Deriving benefit of early detection from biomarker-based prognostic models

L. Y. T. Inoue^{*},¹ R. Gulati,² C. Yu,³ M. Kattan³ and R. Etzioni²

¹Department of Biostatistics, University of Washington

²Division of Public Health Sciences, Fred Hutchinson Cancer Research Center

³Cleveland Clinic

Appendix A1. Alternative biomarker model

In this section we re-derive some results from the manuscript, but under an alternative mean function describing the biomarker trajectory. Assume that the mean function is $m(t) = \exp\{\theta_1 + \theta_2 t + \theta_3 (t - a_0)^+\}$, where t is time and it relates to subject's age. To make the intercept interpretable we assume t = 0 refers to a known reference age, say 20 years old. Thus, $\exp(\theta_1)$ is the mean PSA level at the reference age. Next, $\exp(\theta_2)$ refers to the pre-onset biomarker change rate while $\exp(\theta_1 + \theta_2)$ refers to the post-onset biomarker change rate.

Under the above mean function model, we can re-write lead time in terms of the biomarker change rate and the biomarker levels at a_A and a_E as $\ell = a_A - a_E = \frac{\log\{m(a_A)\} - \log\{m(a_E)\}}{\theta_2 + \theta_3}$.

We can re-write the biomarker level at early detection as

$$m(a_E) = m(a_A) \exp(-(\theta_2 + \theta_3)\ell).$$

Thus, the hazard function h_2 implies that the hazard ratio for survival benefit takes the form

$$HR_2 = \exp[\beta\{m(a_E) - m(a_A)\}] = \exp[\beta m(a_A)\{\exp(-(\theta_2 + \theta_3)\ell) - 1\}],$$

^{*}Corresponding author. Email: linoue@u.washington.edu.

while under hazard function h_3 ,

$$HR_3 = \exp[\beta_1 m(a_A) \{ \exp(-(\theta_2 + \theta_3)\ell) - 1 \} - \beta_2 \ell].$$

Using the PSA model, we can re-express age at early detection a_E as

$$a_E = a_O \left[\frac{\theta_3}{\theta_2 + \theta_3} \right] + \left[\frac{\log\{m(a_E)\} - \theta_1}{\theta_2 + \theta_3} \right].$$

The expression for $RHR_3(m_0, m_1)$ uses ages at early detection a_{S_1} and a_{S_0} obtained using the above equation when considering PSA threshold levels m_1 and m_0 , respectively.

The following Figure 1 and Table 1 show results under the alternative biomarker mean model. We use $\theta_1 = 0.30$, $\theta_2 = 0.03$, and $\theta_3 = 0.10$ or 0.20; that is, at the reference age, the biomarker level is $\exp(0.30) = 1.35$ ng/mL. The biomarker changes at a rate equal to 3% per year before onset. After onset, the rate of change is increased by 10% or 20% per year.

The results are similar to those discussed in the manuscript.

[Table 1 about here.]

[Figure 1 about here.]

Appendix A2. Weibull model

Assume a Weibull baseline hazard function so that $h_0(v) = \eta \gamma^{\eta} v^{\eta-1}$, where $\eta > 0$ and $\gamma > 0$. When $\eta = 1$, this reduces to a exponential survival model. The Weibull baseline hazard function decreases in v when $0 < \eta < 1$ and increases in v when $\eta > 1$.

Assuming a Weibull baseline hazard function implies that time T to disease-specific death is Weibull with parameters η and $\gamma \exp(X'\beta/\eta)$. For any $p \in (0,1)$, let $Q(p;T) = S^{-1}(p)$ denote the quantile function. In the above, $S^{-1}(\cdot)$ is inverse of the survival function. Under the Weibull distribution,

$$Q(p;T \mid X) = \left\{\frac{-\log(p)}{\gamma^{\eta} \exp(X'\beta)}\right\}^{1/\eta}.$$

Utilizing the above quantile function one can show that, under the Weibull model, the condition for screening benefit simplifies to

$$\exp\left\{\frac{(X_E - X_A)'\beta}{\eta}\right\} + \frac{\ell}{\{-\log(p)\}^{1/\eta}}\gamma\exp\left(\frac{X'_E\beta}{\eta}\right) < 1$$

Just as seen under the exponential model, we note that $\exp\{(X_E - X_A)'\beta\} < 1$. Thus, given X_E and X_A , the conditional is more likely to be met when γ is small or ℓ is small.

Appendix A3. Conditional survival

Let $S(\cdot)$ and $\tilde{S}(\cdot)$ denote, respectively, the *unconditional* and *conditional* survival functions. The corresponding hazard functions are $h(\cdot)$ and $\tilde{h}(\cdot)$.

We note that

$$\tilde{S}(u) = P(T_D > u \mid T_D > \ell) = \begin{cases} 1, & \text{if } u < \ell \\ \frac{P(T_D > u)}{P(T_D > \ell)}, & \text{if } u \ge \ell \end{cases}.$$

Equivalently, with a change of variable with $v = (u - \ell)$,

$$\tilde{S}(\ell+v) = \begin{cases} 1, & \text{if } v < 0\\ \frac{S(\ell+v)}{S(\ell)}, & \text{if } v \ge 0 \end{cases}.$$

It follows that the hazard function for the conditional survival is

$$\tilde{h}(u) = \begin{cases} 0, & \text{if } u < \ell \\ h(u), & \text{if } u \ge \ell \end{cases} \qquad \stackrel{v=u-\ell}{\equiv} \qquad \tilde{h}(\ell+v) = \begin{cases} 0, & \text{if } v < 0 \\ h(\ell+v), & \text{if } v \ge 0 \end{cases}.$$

Figure 1. Sensitivity analysis to a different mean model for PSA. Relative hazard ratios ($RHR_{\rm s}$) for selected early detection rules under exponential survival overall grade (left panel) or stratified by low grade (middle panel) and high grade (right panel). The $RHR_{\rm s}$ compare hazard ratios derived under hazard functions h_2 and h_3 when the PSA threshold for early detection is in the range of 2.0 to 4.0 ng/mL relative to the rule that uses PSA threshold of 4.0 ng/mL.

Table 1

Sensitivity analysis to a different mean model for PSA. Lead times (ℓ) and hazard ratios (HRs) when actual diagnosis occurs at a PSA threshold of $m(a_A) = 10.0 \text{ ng/mL}$ and early diagnosis occurs at a PSA threshold of $m(a_E) = 2.5 \text{ or } 4.0 \text{ ng/mL}$ under hazard functions h_2 (using PSA only) and h_3 (using PSA and age). Results assume an exponential survival model.

Hazard Function	θ_2	$\hat{\beta}_{PSA}$	\hat{eta}_{AGE}	$m(a_E)$	ℓ	\mathbf{HR}	SE	95% CI
Overall								
h_2	0.10	0.002		2.50	10.66	0.99	0.00	[0.98, 0.99]
	0.10	0.002		4.00	7.05	0.99	0.00	[0.98, 1.00]
	0.20	0.002		2.50	6.03	0.99	0.00	[0.98, 0.99]
	0.20	0.002		4.00	3.98	0.99	0.00	[0.98, 1.00]
h_3	0.10	0.002	0.03	2.50	10.66	0.74	0.09	[0.58, 0.92]
	0.10	0.002	0.03	4.00	7.05	0.82	0.06	[0.70, 0.95]
	0.20	0.002	0.03	2.50	6.03	0.84	0.05	[0.73, 0.95]
	0.20	0.002	0.03	4.00	3.98	0.89	0.04	[0.81, 0.96]
Low Grade								
h_2	0.10	0.002		2.50	10.66	0.99	0.01	[0.97, 1.00]
	0.10	0.002		4.00	7.05	0.99	0.01	[0.98, 1.00]
	0.20	0.002		2.50	6.03	0.99	0.01	[0.97, 1.00]
	0.20	0.002		4.00	3.98	0.99	0.01	[0.98, 1.00]
h_3	0.10	0.002	0.04	2.50	10.66	0.66	0.13	[0.45, 0.94]
-	0.10	0.002	0.04	4.00	7.05	0.76	0.09	[0.59, 0.96]
	0.20	0.002	0.04	2.50	6.03	0.79	0.08	[0.64, 0.96]
	0.20	0.002	0.04	4.00	3.98	0.85	0.06	[0.74, 0.97]
High Grade								
h_2	0.10	0.015		2.50	10.66	0.89	0.05	[0.80, 0.99]
	0.10	0.015		4.00	7.05	0.91	0.04	[0.84, 0.99]
	0.20	0.015		2.50	6.03	0.89	0.05	[0.80, 0.99]
	0.20	0.015		4.00	3.98	0.91	0.04	[0.84, 0.99]
h_3	0.10	0.014	-0.02	2.50	10.66	1.15	0.23	[0.77, 1.67]
Ŭ	0.10	0.014	-0.02	4.00	7.05	1.08	0.14	[0.82, 1.39]
	0.20	0.014	-0.02	2.50	6.03	1.03	0.12	[0.81, 1.30]
	0.20	0.014	-0.02	4.00	3.98	1.00	0.08	[0.85, 1.18]