Nature Methods

Dual RMCE for efficient re-engineering of mouse mutant alleles

Marco Osterwalder, Antonella Galli, Barry Rosen, William C Skarnes, Rolf Zeller & Javier Lopez-Rios

Supplementary Figure 1	The dRMCE tool-kit
Supplementary Figure 2	Differential reporter activity distinguishes different types of mixed colonies
Supplementary Figure 3	D RMCE works efficiently with promoter –driven IKMC knockout- first alleles
Supplementary Figure 4	No random integration of the dRMCE plasmids in Hand2FLAG/+ mouse embryonic stem cell clones
Supplementary Figure 5	Hand2 expression in limb bud of mouse embryos
Supplementary Table 1	Frequencies of dRMCE-mediated correct replacement at the Smad4, Zfp503, Hand2 and Gli3 loci in mouse embryonic stem cells
Supplementary Table 2	Sequences of the PCR primers used in this study

Note: Supplementary Data is available on the Nature Methods website.

(a) Map of the *pDIRE* (plasmid Dual Improved Recombinase Expression) vector. Simultaneous expression of both iCre and Flpo recombinases in mouse embryonic stem cells is achieved by the use of heterologous promoters (*PGK-Flpo*; *EF1a-iCre*). (b) The *pDREV* (plasmid Dual Recombinase EuComm Vector) series encode a 5' FRT site and 3' loxP site for re-engineering of the IKMC knockout first alleles. These plasmids encode the T2A self-cleaving peptide (T) and H2B-Venus fluorescent reporter fused in-frame to the splice acceptor of the mouse En2 gene followed by the SV40 polyadenylation site and PGK-puromycin selection cassette (flanked by rox sites). The H2B-Venus coding sequence can be substituted by any coding sequences of choice in a single cloning step. (c) The pDRAV (plasmid Dual Recombinase Acceptor Vector) series encodes the *loxP* and *FRT* sites in all possible orientations. The *PGK-hygromycin* selection cassette is flanked by φ 31 target sites. A lox2272 site has also been inserted to enable subsequent engineering. The polylinker in the pDRAV series provides the necessary versatility for rapid generation of custom-designed dRMCE replacement vectors. The complete sequences of the pDIRE, pDREV and pDRAV vectors are included as a Supplementary Data File.

Supplementary Figure 1. The dRMCE tool-kit.

Supplementary Figure 2. Differential reporter activity distinguishes different types of mixed colonies.

Mixed Smad4^f/Smad4⁻

(**a**, **b**) Colony 2 is composed of both β -galactosidase (*Smad4^f*) and YFP-positive cells (*Smad4^{YFP}* allele) in agreement with PCR analysis (**Fig. 1c**). Some colonies are mixed (arrows), while others are either completely β -galactosidase or YFP-positive (arrowheads). (**c**, **d**, **e**) Co-immunolocalization of β -galactosidase (red) and YFP (yellow) in a mixed colony reveals that cells either express one or the other reporter (see panel **e**). β -galactosidase localizes to the cytoplasm (white arrowheads in panel **c**), while the YFP protein is nuclear. (**f**, **g**) In a mixed colony composed of heterozygous *Smad4⁻* and *Smad4^f* cells, some cells retain β -galactosidase while no YFP fluorescence is detected. Scale bars: 100 µm (panels **a**, **b**, **f** and **g**); 10 µm (panels **c-e**).

Supplementary Figure 3. dRMCE works efficiently with promoter-driven IKMC knockout-first alleles.

(a) Scheme of the dRMCE strategy for the *Zfp503* conditional allele (*Zfp503^f*), which encodes three *loxP* sites. The scheme illustrates the likely sequence of complete *cis*-deletion and subsequent *trans*-insertion that results in correct replacement and generation of the *Zfp503^{YFP}* allele. (b) PCR screening reveals the high frequency of clones with correct replacement (indicated in green) and some clones with only partial or no replacement. Detection of β -galactosidase activity or YFP fluorescence is not possible as *Zfp503* is not expressed by mouse embryonic stem cells. 3'Recombination, 5'Recombination: correct replacement at the 3' and 5' end, respectively.

Supplementary Figure 4. No random integration of the dRMCE plasmids in *Hand2^{FLAG/+}* mouse embryonic stem cell clones.

(a) Schematic view of the $Hand2^{f}$ and $Hand2^{FLAG}$ alleles. The positions of restriction sites and the probes used for Southern blot analysis are indicated. H: HindIII, E: EcoRV, P: Pacl. (b) Southern blot analysis confirms that replacement occurred correctly at the 5' (8.5 kb band) and 3' (6.9 kb band) ends and reveals the integrity of the $Hand2^{FLAG}$ locus. (c) A single copy of the *hygromycin*-resistance cassette is present in all $Hand2^{FLAG}$ clones. (d) PCR primers that amplify *iCre* and *Flpo* sequences fail to detect *pDIRE* sequences in $Hand2^{FLAG}$ clones.

Supplementary Figure 5. Hand2 expression in limb buds of mouse embryos.

(**a**, **b**) Forelimbs of wild-type ($Hand2^{+/+}$) and $Hand2^{FLAG/FLAG}$ mouse embryos at ~E10.5 (posterior view). (**c**, **d**) Forelimbs of mouse embryos of both genotypes at ~E11.5 (oriented with anterior to the top, posterior to the bottom). Scale bars: 200 µm (panels **a**, **b**); 500 µm (panels **c**, **d**).

Supplementary Table 1. Frequencies of dRMCE-mediated correct replacement at the *Smad4*, *Zfp503*, *Hand2* and *Gli3* loci in mouse embryonic stem cells.

Gene Locus	Number of Colonies	Correct Replacement	Mixed Colonies	Negative
Smad4	48	33 (69%)	5	10
Zfp503	48	25 (52%)	0	23
Hand2	343	43 (13%)	11	289
Gli3	113	37 (33%)	0	76

Supplementary Table 2. Sequences of the PCR primers used in this study and

primer pairs/amplicon sizes that were designed to specifically detect the different

alleles of the Smad4, Zfp503 and Hand2 loci.

Primers of general use

In IKMC knockout-first alleles

Primer	Sequence
F1	AGCAGAGCGGGTAAACTGGC
R1	GCATCAGAGCAGCCGATTGTC
F9	CCAACCTGCCATCACGAGATT

In pDREV

Primer	Sequence
R3	TGGACGAAATGCCGGTGTCA
F4	GCAAAACCAAATTAAGGGCCA
R10	TGGACCTGCTTCAGAACCTTGTA
F11	CTCTTGATTCCCACTTTGTGGTTC

In pDRAV

Primer	Sequence
F6	ATGCGACGCAATCGTCCGATC
R7	CATCTGCACGAGACTAGTGAGACG

In pDIRE

Primer	Sequence
1	GACTACCTCCTGTACCTGCAAGCCAG
12	CTGCCAATGTGGATCAGCATTCTC
P1	CAGCCTGAGCTTCGACATCGTGAAC
P2	CTCAGGAACTCGTCCAGGTACACC

Locus specific primers

Primer	Sequence
F2	AACTAACTCTGTGTTCAGAGCCCCG
R2	GCTGCCCAAATCAATAGCCA
F3	GCAATCCAAACCAAGCATTGTC
F5	CCTCGGCAATTAGCAACGTGAACATC
R5	GTCCTCGCTCCTCAGGCTCTCTCG
R6	CCCTCCTCCACCACCACTGCTCAT
F7	CTGTGCCTGGTGCTTCGTTTTGTG
R8	TTGAACTGCGAACAGGGGAA
R9	TTCTGAGGAAGGCGACTTTGG
F10	CTTCCTGTGGGGTTTCTTTC
R11	GCACAAAACGAAACTCAAACGC
А	TCCAAGTCGATGGATATGCAACG (Grem1)
В	ATGAATCGCACCGCATACACTG (Grem1)

Locus specific amplicons

Smad4 locus

Primer pair	Allele	Size
F4/R2	Smad4 ^{YFP} (3')	456bp
F3/R3	Smad4 ^{YFP} (5')	1594bp
F2/R2	Smad4	565bp
	Smad4 ^{wt}	1265bp
F1/R1	Smad4 ^f	558bp

Zfp503 locus

Primer pair	Allele	Size
F11/R11	Zfp503 ^{YFP} (3')	396bp
F10/R10	<i>Zfp503^{YFP}</i> (5')	1449bp
F1/R8	Zfp503	987bp
F9/R9	Zfp503 ^f	599bp

Hand2 locus

Primer pair	Allele	Size
F6/R6	Hand2 ^{FLAG} (3')	965bp
F5/R5	Hand2 ^{FLAG} (5')	435bp
F5/R5	Hand2 ^f (5')	435bp
		(EcoRV: 340bp + 95bp)
F5/R6	Hand2 [−]	411bp
F7/R6	Hand2 ^{wt}	240bp
F7/R7	Hand2 ^{FLAG} (mice)	404bp