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Supplement to Section 3.2.1

When choosing the size k of the initial subset of variables for BDA, the objective is to minimize
the chance of erroneously dropping an influential variable, i.e. non-informative screening. If every
element in the partition generated by the k variables of an initial subset contains at most one
training case, the dropping is basically random. On the other hand, if there are partition elements
with two or more training cases, the influence of a variable can then be informatively measured
when dropped. Viewing elements of a partition as urns and training cases as balls, we evaluate the
probability of at least 2 training cases in a partition element using an urn model as follows.

Let m be the number of urns and n be the number of balls. Dropping balls in urns randomly, let
p2 be the probability of two or more balls in a particular urn. The number of balls in a particular
urn follows the binomial distribution with probability of success 1/m and the number of trials
equals n. Thus

p2 = 1 −
(

m − 1
m

)n

− n

m

(
m − 1

m

)n−1

.

Therefore mp2 is the expected number of urns with 2 or more balls. We assume that n → ∞
and m → ∞ such that n/m = λ. Then
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− n
1
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]
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]

→ m(1 − e−λ − λe−λ)

If we further assume that λ is small and close to zero, then

m(1− e−λ − λe−λ) = m[1− (1 − λ +
λ2

2
+ o(λ2)) − λ(1− λ +

λ2

2
+ o(λ2))]

= m[
λ2

2
+ o(λ2)] ≈ m

2

( n

m

)2
=

n2

2m

Therefore if we let mk−1 denote the number of elements in a partition generated by k − 1
variables, then n2/2mk−1 ≥ 1, which is exact Equation (2) in the paper. Note that in reality the
number of training cases in different partition elements are non-uniformly distributed and thus the
expected number of elements with two or more training cases would be larger than 1. Therefore
the initial size satisfying (2) represents a minimum requirement under uniform assumption.
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A similar calculation for expected number of urns with three or more balls yields

m(1− e−λ − λe−λ − λ2

2
e−λ) = me−λ[eλ − 1− λ − λ2

2
))]

= m[
λ3

3!
+ o(λ3)] ≈ m

6

( n

m

)3
=

n3

6m2
k−1

The corresponding condition on the starting size k is

n3/6m2
k−1 ≥ 1. (S.1)

When there are n = 150 training cases and each explanatory variable is binary, the largest
integer k that satisfies (S.1) is 10 as opposed to 14 calculated from (2).

Supplement to Section 3.2.2

Consider the problem of placing a number of balls randomly into urns as described in Equation (3) of
the paper. The following argument is similar to that on p. 113 of Aldous (1989). Assume the place-
ment time follows a Poisson process of rate

(k
5

)
. Then P (urn j empty at time t) ≈ exp

[
−t

(k
5

)
/
(p
5

)]
for a particular urn j. Poissonization makes urns independent. So Qt = the number of empty urns
at time t satisfies Qt ≈ Poisson with mean

(
p
5

)
exp

[
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k
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)
/
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. Let B be the first time all urns are

occupied, then

P (B ≤ t) = P (Qt = 0) ≈ exp
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This can be arranged to
[(
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)
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)]{
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log
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)} ≈ ξ; where P (ξ ≤ x) = exp(−e−x).

Therefore, B ≈
[(

p
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)
/
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)]
log

(
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)
and Equation (3) in the paper is established. The generalization

to clusters of size z is obtained by substituting 5 with z

Bz ≈
[(

p

z

)
/

(
k

z

)]
log

(
p

z

)
.

In the toy example, we have p = 30 variables and would like to cover all quintuplets, then B ≈[(30
5

)
/
(8
5

)]
log

(30
5

) ≈ 2.5× 103. If we repeat BDA 2B ≈ 5000 times, then we can expect to have a
rather complete coverage of the quintuplets. Note that this is exactly the number of repetitions we
used in the toy example.

Supplement to Section 3.2.3

The second filtering procedure adds one variable at a time to a return set and keep only those
subsets with I-scores higher than that before adding, which are referred to as forward-one sets.
Suppose there are H return sets after filtering out overlap ones, {Rh : h = 1, . . . , H}. Let |Rh|
be the number of variables in Rh. Without loss of generality, assume Rh = {X1, . . . , X|Rh|}. The
remaining variables, X|Rh|+1, . . . , Xp are added to Rh one at a time to generate p − |Rh| subsets
each of size |Rh|+1. Let Ah be the number of forward-one sets, that is, the number of size |Rh|+1
subsets by forward adding with I-scores higher than I(Rh). If Ah is large, then Rh is removed.

The forward one procedure performs a kind of stability test on return sets. If a return set has
no forward-one set (Ah = 0), then it is always returned by BDA whenever Rh is contained in the
initial subset. The more forward-one sets a return set has, the more the return set depends on the
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initial subset. For example, if Ah = 7, then there are 7 size |Rh|+1 initial subsets that will not lead
to Rh if subjected to BDA. We can also replace the return set by a forward-one set if the later is
of higher quality. Thus it also help in recovering influential variables missed in the previous stage.

From the data of van’t Veer et al. (2002) , we selected two return sets from one of the 10 CV
experiments. In Table S1, the ‘false positive’ return set has 7 forward-one sets even though its
I-score is higher than the ‘true’ one, which has only 1 forward-one set. After removing the false
positives, the final classification rule has considerably lower error rate in the test sample. Usually,
the frequency plot of Ah has easily identified outliers and it is easy to determine a threshold on Ah

to remove false positives. For example, in Figure S1, those return sets with 7 or more forward-one
sets are considered false positives and should be removed.

Table S1: Examples of forward-one sets

False True
Original return set {665, 2283, 2930} I = 422.39 {108, 2400, 4208} I = 410.778
Forward-one sets {1451, 2930} I = 523.035 {2930, 4208} I = 427.351
subjected to BDA {665, 2283, 2930} I = 470.498

{665, 1668, 2930} I = 450.050
{1946, 2930} I = 438.888
{1885, 2283, 2930} I = 438, 298
{2283, 3291} I = 426.516
{2283, 2900, 2930} I = 423.930
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Figure S1: Frequency distribution for the number of forward-one sets
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Supplement to Section 3.3.1

A sample output of logistic regression from R is shown in Exhibit 1 for a variable module of size
4 from the 78 training cases of vant Veer’s data. After stepwise AIC selection, the final model
dropped the 4-way and a 3-way interaction terms.

Exhibit 1. Model selection output using R on a module of 4 variables
Call:

glm(formula = y ∼ g637 + g844 + g2145 + g3035 + g637:g844 + g637:g2145 +

g844:g2145 + g637:g3035 + g844:g3035 + g2145:g3035 + g637:g844:g3035 +

g637:g844:g2145 +g637:g2145:g3035, family = binomial(link =logit),

data = train)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.8023 3.1413 1.847 0.0647 .

g637 -0.2754 16.5963 -0.017 0.9868

g844 4.6086 3.4669 1.329 0.1837

g2145 -141.4701 61.3943 -2.304 0.0212 *

g3035 -35.9947 20.6035 -1.747 0.0806 .

g637:g844 -10.7009 25.8312 -0.414 0.6787

g637:g2145 -533.0709 250.9616 -2.124 0.0337 *

g844:g2145 -174.0768 76.3894 -2.279 0.0227 *

g637:g3035 -169.9741 102.1318 -1.664 0.0961 .

g844:g3035 -60.4414 31.1377 -1.941 0.0522 .

g2145:g3035 80.1168 58.9844 1.358 0.1744

g637:g844:g2145 -790.3717 353.9615 -2.233 0.0256 *

g637:g844:g3035 -234.9399 155.3265 -1.513 0.1304

g637:g2145:g3035 727.5103 356.0419 2.043 0.0410 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 106.845 on 77 degrees of freedom

Residual deviance: 41.126 on 64 degrees of freedom

AIC: 69.126

Number of Fisher Scoring iterations: 11

Supplement to Section 3.3.2

Exhibition 2. Boosting Algorithm for Variable Modules

1. Input H variable modules.

2. Initialize training-case weights wi = 1/n, i = 1, · · · , n.

3. For h = 1 to H do

(a) For j = h to H , fit logistic regression classifier Lj to the training data using variable module Rk.

Calculate

errj =

∑
i wiI(yi �= Lj(xi))∑

i wi
, and αj =

1

2
log

1− errj

errj
. (S.2)

(b) Let j′ = argmax
h≤j≤H

αj . Update wi ← wi × exp(αj′I(yi �= Lj′(xi)).

(c) Relabel Rj′ as Rh with corresponding αh. And relabel the remaining H − h variable modules as

{Rh+1, . . . , RH}.
4. Output the classification rule: sign{∑H

h=1 αhLh}.
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Supplement to Section 4.1

Table S2: Error rates on van’t Veer dataset by various methods

Error
Author Feature selection Classifier evaluated rate Method
Pochet et al (2004) None LS-SVMa 0.310 LOOCV

Linear kernel 0.321 Test set
None LS-SVM 0.309 LOOCV

RBFb kernel 0.316 Test set
None LS-SVM 0.478 LOOCV

no regularization 0.428 Test set
PCAc LDA 0.297 LOOCV
(unsupervised) 0.426 Test set
PCA LDA 0.265 LOOCV
(supervised) 0.331 Test set
PCA linear kernel LDA 0.288 LOOCV
(unsupervised) 0.391 Test set
PCA linear Kernel LDA 0.264 LOOCV
(supervised) 0.346 Test set
PCA RBF kernel LDA 0.251 LOOCV
(unsupervised) 0.486 Test set
PCA RBF kernel LDA 0.000 LOOCV
(supervised) 0.632 Test set

Li and Yang (2005) RFE SVM 0.105� Test set
RFE Ridge regression 0.158� Test set
RFE Rocchio 0.158� Test set

Michiels et al (2005) Correlation Correlation 0.310 500 rCVk

Peng (2005) Golubd SVM 0.247� LOOCV
Golub Bagging SVM 0.226� LOOCV
Golub Boosting SVM 0.226� LOOCV
Golub Ensemble SVM 0.186� LOOCV

Yeung et al (2005) BMAe BMA 0.158� Test set
Alexe et al (2006) LADf LAD 0.183� CV
Diaz-Uriarte and None Random forest 0.342 bootstrap
de Anres (2006) None SVM 0.325 bootstrap

None kNNg 0.337 bootstrap
None LDA 0.331 bootstrap
Shrunken centroid Shrunken centroid 0.324 bootstrap
NNVSh NNVS 0.337 bootstrap

Wahde & Szallasi (2006) Evolutionary algorithm LDA 0.105� Test set
Song et al (2007) RFE SVM 0.077� 10-fold CV
Yan and Zheng (2008) sMPASi sMPAS 0.295 13-fold CV
Zhu et al (2008) RFE SVM 0.29 10-fold CV
Liu et al (2009) EICSj EICS 0.219 10-fold rCV
The proposed method Retention frequency Boosting logistic 0.080 10-fold rCV

0.000 Test set

aLeast square SVM; bRadial basis function; cPrinciple component analysis; dThe feature selection method in Golub
et al (1999); eBayesian model averaging; fLogical analysis of data; gk-nearest neighbor; hNearest neighbor with
variable selection; iSigned multigene association; jEnsemble independent component system; kRandom CV; �Biased
estimates due to turning parameter selection and/or feature selection
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Supplement to Section 4.2

Table S3: Biological implication of identified genes in van’t Veer data

Gene
module

Systematic name Gene name Description

I 1 Contig45347 RC KIAA1683 ESTs
2 NM 005145 GNG7 guanine nucleotide binding protein (G protein),

gamma 7
3 Z34893 ICAP-1A integrin cytoplasmic domain-associated protein 1
4 NM 006121 KRT1 keratin 1 (epidermolytic hyperkeratosis)
5 NM 004701 CCNB2 cyclin B2

II 1 AB007950 KIAA0481 KIAA0481 gene product
2 Contig53226 RC ESTs
3 Contig12369 RC ESTs
4 NM 006806 BTG3 BTG family, member 3

III 1 NM 003303 TRO trophinin
2 NM 002809 PSMD3 proteasome (prosome, macropain) 26S subunit,

non-ATPase, 3
3 NM 014176 HSPC150 HSPC150 protein similar to ubiquitin-conjugating

enzyme
4 NM 016077 LOC51651 CGI-147 protein

IV 1 NM 013232 PDCD6 programmed cell death 6
2 NM 005375 MYB v-myb avian myeloblastosis viral oncogene homolog
3 NM 018182 FLJ10700 hypothetical protein FLJ10700
4 Contig39950 RC ESTs

V 1 NM 004119 FLT3 fms-related tyrosine kinase 3
2 NM 020675 AD024 Homo sapiens AD024 protein (AD024), mRNA.
3 NM 016632 LOC51326 ARF protein
4 Contig53912 RC Homo sapiens mRNA; cDNA DKFZp547M146

(from clone DKFZp547M146)
5 Contig49670 RC Homo sapiens cDNA: FLJ23228 fis, clone

CAE06654
VI 1 NM 003087 SNCG synuclein, gamma(breast cancer-specific protein 1)

2 D38553 KIAA0074 KIAA0074 protein
3 NM 001216 CA9 carbonic anhydrase IX

VII 1 NM 001741 CALCA calcitonin/calcitonin-related polypeptide, alpha
2 NM 005132 REC8 Rec8p, a meiotic recombination and sister chro-

matid cohesion phosphoprotein of rad21p family
3 Contig46 RC ESTs
4 NM 000427 LOR loricrin
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Gene
module

Systematic name Gene name Description

VIII 1 NM 019854 HRMT1L3 HMT1 (hnRNP methyltransferase, S. cerevisiae)-
like 3

2 Contig20816 RC ESTs
3 Contig55377 RC ESTs

IX 1 Contig45816 RC ESTs
2 NM 020411 XAGE-1 XAGE-1 protein
3 AB004064 TMEFF2 transmembrane protein with EGF-like and two

follistatin-like domains 2
4 Contig34634 RC GCN1L1 GCN1 (general control of amino-acid synthesis 1,

yeast)-like 1
X 1 NM 020166 MCCC1 3-methylcrotonyl-CoA carboxylase biotin-

containing subunit
2 NM 012261 HS1119D91 similar to S68401 (cattle) glucose induced gene
3 NM 018265 FLJ10901 hypothetical protein FLJ10901
4 Contig39090 RC ESTs

XI 1 Contig53968 RC ESTs
2 NM 004774 PPARBP PPAR binding protein
3 NM 007117 TRH thyrotropin-releasing hormone
4 NM 000599 IGFBP5 Homo sapiens insulin-like growth factor binding

protein 5 (IGFBP5), mRNA.
XII 1 NM 016359 LOC51203 clone HQ0310 PRO0310p1

2 Contig41383 RC ESTs
XIII 1 NM 004603 STX1A syntaxin 1A (brain)

2 AB020713 KIAA0906 KIAA0906 protein
3 NM 000231 SGCG sarcoglycan, gamma (35kD dystrophin-associated

glycoprotein)
XIV 1 Contig52018 RC ESTs

2 Contig19224 RC ESTs
3 NM 018304 FLJ11029 hypothetical protein FLJ11029
4 NM 002196 INSM1 insulinoma-associated 1

XV 1 NM 004791 ITGBL1 integrin, beta-like 1 (with EGF-like repeat do-
mains)

2 AF055033 IGFBP5 insulin-like growth factor binding protein 5
3 NM 006681 NMU neuromedin U

XVI 1 Contig34964 RC ESTs
2 NM 012177 FBXO5 F-box only protein 5
3 Contig55181 RC ESTs

XVII 1 NM 004994 MMP9 matrix metalloproteinase 9 (gelatinase B, 92kD
gelatinase, 92kD type IV collagenase)

2 AK001100 DSC3 Homo sapiens cDNA FLJ10238 fis, clone
HEMBB1000449

XVIII 1 NM 004163 RAB27B RAB27B, member RAS oncogene family
2 Contig55829 RC ESTs
3 Contig173 ESTs
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Supplement to Section 4.3.2

Table S4: Biological implication of identified genes in Golub data

Gene
module

Systematic name Gene name Description

I 1 X16323 at HGF HGF Hepatocyte growth factor (hepapoietin A;
scatter factor)

2 D86961 at LHFPL2 lipoma HMGIC fusion partner-like 2
3 Y12670 at LEPROT LEPR Leptin receptor
4 D87074 at RIMS3 regulating synaptic membrane exocytosis 3
5 D26308 at BLVRB biliverdin reductase B (flavin reductase (NADPH))

II 1 U04898 at RORA RAR-related orphan receptor A
2 M58297 at MZF1 ZNF42 Zinc finger protein 42 (myeloid-specific

retinoic acid-responsive)
3 J03473 at PARP1 ADPRT ADP-ribosyltransferase (NAD+; poly

(ADP-ribose) polymerase)
III 1 D87078 at PUM2 pumilio homolog 2 (Drosophila)

2 D83785 at MAML1 mastermind-like 1 (Drosophila)
IV 1 D86983 at PXDN VLDLR Very low density lipoprotein receptor

2 U14603 at PTP4A2 protein tyrosine phosphatase type IVA
3 M81933 at CDC25A cell division cycle 25 homolog A (S. pombe)
4 X77307 at HTR2B 5-hydroxytryptamine (serotonin) receptor
5 D16532 at VLDLR very low density lipoprotein receptor

V 1 U35451 at CBX1 chromobox homolog, Heterochromatin protein p25
mRNA

2 M31551 s at SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin)
3 M55150 at FAH fumarylacetoacetate

VI 1 HG1496-HT1496 s at Adrenal-Specific Protein Pg2
2 U12471 cds1 at THBS1 thrombospondin 1
3 M23197 at CD33 CD33 antigen (differentiation antigen)
4 X03934 at CD3D CD3d molecule, delta (CD3-TCR complex)
5 U59877 s at RAB31 member RAS oncogene family Rab22B

VII 1 M38690 at CD9 CD9 molecule GIG2
2 X00437 s at TRBC1 T cell receptor beta constant 1

VIII 1 M12759 at IGJ immunoglobulin J polypeptide, linker protein for
immunoglobulin alpha and mu polypeptides

2 M23323 s at CD3E t-cell surface glycorpotein epsilon chain precursor
3 X52142 at CTPS CTP synthetase
4 X59417 at KIAA039 proteasome iota chain

IX 1 U22376 cds2 s at MYB v-myb myeloblastosis viral oncogene homolog
(avian)

2 U90902 at TIAM1 T-cell lymphoma invasion and metastasis 1
3 U91903 at FRZB frizzled-related protein FRE
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Gene
module

Systematic name Gene name Description

X 1 J04430 s at ACP5 acid phosphatase 5, tartrate resistant
2 S68805 at GATM glycine amidinotransferase(L-arginine: glycine

amidinotransferase)
3 U14193 at GTF2A2 general transcription factor IIA

XI 1 Y00339 s at CA2 carbonic anhydrase II
2 X59350 at CD22 CD22 antigen
3 X59871 at TCF7 transcription factor 7 (T-cell specific, HMG-box)

XII 1 M19888 at SPRR1B small proline-rich protein 1B
2 U09413 at ZNF135 Zinc finger protein 135 (clone pHZ-17)
3 M28170 at CD19 CD19 antigen

XIII 1 X69111 at ID3 inhibitor of DNA binding 3, dominant negative
helix-loop-helix protein

2 Z49148 s at RPL29P11 ribosomal protein L29 pseudogene 11
XIV 1 M84371 rna1 s at CD19 CD19 molecule B4

2 M83652 s at CFP complement factor properdin
XV 1 X02874 at OAS1 (2’-5’) oligoadenylate synthetase 1

2 D00749 s at CD7 T-cell antigen CD7 precursor
3 U23852 s at LCK T-lymphocyte specific protein tyrosine kinase

p56lck (lck) abberant mRNA
4 U90552 at BTN3A1 butyrophilin, subfamily 3, member A1

XVI 1 L08010 at REG1B regenerating islet-derived 1 beta
2 X58288 at PTPRM protein tyrosine phosphatase, receptor type, mu

polypeptide
3 HG2479-HT2575 s at Helix-Loop-Helix Protein Sef2-1d
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