCAGTGGCGACTCT	GCGCAGGATTGGAAAGTTGT	
mouse Hoxa2 ¹	TCGCTGAGTGCCTGACATCT	AAAGCGTCGAGGTCTTGATTG	
mouse Hoxa3 ¹	CAATGGGTTCGCTTACAATGC	AGGCAGGTCGATGGTACTCAAC	
mouse Hoxa4 ¹	CCGGAGAATGAAGTGGAAGAAA	GCCGAGGCAGTGTTGGAA	
mouse Hoxa5 ¹	TAGTTCCGTGAGCGAACAATTC	GCTGAGATCCATGCCATTGTAG	
mouse Hoxa6 ¹	CCTATTTTGTGAATCCCACTTTC	CAGCTGGCCCAAGAAGGA	
mouse Hoxa7 ¹	ACGCGCTTTTTAGCAAATATACG	GGGTGCAAAGGAGCAAGAAG	
mouse Hoxa9 ¹	CCGAACACCCCGACTTCA	TTCCACGAGGCACCAAACA	
mouse Hoxa10 ¹	CACAGGCCACTTCGTGTTCTT	TTGTCCGCAGCATCGTAGAG	
mouse Hoxa11 ¹	AGATTTCTCCAGCCTCCCTTCTT	TGGAGGAGTAGGAGTATGTCATTGG	
mouse Hoxa13 ¹	CCTCCCCACCTCTGGAAGTC	TAAGGCACGCGCTTCTTTCT	
mouse Tet1 ²	CTGAGCCTGTTCCTCGATGTGG	AGGTGAGAAGTAGATGAGGCTGATG	
mouse Tet2-1 ²	GTCAACAGGACATGATCCAGGAG	CCTGTTCCATCAGGCTTGCT	
mouse Tet2-2 ²	AGCCTGATGGAACAGGACAG	AACGGGCTTCCATTCTGGAG	
mouse Tet3 ²	GGAGTTGGCTGGAGTCACCAC	CCACCGCATTGCCACTGTAC	
mouse β-actin ²	TGAACCCTAAGGCCAACCGTGAAA	CAGGATGGCGTGAGGGAGAGCATAG	
mouse GPDH	CATGGCCTTCCGTGTTCCTA	TGCTTCACCACCTTCTTGATGT	

Primer sequences published in:

- ¹ Reference 56
- ² Reference 39

Supplementary Table S3. Primer pairs for 454 bisulfite sequencing.

Each 454 primer consists of a 454 adaptor (forward GCCTCCCTCGCGCCATCAG, reverse GCCTTGCCAGCCCGCTCAG), a sample specific multiplex identifier (CACA for untreated NT2 cells and CTCT for 21d RA-induced NT2 cells as well as a gene specific sequence (see below).

amplicon name		primer	
hoxa1-down	forward	TAAGAATTTAGAGGGTGAAGGTTG	
	reverse	ТСААСТАТССААААСТТААААААА	
hoxa1-1stex	forward	TGGATTATAATTTGAGTGGGAGTAG	
	reverse	ААААТАССССАТАСТТААСААТААС	
hoxa2-2ndex	forward	GTTTAGGTTGGGTTTTTAGGAAAG	
	reverse	ТТАТСТСТСААТСАААТССААСААС	
hoxa3-6	forward	ATGGGTTTTATATAGTTGTTTTTTA	
	reverse	ACCAATCTACTAAACCTCACTAAAC	
hoxa3-5-1	forward	GGTTATTGTGGGTGAGTTGAGTAG	
	reverse	АТАТСАААССССТАТСААААТАТАС	
hoxa3-3	forward	GTAAGAATTTGTTAGGGGAAGGG	
	reverse	СТССААААССААТССТТТАААТТТА	
hoxa3-3-3	forward	TTAAGAGGATAAATTAAGTTAGAATTTGAA	
	reverse	СААААСАААААСАААТАААААССАС	
hoxa3-2	forward	TTGATTAGAATTTTTTTTAATAGGT	
	reverse	АТАСССТААТААСТСССТААТАТТС	
hoxa4-2ndex	forward	GTTTTGAGTTTGTGTTTTTTTGGT	
	reverse	AATAATATCCAATTACTCTTCCCCAC	
hoxa5-6-2	forward	AGTTGAGAGGTAAGTGGAGTTTTTT	
	reverse	АААААААТСТАААААСТААААССС	
hoxa6-1	forward	GGGGTTTTTTGTTTGTTATTGTT	
	reverse	CCTTCTTAAACCAACTACCCCTCTACC	
hoxa7	forward	GGTGAGAGAAGATTTGGGTA	
	reverse	CACCCCCAAATTTACACCAA	
hoxa9	forward	ATTATTGTTTAATTTTATGTGAGGG	
	reverse	AAAAACTAACCCAAAATCCC	
hoxa10	forward	GTAGAGGTAGTAGGAGTTTTTTT	
	reverse	САТАТТТТАСАСААААААТАТСААССААА	

Supplementary Table S4. ChIP and MeDIP qPCR-primer.

amplicon	amplicon position	forward primer
name	(hg19 Feb 2009)	reverse primer
	06-7-07407000 07400400	CAAGAACTCAGAGGGTGAAG
HOXA-down	Cnr7:27127898-27128122	CGAGTCGCTCGGGCAGC
	Ch-7:07100010 07100475	TGGGAAAGACTTAGCACAGGAAGC
HUXAT-second exon	Cnr7:27133310-27133475	TGGGCAAACTCTCTAAACTGGTACAA
LIOXA1 promotor	04-7-07105417-07105505	ACTGGAAAGTTGTAATCCTATG
HOXAT-promoter	CII7.27135417-27135565	AGAAAGTTGGCACAGTCACG
HOXA1	Cbr7:27126210 27126464	CATAGAACCGTGGTGGAGG
-upstream_RARE	GII7.27130210-27130404	CGAGCTCTGAGTTTCCAGG
HOXA2 promotor	Chr7:27142260 27142528	TTCACTGATTACAGCCGTATG
HOXA2-promoter	6117.27142200-27142556	CTCGCCCCACGTACTCC
HOXA2 and CCI	Chr7:07161509 07161909	TTTCAAATAGGAAAAGGAAACGC
HOXA3-2110_CGI	GII7.27161526-27161606	GTGGGCTGCTCTCTTTGTC
	Chr7:07169059 07160019	GGATCGCATCTTGGTGTTGG
HOXA4-Second exon	GII7.27166936-27169216	CTTCTATTTCGGGGTTCTGG
LIOXAE promotor	Ch-7:07100040 07100004	GGAGAGTGCGTGGACGTG
HOXAS-promoter	GIII7.27182940-27183304	CATCATAAATTGTGCAAGGGTG
	Ch-7:07104407 07104700	AGAGGCAAGTGGAGTCTCC
HUAX5-0	CII7.27184407-27184732	CCAGAACAGGAAGGAAGCTC
HOXA6 promotor	Chr7:07107000 07107405	GAGACTCGACGCCCCGTAC
HOXA6-promoter	6117.27187228-27187495	GGTGCGATTTGCTGCTGTC
* *	ChrE:122706792 122706059	CTCAGGGGTGGATTGTTGAC
UEB2B	Chip.133700762-133700936	TGTGGATTCAAAGACCACGA
	Chr6-26022421 26022716	CTGTGCCTGGTTGCAGATTA
нізтінзв	0110.20032431-20032710	CCCACACTTCTTATGCGACA
mHova2-promoter	Chr6.52114601-52114880	GCAGAAGCAATCATGTGACAGC
	0110.52114001-52114005	GGCTATTGATAAAACCAATCTCTCG
mHova1-first evont	Chr6.52141145-52141397	GCGACCCGAGCAGTCCC
	6110.52141145-52141597	ACGCCCGCTGCCCTCC
mHoya5-first evon	Chr6:52153936-52154206	CTACAATGGCATGGATCTCAGC
	0110.52155550-52154200	GCTGATGTGGGTGCTGCC
mHova7-promoter	Chr6-52168388-52168649	GTCTGAAGCCCAGCAAGGTAAG
	0110.32100300-32100043	GCAAGCCTTCCACCCTGTG
mondh aromatar	Chr6-125115488-125115620	СТСТGСТСССТGTTCC
mapon-promoter	0110.120110400-120110020	TCCCTAGACCCGTACAGTGC
mPoto optin aromator	Chr5+143668015-143668103	AGCCAACTTTACGCCTAGCGT
mbeta-actin-promoter	0110.14000010-140000100	TCTCAAGATGGACCTAATACGGC

^{*} Primer sequences published in Reference 52.

Supplementary Reference 56.Lebert-Ghali, C.E. *et al.* HoxA cluster is haploinsufficient for activity of hematopoietic stem and progenitor cells. *Exp. Hematol.* **38**, 1074-1086 (2011).