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1. Theoretical Results for Section 4

Lemma 1 Let Y,D and X be the supports of Y,D and X. Assume that n0/n → ρ0 > 0 and

nk/n→ ρk > 0, k = 1, · · · ,K−1 as n→∞. Under regularity conditions n1/2(η̂−η) converges to

a mean zero normal distribution in a neighborhood of η, and n1/2(Ĝ(D,X)−G(D,X)) converges

to a mean zero Gaussian process on D ×X .

Proof: Similar to the proof of the theorem in Wang and Zhou (2006), we can prove n1/2(η̂− η)

is subject to a normal distribution as n tends to infinity. Since n0/n and nk/n, k = 1, · · · ,K − 1

converge, nK/n converges. Let nK/n → ρK as n → ∞. Under the regularity conditions for

empirical likelihood (Qin and Lawless, 1994; Owen, 2001) and by use of the Taylor expansion we

have

η̂ − η = −
[

1

n

∂2lp(η)

∂η∂ηT

]−1
1

n

∂lp(η)

∂η
+ op(n

−1/2)

,
K∑
s=0

1

ns

ns∑
i=1

ρs(−Hη)−1gradsi + op(n
−1/2), (S1.1)

where
∂lp(η)
∂η , as the gradient vector of lp(η), has the form of

∑K
s=0

∑ns
i=1 gradsi, and Hη =

lim
n→∞

1
n
∂2lp(η)
∂η∂ηT

. Rewriting the sum in (S1.1) as 1/n0

∑n0

i=1 +1/n1

∑n1

i=1 + · · · + 1/nK
∑nK
i=1, we

apply the central limit theorem to each term to obtain n1/2(η̂ − η) subject to a normal distri-
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bution as n tends to infinity. The asymptotic variance matrix of n1/2(η̂ − η) can be obtained as

H−1
η Cov

(∑K
s=0 ρsgradsi

)
H−1
η .

Following the proof of Theorem 1 in Qin and Lawless (1994), we have

Ĝ(d, x)−G(d, x) =
1

n

K∑
s=0

ns∑
i=1

[
1−G(d, x)− (S−1B)TPsi

]
I(xsi 6 x, dsi = d) + op(n

−1/2)

,
K∑
s=0

1

ns

ns∑
i=1

ρsζ
0
si + op(n

−1/2), (S1.2)

where ζ0
si =

[
1−G(d, x)− (S−1B)TPsi

]
I(xsi 6 x, dsi = d), Psi = (Pr(ysi ∈ C1|dsi, xsi) −

θ1, · · · ,Pr(ysi ∈ CK−1|dsi, xsi)−θK−1)T , S = lim
n→∞

1/n
∑K
s=0

∑ns
i=1 PsiP

T
si , andB = lim

n→∞
1/n

∑K
s=0

∑ns
i=1 Psi.

Applying the central limit theorem, we have n1/2(Ĝ(d, x)−G(d, x)) a Gaussian process on D×X .

The asymptotic variance of n1/2(Ĝ(d, x)−G(d, x)) is
∑K
s=0 ρsvar

(
ζ0
si

)
.

Lemma 2 Under the conditions specified in Theorem 1, we have n1/2(Ŝ1X(c) − S1X(c)) and

n1/2(Ŝ0X(c) − S0X(c)) each converges to a mean zero Gaussian process on Y, where Y is the

support of Y .

Proof: Let nD and nD̄ be the numbers of diseased and non-diseased subjects respectively, and

γ =
∑K
s=0 ρsρ

D
s . We have nD/n→ γ > 0 as n→∞.

Denote
∂lp(η)
∂β =

∑K
s=0

∑ns
i=1 grad

′
si, and Hβ = lim

n→∞
1
n
∂2lp(η)
∂β∂βT

. By the functional delta method,

we have

n1/2
[
Ŝ1X(c)− S1X(c)

]
= ∂S1X(c)

∂β n1/2(β̂ − β) + op(1)

= γ−1/2n
−1/2
D

∂S1X(c)
∂β

∑K
s=0

∑ns
i=1 χsi + op(1),

= γ−1 ∂S1X(c)
∂β

∑K
s=0(ρsρ

D
s )1/2(nDs )−1/2

∑ns
i=1 χsi + op(1),

where χsi = (−γ−1Hβ)−1grad′siI(dsi = 1). Since (nDs )−1/2
∑ns
i=1 χsi, s = 0, · · · ,K are mutual

independent, the conclusion follows by applying the central limit theorem to each part.

Let $
(1)
si = ∂S1X(c)

∂β χsi, then the asymptotic variance of n1/2
[
Ŝ1X(c)− S1X(c)

]
is

K∑
s=0

ρsρ
D
s var($

(1)
si ).
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For Ŝ0X(c), let $
(0)
si = ∂S0X(c)

∂β (−γ−1Hβ)−1grad′siI(dsi = 0). The conclusion for Ŝ0X(c) can be

similarly obtained from the equation that n1/2
[
Ŝ0X(c)− S0X(c)

]
= (1−γ)−1

∑K
s=0(ρsρ

D
s )1/2(nDs )−1/2

∑ns
i=1$

(0)
si +

op(1).

Theorem 1 Assume nDs /ns → ρDs , s = 0, 1, · · · ,K with 0 < ρD0 < 1 and 0 6 ρD1 , · · · , ρDK < 1

as n → ∞. Under the conditions specified in Lemma 1, we have n1/2( ˆROCX(t) − ROCX(t))

converges to a mean zero Gaussian process on (0, 1) with variance Ω1 + Ω0 for any given t, where

Ω1 =
[
∂S1X(c)
∂βT

]
H−1
β

∑K
s=0 ρsρ

D
s var($

(1)
si )H−1

β

[
∂S1X(c)
∂β

]
, and

Ω0 =

[(
∂S0X(vt)

∂vt

)−1
∂S1X(vt)

∂vt

]2 [
∂S0X(c)

∂βT

]
H−1
β

K∑
s=0

ρs(1− ρDs )var($
(0)
si )H−1

β

[
∂S0X(c)

∂β

]
.

Proof: For any given t ∈ (0, 1), denote vt = S−1
0X(t). By use of the functional delta method and

its application to quantiles in van der Vaart (1998), we have

ˆROCX(t)−ROCX(t) =
[
Ŝ1X(vt)− S1X(vt)

]
− ∂S1X(vt)

∂vt

(
∂S0X(vt)
∂vt

)−1 [
Ŝ0X(vt)− S0X(vt)

]
+ op(n

−1/2),

where ∂S1X(vt)
∂vt

=
∂Φ(σ−1

1 (β0+βD+βTXX+βTDXXD−c))
∂c |c=vt ,

∂S0X(vt)
∂vt

=
∂Φ(σ−1

0 (β0+βTXX−c))
∂c |c=vt . It

follows that n1/2
[

ˆROCX(t)−ROC(t)
]

converges to a mean zero Gaussian process. Since the dis-

eased subjects and the non-diseased subjects are independent, the variance of n1/2
[

ˆROCX(t)−ROCX(t)
]

at t is Ω1 + Ω0.

Lemma 3 Under the condition of Theorem 1, we have n1/2(Ŝ1(c)−S1(c)) and n1/2(Ŝ0(c)−S0(c))

each converges to a mean zero Gaussian process on Y.

Proof: For simplicity of notation, denote G(D = 1, X) and G(D = 0, X) by G1 and G0

respectively, and their estimators by Ĝ1 and Ĝ0 respectively.

Since S1(c) is differentiable as a composite function of (η,G1), applying the functional delta
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method, we have

n1/2
[
Ŝ1(c)− S1(c)

]
= n1/2

[∫
Ŝ1X(c)dĜ1/

∫
dĜ1 −

∫
S1X(c)dG1/

∫
dG1

]
= (

∫
dG1)−1

[∫ ∂S1X(c)
∂η dG1 +

∫
S1X(c)∂g̃1∂η dx− S1(c)

∫
∂g̃1
∂η dx

]
n1/2(η̂ − η)

+n1/2(
∫

dG1)−1
[∫

(S1X(c)− S1(c))d(Ĝ1 −G1)
]

+ op(1),

where g̃1 = 1
n0+

∑K
k=1

nk
θk

Pr(Y ∈Ck|d,x)
I(d = 1). It follows from Lemma 1 that n1/2

[
Ŝ1(c)− S1(c)

]
converges to a Gaussian process with mean zero on Y.

By use of (S1.1) and (S1.2), we can write the above equation as

n1/2
[
Ŝ1(c)− S1(c)

]
= γ−1/2(

∫
dG1)−1

[∫ ∂S1X(c)
∂η dG1 +

∫
S1X(c)∂g̃1∂η dx− S1(c)

∫
∂g̃1
∂η dx

]
n
−1/2
D

∑K
s=0

∑ns
i=1(−γ−1Hη)−1gradsiI(dsi=1)

+γ−1/2(
∫

dG1)−1n
−1/2
D

∑K
s=0

∑ns
i=1 {[S1Xsi(c)− S1(c)] ζsiI(dsi = 1)}+ op(1)

, γ−1/2n
−1/2
D

∑K
s=0

∑ns
i=1 ω

(1)
si + op(1),

where gradsi is seen in the proof of Lemma 1, ω
(1)
si is seen in (4.10) and ζsi = 1 − G(dsi, xsi) −

(S−1B)TPsi. Asymptotic variance of n1/2(Ŝ1(c)− S1(c)) at c is
∑K
s=0 ρsρ

D
s var(ω

(1)
si ).

Theorem 2 Under the condition of Theorem 1, we have n1/2( ˆROC(t) − ROC(t)) converges

to a mean zero Gaussian process on (0, 1) with variance Γ1 + Γ2 for any given t, where Γ1 =∑K
s=0 ρsρ

D
s var(ω

(1)
si ) and Γ2 =

[(
∂S0(vt)
∂vt

)−1
∂S1(vt)
∂vt

]2∑K
s=0 ρs(1− ρDs )var(ω

(0)
si ).

Proof: For Ŝ0(c), define ω
(0)
si by replacing S1X(c), S1(c), G1, nD with S0X(c), S0(c), G0, nD̄ re-

spectively and setting dsi = 0 in (4.10), then asymptotic normality of n1/2
[
Ŝ0(c)− S0(c)

]
follows

similarly from the equation that n1/2
[
Ŝ0(c)− S0(c)

]
= (1−γ)−1/2n

−1/2

D̄

∑K
s=0

∑ns
i=1 ω

(0)
si +op(1).

Similar to the proof of Theorem 1, ˆROC(t) can be shown to be a Gaussian process with mean

0 asymptotically. The variance of n1/2
[

ˆROC(t)−ROC(t)
]

is

K∑
s=0

ρsρ
D
s var(ω

(1)
si ) +

[(
∂S0(vt)

∂vt

)−1
∂S1(vt)

∂vt

]2 K∑
s=0

ρs(1− ρDs )var(ω
(0)
si ).
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2. Supplementary Materials for Section 6

2.1 Supplementary Figure and Table for Main Text

[Insert Figure S1 around here]

[Insert Table S1 around here]

2.2 Comparison of Three TDS Methods

Under the TDS design, the empirical likelihood method SLTDS and the weighted likelihood

method WLTDS are able to estimate covariate-specific ROC curve, while all three methods

- SLTDS , WLTDS and the nonparametric method NPTDS - are able to estimate covariate-

independent ROC curve. Table S2 lists the ratio of mean square error (MSE) of SLTDS (or

NPTDS) to that of WLTDS . The WLTDS is chosen to be the reference because it provides

estimates for both covariate-specific ROCX(t) and covariate-independent ROC(t). Under all

scenarios, SLTDS yields the smallest MSEs for both covariate-specific ROCX(t) and covariate-

independent ROC(t), while NPTDS has the largest MSE in estimating covariate-independent

ROC(t). We conclude that SLTDS is the most efficient among the three TDS methods, which is

understandable as neither WLTDS nor NPTDS has used all available information in the data.

[Insert Table S2 around here]

2.3 Choice of Number of Regions, Cutoff Points and Subject Allocation

To maximize the potential efficiency gain of the TDS design in practice, one needs to make good

choice for the number of regions, cutoff points and subject allocation. We conducted extensive

simulations to evaluate the impact of number of regions, cutoff points and subject allocation

on the precision of ROC estimation. We investigated the impact of the following factors: (i) the

number of regions in which test result Y is divided, e.g. 2, 3 or 4 regions; (ii) the locations of cutoff

points, which are defined by the distance from the center of test result, e.g. (µY −aσY , µY +aσY )
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with a = 0.5, 1.0, 1.5 for 3-regions; (iii) the proportion of TDC subjects in the central region, e.g.

n2/nTDC for 3-regions, and the proportion of TDC subjects in the right region, e.g. n3/nTDC

for 3-regions; and (iv) the proportions of TDC subjects in the entire cohort, i.e. nTDC/n. In all

conditions, the same binormal ROC model has been used with the same number of subjects in

the analysis cohort n = 300.

First, let’s consider the cases that the test result is divided into 2, 3 and 4 regions according to

the location of cutoff points. For 2-regions, three choices of the single cutoff point µY +aσY where

a = 0.5, 1.0, 1.5 and several patterns of subject allocation were used, including oversampling or

undersampling subjects in the right region and balanced allocation. Table S3 lists the simulated

standard errors (SE) under these conditions.

[Insert Table S3 around here]

For 3-regions, three choices of the paired cutoff points (µY − aσY , µY + aσY ) where a =

0.5, 1.0, 1.5 and several patterns of subject allocation were used, including oversampling or un-

dersampling subjects in the tailed regions and balanced allocation. Table S4 lists the simulated

standard errors (SE) under these conditions.

[Insert Table S4 around here]

For 4-regions, three choices of the tripled cutoff points (µY − aσY , µY , µY + aσY ) where

a = 0.5, 1.0, 1.5 and several patterns of subject allocation were used, including oversampling or

undersampling subjects in the tailed regions and balanced allocation. Table S5 lists the simulated

standard errors (SE) under these conditions.

[Insert Table S5 around here] [Insert Figures S2, S3, S4 around here]

In summary, there is no clear advantage in dividing test result into more than 3 regions.

Holding other factors constant, 4-regions tends to yield worse performance than 3-regions, though
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more regions give greater flexibility in allocating TDC subjects to different intervals of Y . In

some combinations, 2-regions yields comparable performance to 3-regions, but 2-regions cannot

selectively allocate subjects two tailed regions of test result, which limits its use in practice. More

carefully, we studied the case of 3-regions. As seen in Table S4, setting the cutoff points far away

from the center tends to improve the precision of ROC estimates, especially those corresponding

to low false positive rate (e.g. t=0.1). Allocating more subjects to the tailed regions (e.g. balanced

allocation or U-shaped allocation) increases the precision of ROC estimate across different values

of t = FPR, especially those at low (e.g. t=0.1) and high (e.g. t=0.9) false positive rate (Figure

S2). Allocating more subjects to the right region with high test results increases the precision

of ROC estimation at low false positive rate (e.g. t=0.1), but it starts to lose efficiency when

all TDC subjects are allocated to the right region (Figure S3). Allocating more subjects to the

TDC tends to improve estimation efficiency, but the additional efficiency gain is small after the

proportion of the TDC subjects in the entire study cohort is higher than 50% (Figure S4). These

findings are consistent with our understanding on how the TDS design works to gain efficiency.

When the test result has a bell-shaped distribution, oversampling subjects with very low and high

test results will increase the representation of subjects who contain more information about ROC

curve in the study cohort. In summary, if one has an interest in the performance of the biomarker

over the entire ROC curve as well as the region that corresponds to low false positive rate, we

recommend to have 50% TDS subjects in the overall study cohort, 3-regions of test result, cutoff

points at (µY − 1.5σY , µY + 1.5σY ) and a balanced allocation of TDC subjects among the three

regions. This combination may not be the one yielding the smallest standard errors, but it will

achieve most of the potential efficiency gain and offer other advantages over some of the best

combinations, such as a faster accrual of subjects to the two tailed regions since subjects with

very low or high test results are less prevalent in the population. If one is only interested in the

performance of the ROC curve corresponding to low false positive rate, a more extreme strategy
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of subject allocation can be adopted, such as allocating the majority (e.g. 70%) TDC subjects

to the right region. The recommendation is based on our simulations arising from the binormal

ROC model. Since the ROC curve is invariant to strictly monotonic increasing transformation on

Y , the recommended procedures should work as long as the test result can be transformed into

a bell-shaped distribution.

2.4 Robustness of the Binormal ROC Model

To evaluate the performance of the proposed estimator SLTDS under a non-normal ROC model,

we generated the test result data using non-normal ROC models. These models are similar to

(2.1), but they have error kernels other than ε ∼ N(0, 1). Two non-normal error kernels, skew

normal and logistic distribution, were studied via simulation. The skew normal distribution gen-

eralizes the normal distribution to allow non-zero skewness (Azzalini, 1985). For skew normal

kernel, we used location 0, scale 1 and shape γ where γ = (0.1, 0.5,−0.5). Under the three shape

values, the skew normal kernel ε has mean (0.0794, 0.3568, -0.3568), standard deviation (0.9968,

0.9342, 0.9342) and skewness (0.0002, 0.0239, -0.0239), respectively. Like normal distribution, the

logistic distribution is symmetric around the mean, but it has thicker tails than a normal distri-

bution. For logistic kernel, we used location 0 and scale 1, yielding mean 0 and standard deviation

1.8138. Other simulation setups are the same as Tables 1-3 in Section 6. Table S6 lists Bias, SE

and 95% CP when the proposed method SLTDS assuming binormal ROC model are used to esti-

mate ROCX(t) with data generated from non-normal ROC models. When the true ROC model is

not binormal and the propose method SLTDS is still used to estimate ROC curve, the proposed

TDS method performs reasonably well with small bias and reasonably calibrated variance esti-

mate. The finding is consistent with the previous findings of several authors (Swets and Pckett,

1982; Hanley, 1996; Pepe, 2003) on the relative robustness of the binormal ROC model in related

settings. Moreover, if the true distribution of test results conditional on D and X is non-normal,
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standard diagnostic tools developed for linear regression can be used to identify the problem and

find appropriate transformations to remedy the problem. For instance, a log transformation can

be applied to test result with long tail skewed to the right. Since the ROC curve is invariant to

strictly monotonic increasing transformation on test result, transformation itself will not mislead

us about the true shape of ROC curve. Moreover, if the investigators have knowledge of the true

distribution of test result, specific generalized linear model with non-identity link functions and

non-normal response distribution can be developed using the same framework for normal linear

model.

[Insert Table S6 around here]
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ˆROCX(t), at X = 1.2, βD = 1.0 ˆROCX(t) at X = 1.2, βD = 2.0
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Fig. S1. ROC Curves Estimated by SLTDS and PESRS on a TDS Dataset

True AUCX=0.847 top left, 0.952 top right, 0.686 bottom left, 0.834 bottom right. SLTDS
ˆAUCX=0.831 top

left, 0.946 top right, 0.692 bottom left, 0.833 bottom right. PESRS
ˆAUCX=0.816 top left, 0.936 top right, 0.726

bottom left, 0.879 bottom right.



Supplementary materials to ROC Curve Estimation Under TDS 11

Table S1. Comparison of the TDS Methods (SLTDS ,WLTDS) with IPWV B

Method True Estimate Bias% SE MSE Ratio
ˆROCX(t) at X = 0

SLTDS t = 0.1 0.407 0.409 0.49 0.0448 0.0020 0.89
t = 0.3 0.654 0.657 0.46 0.0414 0.0017 0.91
t = 0.5 0.798 0.800 0.25 0.0344 0.0012 0.92
t = 0.7 0.898 0.899 0.11 0.0248 0.0006 0.94

WLTDS t = 0.1 0.407 0.408 0.25 0.0484 0.0023 1.04
t = 0.3 0.654 0.657 0.46 0.0447 0.0020 1.06
t = 0.5 0.798 0.800 0.25 0.0368 0.0014 1.06
t = 0.7 0.898 0.899 0.11 0.0262 0.0007 1.05

IPWV B t = 0.1 0.407 0.409 0.49 0.0475 0.0023 1.00
t = 0.3 0.654 0.657 0.44 0.0434 0.0019 1.00
t = 0.5 0.798 0.801 0.46 0.0357 0.0013 1.00
t = 0.7 0.898 0.900 0.38 0.0255 0.0007 1.00

ˆROC(t)
SLTDS t = 0.1 0.385 0.386 0.52 0.0428 0.0018 1.00

t = 0.3 0.588 0.592 0.68 0.0410 0.0017 1.06
t = 0.5 0.724 0.723 -0.14 0.0369 0.0014 1.00
t = 0.7 0.826 0.830 0.12 0.0300 0.0009 1.00

WLTDS t = 0.1 0.385 0.381 -0.78 0.0474 0.0023 1.28
t = 0.3 0.588 0.595 1.19 0.0458 0.0021 1.31
t = 0.5 0.724 0.731 0.97 0.0407 0.0017 1.21
t = 0.7 0.829 0.839 1.21 0.0313 0.0011 1.22

IPWV B t = 0.1 0.385 0.382 -0.52 0.0426 0.0018 1.00
t = 0.3 0.588 0.597 1.53 0.0395 0.0016 1.00
t = 0.5 0.724 0.732 1.10 0.0366 0.0014 1.00
t = 0.7 0.829 0.840 1.33 0.0280 0.0009 1.00
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Table S2. Ratio of MSE(SLTDS) (or MSE(NPTDS)) to MSE(WLTDS) under TDS

Method t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
(a1, a2) = (µY − σY , µY + σY ), (n0, n1, n2, n3) = (150, 50, 50, 50)

ˆROCX=0(t) SLTDS 0.88 0.86 0.80 0.67 0.33
ˆROCX=1.2(t) SLTDS 0.88 0.87 0.75 0.60 0.16

ˆROC(t) SLTDS 0.83 0.82 0.82 0.83 1.00
ˆROC(t) NPTDS 1.65 1.77 1.76 1.58 1.50

(a1, a2) = (µY − σY , µY + σY ), (n0, n1, n2, n3) = (150, 75, 0, 75)

ˆROCX=0(t) SLTDS 0.69 0.64 0.65 0.63 0.50
ˆROCX=1.2(t) SLTDS 0.68 0.67 0.67 0.75 0.28

ˆROC(t) SLTDS 0.65 0.64 0.65 0.73 0.75
ˆROC(t) NPTDS 1.87 2.27 2.18 1.91 1.25

(a1, a2) = (µY − 1.5σY , µY + 1.5σY ), (n0, n1, n2, n3) = (150, 75, 0, 75)

ˆROCX=0(t) SLTDS 0.49 0.45 0.48 0.50 0.50
ˆROCX=1.2(t) SLTDS 0.51 0.49 0.50 0.40 0.26

ˆROC(t) SLTDS 0.42 0.38 0.38 0.40 0.50
ˆROC(t) NPTDS 1.91 1.94 1.92 1.93 2.00

Table S3. Standard Errors of SLTDS Estimates under 2-Regions

ˆROCX(t), X = 0 ˆROC(t)
a (n0, n1, n2) t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.1 t = 0.3 t = 0.5 t = 0.7

0.5 (150, 100, 50) 0.0512 0.0463 0.0381 0.0274 0.0488 0.0472 0.0427 0.0357
0.5 (150, 75, 75) 0.0493 0.0467 0.0392 0.0284 0.0468 0.0469 0.0433 0.0366
0.5 (150, 50, 100) 0.0476 0.0473 0.0407 0.0300 0.0448 0.0475 0.0451 0.0388
1.0 (150, 100, 50) 0.0479 0.0458 0.0385 0.0279 0.0453 0.0469 0.0435 0.0366
1.0 (150, 75, 75) 0.0462 0.0466 0.0402 0.0294 0.0439 0.0475 0.0450 0.0383
1.0 (150, 50, 100) 0.0468 0.0488 0.0422 0.0308 0.0436 0.0484 0.0464 0.0396
1.5 (150, 100, 50) 0.0469 0.0465 0.0394 0.0284 0.0441 0.0467 0.0437 0.0369
1.5 (150, 75, 75) 0.0458 0.0470 0.0403 0.0294 0.0433 0.0478 0.0454 0.0386
1.5 (150, 50, 100) 0.0457 0.0480 0.0416 0.0303 0.0425 0.0487 0.0470 0.0404
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Table S4. Standard Errors of SLTDS Estimates under 3-Regions

ˆROCX(t), X = 0 ˆROC(t)
a (n0, n1, n2, n3) t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.1 t = 0.3 t = 0.5 t = 0.7

(-0.5, 0.5) (150, 100, 50, 0) 0.0640 0.0525 0.0390 0.0260 0.0597 0.0530 0.0438 0.0339
(-0.5, 0.5) (150, 25, 100, 25) 0.0563 0.0507 0.0418 0.0301 0.0559 0.0547 0.0491 0.0404
(-0.5, 0.5) (150, 0, 50, 100) 0.0499 0.0510 0.0443 0.0328 0.0474 0.0526 0.0508 0.0439
(-0.5, 0.5) (150, 50, 50, 50) 0.0503 0.0453 0.0371 0.0267 0.0479 0.0467 0.0423 0.0354
(-0.5, 0.5) (150, 75, 0, 75) 0.0490 0.0438 0.0357 0.0254 0.0446 0.0426 0.0381 0.0317
(-1.0, 1.0) (150, 100, 50, 0) 0.0626 0.0509 0.0380 0.0270 0.0592 0.0512 0.0412 0.0315
(-1.0, 1.0) (150, 25, 100, 25) 0.0514 0.0473 0.0390 0.0279 0.0495 0.0481 0.0433 0.0358
(-1.0, 1.0) (150, 0, 50, 100) 0.0468 0.0495 0.0431 0.0317 0.0449 0.0512 0.0497 0.0428
(-1.0, 1.0) (150, 50, 50, 50) 0.0457 0.0417 0.0342 0.0244 0.0424 0.0407 0.0364 0.0302
(-1.0, 1.0) (150, 75, 0, 75) 0.0438 0.0396 0.0323 0.0230 0.0386 0.0374 0.0335 0.0277
(-1.5, 1.5) (150, 100, 50, 0) 0.0652 0.0528 0.0375 0.0233 0.0627 0.0527 0.0410 0.0307
(-1.5, 1.5) (150, 25, 100, 25) 0.0488 0.0438 0.0352 0.0246 0.0465 0.0439 0.0381 0.0305
(-1.5, 1.5) (150, 50, 50, 50) 0.0443 0.0399 0.0321 0.0224 0.0414 0.0392 0.0338 0.0266
(-1.5, 1.5) (150, 0, 50, 100) 0.0478 0.0518 0.0452 0.0330 0.0433 0.0511 0.0499 0.0429
(-1.5, 1.5) (150, 75, 0, 75) 0.0424 0.0383 0.0307 0.0214 0.0390 0.0363 0.0307 0.0238

Table S5. Standard Errors of SLTDS Estimates under 4-Regions

ˆROCX(t), X = 0 ˆROC(t)
a (n0, n1, n2, n3, n4) t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.1 t = 0.3 t = 0.5 t = 0.7

(-0.5, 0, 0.5) (150, 10, 65, 65, 10) 0.0600 0.0536 0.0456 0.0368 0.0594 0.0575 0.0527 0.0453
(-0.5, 0, 0.5) (150, 40, 35, 35, 40) 0.0513 0.0467 0.0387 0.0279 0.0493 0.0477 0.0431 0.0359
(-0.5, 0, 0.5) (150, 70, 5, 5, 70) 0.0473 0.0429 0.0350 0.0247 0.0439 0.0422 0.0382 0.0320
(-1.0, 0, 1.0) (150, 10, 65, 65, 10) 0.0565 0.0499 0.0389 0.0263 0.0538 0.0509 0.0452 0.0372
(-1.0, 0, 1.0) (150, 40, 35, 35, 40) 0.0546 0.0555 0.0482 0.0352 0.0506 0.0528 0.0522 0.0501
(-1.0, 0, 1.0) (150, 70, 5, 5, 70) 0.0517 0.0465 0.0349 0.0228 0.0443 0.0388 0.0314 0.0250
(-1.5, 0, 1.5) (150, 10, 65, 65, 10) 0.0532 0.0548 0.0469 0.0342 0.0523 0.0481 0.0419 0.0344
(-1.5, 0, 1.5) (150, 40, 35, 35, 40) 0.0501 0.0424 0.0385 0.0323 0.0434 0.0412 0.0352 0.0273
(-1.5, 0, 1.5) (150, 70, 5, 5, 70) 0.0431 0.0438 0.0440 0.0424 0.0345 0.0292 0.0306 0.0316
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Fig. S2. Impact of % TDC Subjects in Central Region ( n2
nTDC

) on SE of ROC Estimates from SLTDS

nTDC = 150, n1 = n3 = (nTDC − n2)/2, n0 = 150. Dotted line is SE from PE∗
SRS in Section 6.4.
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Fig. S3. Impact of % TDC Subjects in Right Region ( n3
nTDC

) on SE of ROC Estimates from SLTDS

nTDC = 150, n2 = 50, n1 = nTDC − n2 − n3, n0 = 150. Dotted line is SE from PE∗
SRS in Section 6.4.
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Fig. S4. Impact of % TDC Subjects in the Study Cohort (nTDC
n

) on SE of ROC Estimates from SLTDS

n = 300, n1 = n2 = n3 = nTDC/3, n0 = n− nTDC . Dotted line is SE from PE∗
SRS in Section 6.4.



Supplementary materials to ROC Curve Estimation Under TDS 17

Table S6. ROCX(t) at X = 0 Estimated by SLTDS under Non-Normal Error Kernels

True Estimate Bias% SE ŜE 95% CP
skew normal t = 0.1 0.413 0.417 0.87 0.0466 0.0531 0.956
γ = 0.1 t = 0.3 0.660 0.663 0.47 0.0428 0.0519 0.972

t = 0.5 0.802 0.804 0.24 0.0351 0.0420 0.964
t = 0.7 0.901 0.902 0.13 0.0250 0.0287 0.950

skew normal t = 0.1 0.453 0.462 1.99 0.0686 0.0825 0.942
γ = 0.5 t = 0.3 0.698 0.703 0.70 0.0505 0.0825 0.962

t = 0.5 0.831 0.833 0.20 0.0374 0.0650 0.962
t = 0.7 0.919 0.919 -0.01 0.0247 0.0422 0.962

skew normal t = 0.1 0.408 0.406 -0.42 0.0477 0.1274 0.979
γ = −0.5 t = 0.3 0.653 0.652 -0.12 0.0441 0.1164 0.965

t = 0.5 0.796 0.796 0.03 0.0358 0.0877 0.963
t = 0.7 0.896 0.896 -0.03 0.0253 0.0555 0.941

logistic t = 0.1 0.269 0.263 -2.38 0.0450 0.0386 0.908
t = 0.3 0.532 0.503 -5.42 0.0503 0.0434 0.909
t = 0.5 0.697 0.674 -3.31 0.0519 0.0403 0.914
t = 0.7 0.823 0.816 -0.90 0.0384 0.0327 0.921
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