# Interaction-Based Feature Selection and Classification for High-Dimensional Biological Data Supplementary Data

Haitian Wang, Shaw-Hwa Lo, Tian Zheng, Inchi Hu

July 3, 2012

## Supplement to Section 3.2.1

When choosing the size k of the initial subset of variables for BDA, the objective is to minimize the chance of erroneously dropping an influential variable, i.e. non-informative screening. If every element in the partition generated by the k variables of an initial subset contains at most one training case, the dropping is basically random. On the other hand, if there are partition elements with two or more training cases, the influence of a variable can then be informatively measured when dropped. Viewing elements of a partition as urns and training cases as balls, we evaluate the probability of at least 2 training cases in a partition element using an urn model as follows.

Let m be the number of urns and n be the number of balls. Dropping balls in urns randomly, let  $p_2$  be the probability of two or more balls in a particular urn. The number of balls in a particular urn follows the binomial distribution with probability of success 1/m and the number of trials equals n. Thus

$$p_2 = 1 - \left(\frac{m-1}{m}\right)^n - \frac{n}{m} \left(\frac{m-1}{m}\right)^{n-1}$$

Therefore  $mp_2$  is the expected number of urns with 2 or more balls. We assume that  $n \to \infty$ and  $m \to \infty$  such that  $n/m = \lambda$ . Then

$$mp_2 = m\left[1 - \left(\frac{m-1}{m}\right)^n - n\frac{1}{m}\left(\frac{m-1}{m}\right)^{n-1}\right]$$
$$= m\left[1 - \left(\frac{m-1}{m}\right)^{m\frac{n}{m}} - \frac{n}{m}\left(\frac{m-1}{m}\right)^{m\frac{n-1}{m}}\right]$$
$$\to m\left(1 - e^{-\lambda} - \lambda e^{-\lambda}\right)$$

If we further assume that  $\lambda$  is small and close to zero, then

$$m(1 - e^{-\lambda} - \lambda e^{-\lambda}) = m[1 - (1 - \lambda + \frac{\lambda^2}{2} + o(\lambda^2)) - \lambda(1 - \lambda + \frac{\lambda^2}{2} + o(\lambda^2))]$$
$$= m[\frac{\lambda^2}{2} + o(\lambda^2)] \approx \frac{m}{2} \left(\frac{n}{m}\right)^2 = \frac{n^2}{2m}$$

Therefore if we let  $m_{k-1}$  denote the number of elements in a partition generated by k-1 variables, then  $n^2/2m_{k-1} \ge 1$ , which is exact Equation (2) in the paper. Note that in reality the number of training cases in different partition elements are non-uniformly distributed and thus the expected number of elements with two or more training cases would be larger than 1. Therefore the initial size satisfying (2) represents a minimum requirement under uniform assumption.

A similar calculation for expected number of urns with three or more balls yields

$$\begin{split} m(1-e^{-\lambda}-\lambda e^{-\lambda}-\frac{\lambda^2}{2}e^{-\lambda}) &= m e^{-\lambda}[e^{\lambda}-1-\lambda-\frac{\lambda^2}{2})] \\ &= m[\frac{\lambda^3}{3!}+o(\lambda^3)] \approx \frac{m}{6}\left(\frac{n}{m}\right)^3 = \frac{n^3}{6m_{k-1}^2} \end{split}$$

The corresponding condition on the starting size k is

$$n^3/6m_{k-1}^2 \ge 1.$$
 (S.1)

When there are n = 150 training cases and each explanatory variable is binary, the largest integer k that satisfies (S.1) is 10 as opposed to 14 calculated from (2).

#### Supplement to Section 3.2.2

Consider the problem of placing a number of balls randomly into urns as described in Equation (3) of the paper. The following argument is similar to that on p. 113 of Aldous (1989). Assume the placement time follows a Poisson process of rate  $\binom{k}{5}$ . Then  $P(\text{urn } j \text{ empty at time } t) \approx \exp\left[-t\binom{k}{5}/\binom{p}{5}\right]$  for a particular urn j. Poissonization makes urns independent. So  $Q_t =$  the number of empty urns at time t satisfies  $Q_t \approx$  Poisson with mean  $\binom{p}{5} \exp\left[-t\binom{k}{5}/\binom{p}{5}\right]$ . Let B be the first time all urns are occupied, then

$$P(B \le t) = P(Q_t = 0) \approx \exp\left[-\binom{p}{5} \exp\left(-t\binom{k}{5} / \binom{p}{5}\right)\right]$$

This can be arranged to  $\left[\binom{k}{5}/\binom{p}{5}\right]\left\{B - \left[\binom{p}{5}/\binom{k}{5}\right]\log\binom{p}{5}\right\} \approx \xi$ ; where  $P(\xi \leq x) = \exp(-e^{-x})$ . Therefore,  $B \approx \left[\binom{p}{5}/\binom{k}{5}\right]\log\binom{p}{5}$  and Equation (3) in the paper is established. The generalization to clusters of size z is obtained by substituting 5 with z

$$B_z \approx \left[\binom{p}{z} / \binom{k}{z}\right] \log \binom{p}{z}.$$

In the toy example, we have p = 30 variables and would like to cover all quintuplets, then  $B \approx [\binom{30}{5} / \binom{8}{5}] \log \binom{30}{5} \approx 2.5 \times 10^3$ . If we repeat BDA  $2B \approx 5000$  times, then we can expect to have a rather complete coverage of the quintuplets. Note that this is exactly the number of repetitions we used in the toy example.

### Supplement to Section 3.2.3

The second filtering procedure adds one variable at a time to a return set and keep only those subsets with *I*-scores higher than that before adding, which are referred to as *forward-one sets*. Suppose there are *H* return sets after filtering out overlap ones,  $\{R_h : h = 1, \ldots, H\}$ . Let  $|R_h|$ be the number of variables in  $R_h$ . Without loss of generality, assume  $R_h = \{X_1, \ldots, X_{|R_h|}\}$ . The remaining variables,  $X_{|R_h|+1}, \ldots, X_p$  are added to  $R_h$  one at a time to generate  $p - |R_h|$  subsets each of size  $|R_h| + 1$ . Let  $A_h$  be the number of forward-one sets, that is, the number of size  $|R_h| + 1$ subsets by forward adding with *I*-scores higher than  $I(R_h)$ . If  $A_h$  is large, then  $R_h$  is removed.

The forward one procedure performs a kind of stability test on return sets. If a return set has no forward-one set  $(A_h = 0)$ , then it is always returned by BDA whenever  $R_h$  is contained in the initial subset. The more forward-one sets a return set has, the more the return set depends on the initial subset. For example, if  $A_h = 7$ , then there are 7 size  $|R_h| + 1$  initial subsets that will *not* lead to  $R_h$  if subjected to BDA. We can also replace the return set by a forward-one set if the later is of higher quality. Thus it also help in recovering influential variables missed in the previous stage.

From the data of van't Veer et al. (2002), we selected two return sets from one of the 10 CV experiments. In Table S1, the 'false positive' return set has 7 forward-one sets even though its *I*-score is higher than the 'true' one, which has only 1 forward-one set. After removing the false positives, the final classification rule has considerably lower error rate in the test sample. Usually, the frequency plot of  $A_h$  has easily identified outliers and it is easy to determine a threshold on  $A_h$  to remove false positives. For example, in Figure S1, those return sets with 7 or more forward-one sets are considered false positives and should be removed.

|                     | False                  |             | True                  |             |
|---------------------|------------------------|-------------|-----------------------|-------------|
| Original return set | $\{665, 2283, 2930\}$  | I = 422.39  | $\{108, 2400, 4208\}$ | I = 410.778 |
| Forward-one sets    | $\{1451, 2930\}$       | I = 523.035 | $\{2930, 4208\}$      | I = 427.351 |
| subjected to BDA    | $\{665, 2283, 2930\}$  | I = 470.498 |                       |             |
|                     | $\{665, 1668, 2930\}$  | I = 450.050 |                       |             |
|                     | $\{1946, 2930\}$       | I = 438.888 |                       |             |
|                     | $\{1885, 2283, 2930\}$ | I = 438,298 |                       |             |
|                     | $\{2283, 3291\}$       | I = 426.516 |                       |             |
|                     | $\{2283, 2900, 2930\}$ | I = 423.930 |                       |             |

Table S1: Examples of forward-one sets



Figure S1: Frequency distribution for the number of forward-one sets

### Supplement to Section 3.3.1

A sample output of logistic regression from R is shown in Exhibit 1 for a variable module of size 4 from the 78 training cases of vant Veer's data. After stepwise AIC selection, the final model dropped the 4-way and a 3-way interaction terms.

Exhibit 1. Model selection output using R on a module of 4 variables

```
Call:
glm(formula = y \sim g637 + g844 + g2145 + g3035 + g637:g844 + g637:g2145 +
g844:g2145 + g637:g3035 + g844:g3035 + g2145:g3035 + g637:g844:g3035 +
g637:g844:g2145 +g637:g2145:g3035, family = binomial(link =logit),
data = train)
Coefficients:
                   Estimate
                               Std. Error z value Pr(|z|)
                   5.8023
                               3.1413
                                            1.847
 (Intercept)
                                                      0.0647 .
 g637
                   -0.2754
                               16.5963
                                            -0.017
                                                      0.9868
                                                      0.1837
 g844
                   4.6086
                               3.4669
                                            1.329
 g2145
                   -141.4701 61.3943
                                            -2.304
                                                      0.0212 *
 g3035
                   -35.9947
                               20.6035
                                            -1.747
                                                      0.0806
 g637:g844
                   -10.7009
                               25.8312
                                            -0.414
                                                      0.6787
 g637:g2145
                   -533.0709 250.9616
                                            -2.124
                                                      0.0337 *
 g844:g2145
                   -174.0768 76.3894
                                            -2.279
                                                      0.0227 *
 g637:g3035
                   -169.9741 102.1318
                                            -1.664
                                                      0.0961 .
 g844:g3035
                   -60.4414
                               31.1377
                                            -1.941
                                                      0.0522 .
 g2145:g3035
                   80.1168
                               58.9844
                                            1.358
                                                      0.1744
 g637:g844:g2145
                   -790.3717
                               353.9615
                                            -2.233
                                                      0.0256 *
 g637:g844:g3035
                   -234.9399
                               155.3265
                                            -1.513
                                                      0.1304
 g637:g2145:g3035
                   727.5103
                               356.0419
                                            2.043
                                                      0.0410 *
```

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 106.845 on 77 degrees of freedom Residual deviance: 41.126 on 64 degrees of freedom AIC: 69.126 Number of Fisher Scoring iterations: 11

### Supplement to Section 3.3.2

Exhibition 2. Boosting Algorithm for Variable Modules

- 1. Input H variable modules.
- 2. Initialize training-case weights  $w_i = 1/n, i = 1, \dots, n$ .
- 3. For h = 1 to H do
  - (a) For j = h to H, fit logistic regression classifier  $L_j$  to the training data using variable module  $R_k$ . Calculate

$$\operatorname{err}_{j} = \frac{\sum_{i} w_{i} I(y_{i} \neq L_{j}(x_{i}))}{\sum_{i} w_{i}}, \text{ and } \alpha_{j} = \frac{1}{2} \log \frac{1 - \operatorname{err}_{j}}{\operatorname{err}_{j}}.$$
(S.2)

- (b) Let  $j' = \underset{h \leq j \leq H}{\operatorname{argmax}} \alpha_j$ . Update  $w_i \leftarrow w_i \times \exp(\alpha_{j'} I(y_i \neq L_{j'}(x_i)))$ .
- (c) Relabel  $R_{j'}$  as  $R_h$  with corresponding  $\alpha_h$ . And relabel the remaining H h variable modules as  $\{R_{h+1}, \ldots, R_H\}$ .
- 4. Output the classification rule:  $\operatorname{sign}\{\sum_{h=1}^{H} \alpha_h L_h\}$ .

## Supplement to Section 4.1

|                         |                          |                         | Error           |                     |
|-------------------------|--------------------------|-------------------------|-----------------|---------------------|
| Author                  | Feature selection        | Classifier evaluated    | rate            | Method              |
| Pochet et al (2004)     | None                     | $LS-SVM^{a}$            | 0.310           | LOOCV               |
|                         |                          | Linear kernel           | 0.321           | Test set            |
|                         | None                     | LS-SVM                  | 0.309           | LOOCV               |
|                         |                          | $\mathrm{RBF}^b$ kernel | 0.316           | Test set            |
|                         | None                     | LS-SVM                  | 0.478           | LOOCV               |
|                         |                          | no regularization       | 0.428           | Test set            |
|                         | PCA <sup>c</sup>         | LDA                     | 0.297           | LOOCV               |
|                         | (unsupervised)           |                         | 0.426           | Test set            |
|                         | PCA                      | LDA                     | 0.265           | LOOCV               |
|                         | (supervised)             |                         | 0.331           | Test set            |
|                         | PCA linear kernel        | LDA                     | 0.288           | LOOCV               |
|                         | (unsupervised)           |                         | 0.391           | Test set            |
|                         | PCA linear Kernel        | LDA                     | 0.264           | LOOCV               |
|                         | (supervised)             |                         | 0.346           | Test set            |
|                         | PCA RBF kernel           | LDA                     | 0.251           | LOOCV               |
|                         | (unsupervised)           |                         | 0.486           | Test set            |
|                         | PCA RBF kernel           | LDA                     | 0.000           | LOOCV               |
|                         | (supervised)             |                         | 0.632           | Test set            |
| Li and Yang $(2005)$    | RFE                      | SVM                     | $0.105^{\star}$ | Test set            |
|                         | RFE                      | Ridge regression        | $0.158^{\star}$ | Test set            |
|                         | RFE                      | Rocchio                 | $0.158^{\star}$ | Test set            |
| Michiels et al $(2005)$ | Correlation              | Correlation             | 0.310           | $500 \text{ rCV}^k$ |
| Peng $(2005)$           | $\operatorname{Golub}^d$ | SVM                     | $0.247^{\star}$ | LOOCV               |
|                         | Golub                    | Bagging SVM             | $0.226^{\star}$ | LOOCV               |
|                         | Golub                    | Boosting SVM            | $0.226^{\star}$ | LOOCV               |
|                         | Golub                    | Ensemble SVM            | $0.186^{\star}$ | LOOCV               |
| Yeung et al $(2005)$    | $BMA^e$                  | BMA                     | $0.158^{\star}$ | Test set            |
| Alexe et al $(2006)$    | $\mathrm{LAD}^{f}$       | LAD                     | $0.183^{\star}$ | CV                  |
| Diaz-Uriarte and        | None                     | Random forest           | 0.342           | bootstrap           |
| de Anres $(2006)$       | None                     | SVM                     | 0.325           | bootstrap           |
|                         | None                     | $kNN^{g}$               | 0.337           | bootstrap           |
|                         | None                     | LDA                     | 0.331           | bootstrap           |
|                         | Shrunken centroid        | Shrunken centroid       | 0.324           | bootstrap           |
|                         | $NNVS^{h}$               | NNVS                    | 0.337           | bootstrap           |
| Wahde & Szallasi (2006) | Evolutionary algorithm   | LDA                     | $0.105^{\star}$ | Test set            |
| Song et al $(2007)$     | RFE                      | SVM                     | $0.077^{*}$     | 10-fold CV          |
| Yan and Zheng (2008)    | $\mathrm{sMPAS}^i$       | sMPAS                   | 0.295           | 13-fold CV          |
| Zhu et al (2008)        | RFE                      | SVM                     | 0.29            | 10-fold CV          |
| Liu et al $(2009)$      | $\mathrm{EICS}^{j}$      | EICS                    | 0.219           | 10-fold rCV         |
| The proposed method     | Retention frequency      | Boosting logistic       | 0.080           | 10-fold rCV         |
|                         |                          |                         | 0.000           | Test set            |

Table S2: Error rates on van't Veer dataset by various methods

<sup>&</sup>lt;sup>*a*</sup>Least square SVM; <sup>*b*</sup>Radial basis function; <sup>*c*</sup>Principle component analysis; <sup>*d*</sup>The feature selection method in Golub et al (1999); <sup>*e*</sup>Bayesian model averaging; <sup>*f*</sup>Logical analysis of data; <sup>*g*</sup>k-nearest neighbor; <sup>*h*</sup>Nearest neighbor with variable selection; <sup>*i*</sup>Signed multigene association; <sup>*j*</sup>Ensemble independent component system; <sup>*k*</sup>Random CV; \*Biased estimates due to turning parameter selection and/or feature selection

# Supplement to Section 4.2

| Gene   |   | Systematic name   | Gene name | Description                                        |
|--------|---|-------------------|-----------|----------------------------------------------------|
| module |   |                   |           |                                                    |
| Ι      | 1 | Contig45347_RC    | KIAA1683  | ESTs                                               |
|        | 2 | NM_005145         | GNG7      | guanine nucleotide binding protein (G protein),    |
|        |   |                   |           | gamma 7                                            |
|        | 3 | Z34893            | ICAP-1A   | integrin cytoplasmic domain-associated protein 1   |
|        | 4 | NM_006121         | KRT1      | keratin 1 (epidermolytic hyperkeratosis)           |
|        | 5 | NM_004701         | CCNB2     | cyclin B2                                          |
| II     | 1 | AB007950          | KIAA0481  | KIAA0481 gene product                              |
|        | 2 | $Contig53226\_RC$ |           | ESTs                                               |
|        | 3 | Contig12369_RC    |           | ESTs                                               |
|        | 4 | NM_006806         | BTG3      | BTG family, member 3                               |
| III    | 1 | NM_003303         | TRO       | trophinin                                          |
|        | 2 | NM_002809         | PSMD3     | proteasome (prosome, macropain) 26S subunit,       |
|        |   |                   |           | non-ATPase, 3                                      |
|        | 3 | NM_014176         | HSPC150   | HSPC150 protein similar to ubiquitin-conjugating   |
|        |   |                   |           | enzyme                                             |
|        | 4 | NM_016077         | LOC51651  | CGI-147 protein                                    |
| IV     | 1 | NM_013232         | PDCD6     | programmed cell death 6                            |
|        | 2 | NM_005375         | MYB       | v-myb avian myeloblastosis viral oncogene homolog  |
|        | 3 | NM_018182         | FLJ10700  | hypothetical protein FLJ10700                      |
|        | 4 | Contig39950_RC    |           | ESTs                                               |
| V      | 1 | NM_004119         | FLT3      | fms-related tyrosine kinase 3                      |
|        | 2 | NM_020675         | AD024     | Homo sapiens AD024 protein (AD024), mRNA.          |
|        | 3 | NM_016632         | LOC51326  | ARF protein                                        |
|        | 4 | Contig53912_RC    |           | Homo sapiens mRNA; cDNA DKFZp547M146               |
|        |   |                   |           | (from clone DKFZp547M146)                          |
|        | 5 | Contig49670_RC    |           | Homo sapiens cDNA: FLJ23228 fis, clone             |
|        |   |                   |           | CAE06654                                           |
| VI     | 1 | NM_003087         | SNCG      | synuclein, gamma(breast cancer-specific protein 1) |
|        | 2 | D38553            | KIAA0074  | KIAA0074 protein                                   |
|        | 3 | NM_001216         | CA9       | carbonic anhydrase IX                              |
| VII    | 1 | NM_001741         | CALCA     | calcitonin/calcitonin-related polypeptide, alpha   |
|        | 2 | NM_005132         | REC8      | Rec8p, a meiotic recombination and sister chro-    |
|        |   |                   |           | matid cohesion phosphoprotein of rad21p family     |
|        | 3 | Contig46_RC       |           | ESTs                                               |
|        | 4 | NM_000427         | LOR       | loricrin                                           |

## Table S3: Biological implication of identified genes in van't Veer data

| Gene   |   | Systematic name | Gene name | Description                                      |
|--------|---|-----------------|-----------|--------------------------------------------------|
| module |   | U C             |           | *                                                |
| VIII   | 1 | NM_019854       | HRMT1L3   | HMT1 (hnRNP methyltransferase, S. cerevisiae)-   |
|        |   |                 |           | like 3                                           |
|        | 2 | Contig20816_RC  |           | ESTs                                             |
|        | 3 | Contig55377_RC  |           | ESTs                                             |
| IX     | 1 | Contig45816_RC  |           | ESTs                                             |
|        | 2 | NM_020411       | XAGE-1    | XAGE-1 protein                                   |
|        | 3 | AB004064        | TMEFF2    | transmembrane protein with EGF-like and two      |
|        |   |                 |           | follistatin-like domains 2                       |
|        | 4 | Contig34634_RC  | GCN1L1    | GCN1 (general control of amino-acid synthesis 1, |
|        |   | _               |           | yeast)-like 1                                    |
| Х      | 1 | NM_020166       | MCCC1     | 3-methylcrotonyl-CoA carboxylase biotin-         |
|        |   |                 |           | containing subunit                               |
|        | 2 | NM_012261       | HS1119D91 | similar to S68401 (cattle) glucose induced gene  |
|        | 3 | NM_018265       | FLJ10901  | hypothetical protein FLJ10901                    |
|        | 4 | Contig39090_RC  |           | ESTs                                             |
| XI     | 1 | Contig53968_RC  |           | ESTs                                             |
|        | 2 | NM_004774       | PPARBP    | PPAR binding protein                             |
|        | 3 | NM_007117       | TRH       | thyrotropin-releasing hormone                    |
|        | 4 | NM_000599       | IGFBP5    | Homo sapiens insulin-like growth factor binding  |
|        |   |                 |           | protein 5 (IGFBP5), mRNA.                        |
| XII    | 1 | NM_016359       | LOC51203  | clone HQ0310 PRO0310p1                           |
|        | 2 | Contig41383_RC  |           | ESTs                                             |
| XIII   | 1 | NM_004603       | STX1A     | syntaxin 1A (brain)                              |
|        | 2 | AB020713        | KIAA0906  | KIAA0906 protein                                 |
|        | 3 | NM_000231       | SGCG      | sarcoglycan, gamma (35kD dystrophin-associated   |
|        |   |                 |           | glycoprotein)                                    |
| XIV    | 1 | Contig52018_RC  |           | ESTs                                             |
|        | 2 | Contig19224_RC  |           | ESTs                                             |
|        | 3 | NM_018304       | FLJ11029  | hypothetical protein FLJ11029                    |
|        | 4 | NM_002196       | INSM1     | insulinoma-associated 1                          |
| XV     | 1 | NM_004791       | ITGBL1    | integrin, beta-like 1 (with EGF-like repeat do-  |
|        |   |                 |           | mains)                                           |
|        | 2 | AF055033        | IGFBP5    | insulin-like growth factor binding protein 5     |
|        | 3 | NM_006681       | NMU       | neuromedin U                                     |
| XVI    | 1 | Contig34964_RC  |           | ESTs                                             |
|        | 2 | NM_012177       | FBXO5     | F-box only protein 5                             |
|        | 3 | Contig55181_RC  |           | ESTs                                             |
| XVII   | 1 | NM_004994       | MMP9      | matrix metalloproteinase 9 (gelatinase B, 92kD   |
|        |   |                 |           | gelatinase, 92kD type IV collagenase)            |
|        | 2 | AK001100        | DSC3      | Homo sapiens cDNA FLJ10238 fis, clone            |
|        |   |                 |           | HEMBB1000449                                     |
| XVIII  | 1 | NM_004163       | RAB27B    | RAB27B, member RAS oncogene family               |
|        | 2 | Contig55829_RC  |           | ESTs                                             |
|        | 3 | Contig173       |           | ESTs                                             |
|        | 1 |                 |           |                                                  |

# Supplement to Section 4.3.2

| C      |   | Q                    | 0         | Dereninting                                         |
|--------|---|----------------------|-----------|-----------------------------------------------------|
| Gene   |   | Systematic name      | Gene name | Description                                         |
| module | - | M16000               | нар       |                                                     |
| 1      | T | X16323_at            | HGF       | HGF Hepatocyte growth factor (hepapoietin A;        |
|        | _ |                      |           | scatter factor)                                     |
|        | 2 | D86961_at            | LHFPL2    | lipoma HMGIC fusion partner-like 2                  |
|        | 3 | Y12670_at            | LEPROT    | LEPR Leptin receptor                                |
|        | 4 | D87074_at            | RIMS3     | regulating synaptic membrane exocytosis 3           |
|        | 5 | D26308_at            | BLVRB     | biliverdin reductase B (flavin reductase (NADPH))   |
| II     | 1 | U04898_at            | RORA      | RAR-related orphan receptor A                       |
|        | 2 | M58297_at            | MZF1      | ZNF42 Zinc finger protein 42 (myeloid-specific      |
|        |   |                      |           | retinoic acid-responsive)                           |
|        | 3 | J03473_at            | PARP1     | ADPRT ADP-ribosyltransferase (NAD+; poly            |
|        |   |                      |           | (ADP-ribose) polymerase)                            |
| III    | 1 | D87078_at            | PUM2      | pumilio homolog 2 (Drosophila)                      |
|        | 2 | D83785_at            | MAML1     | mastermind-like 1 (Drosophila)                      |
| IV     | 1 | D86983_at            | PXDN      | VLDLR Very low density lipoprotein receptor         |
|        | 2 | U14603_at            | PTP4A2    | protein tyrosine phosphatase type IVA               |
|        | 3 | M81933_at            | CDC25A    | cell division cycle 25 homolog A (S. pombe)         |
|        | 4 | X77307_at            | HTR2B     | 5-hydroxytryptamine (serotonin) receptor            |
|        | 5 | D16532_at            | VLDLR     | very low density lipoprotein receptor               |
| V      | 1 | U35451_at            | CBX1      | chromobox homolog, Heterochromatin protein p25      |
|        |   |                      |           | mRNA                                                |
|        | 2 | M31551_s_at          | SERPINB2  | serpin peptidase inhibitor, clade B (ovalbumin)     |
|        | 3 | M55150_at            | FAH       | fumarylacetoacetate                                 |
| VI     | 1 | HG1496-HT1496_s_at   |           | Adrenal-Specific Protein Pg2                        |
|        | 2 | U12471_cds1_at       | THBS1     | thrombospondin 1                                    |
|        | 3 | M23197_at            | CD33      | CD33 antigen (differentiation antigen)              |
|        | 4 | X03934_at            | CD3D      | CD3d molecule, delta (CD3-TCR complex)              |
|        | 5 | U59877_s_at          | RAB31     | member RAS oncogene family Rab22B                   |
| VII    | 1 | M38690_at            | CD9       | CD9 molecule GIG2                                   |
|        | 2 | X00437_s_at          | TRBC1     | T cell receptor beta constant 1                     |
| VIII   | 1 | M12759_at            | IGJ       | immunoglobulin J polypeptide, linker protein for    |
|        |   |                      |           | immunoglobulin alpha and mu polypeptides            |
|        | 2 | M23323_s_at          | CD3E      | t-cell surface glycorpotein epsilon chain precursor |
|        | 3 | X52142 at            | CTPS      | CTP synthetase                                      |
|        | 4 | X59417 at            | KIAA039   | proteasome iota chain                               |
| IX     | 1 | U22376 cds2 s at     | MYB       | v-myb myeloblastosis viral oncogene homolog         |
|        |   | 0 2201 0 2002 20 200 |           | (avian)                                             |
|        | 2 | U90902 at            | TIAM1     | T-cell lymphoma invasion and metastasis 1           |
|        | 2 | U01002_at            | FRZR      | frizzled related protein FRF                        |
|        | Э | 09190 <b>5_</b> at   | TULD      | mizzieu-relateu protein r nE                        |

Table S4: Biological implication of identified genes in Golub data

| Gene   |   | Systematic name    | Gene name | Description                                       |
|--------|---|--------------------|-----------|---------------------------------------------------|
| module | 1 | 104400             | ACDE      | • • • • • • • • • • • • • • •                     |
| Х      | 1 | J04430_s_at        | ACP5      | acid phosphatase 5, tartrate resistant            |
|        | 2 | S68805_at          | GATM      | glycine amidinotransferase(L-arginine: glycine    |
|        |   |                    |           | amidinotransferase)                               |
|        | 3 | U14193_at          | GTF2A2    | general transcription factor IIA                  |
| XI     | 1 | Y00339_s_at        | CA2       | carbonic anhydrase II                             |
|        | 2 | X59350_at          | CD22      | CD22 antigen                                      |
|        | 3 | X59871_at          | TCF7      | transcription factor 7 (T-cell specific, HMG-box) |
| XII    | 1 | M19888_at          | SPRR1B    | small proline-rich protein 1B                     |
|        | 2 | U09413_at          | ZNF135    | Zinc finger protein 135 (clone pHZ-17)            |
|        | 3 | M28170_at          | CD19      | CD19 antigen                                      |
| XIII   | 1 | X69111_at          | ID3       | inhibitor of DNA binding 3, dominant negative     |
|        |   |                    |           | helix-loop-helix protein                          |
|        | 2 | Z49148_s_at        | RPL29P11  | ribosomal protein L29 pseudogene 11               |
| XIV    | 1 | M84371_rna1_s_at   | CD19      | CD19 molecule B4                                  |
|        | 2 | M83652_s_at        | CFP       | complement factor properdin                       |
| XV     | 1 | X02874_at          | OAS1      | (2'-5') oligoadenylate synthetase 1               |
|        | 2 | D00749_s_at        | CD7       | T-cell antigen CD7 precursor                      |
|        | 3 | U23852_s_at        | LCK       | T-lymphocyte specific protein tyrosine kinase     |
|        |   |                    |           | p56lck (lck) abberant mRNA                        |
|        | 4 | U90552_at          | BTN3A1    | butyrophilin, subfamily 3, member A1              |
| XVI    | 1 | L08010_at          | REG1B     | regenerating islet-derived 1 beta                 |
|        | 2 | X58288_at          | PTPRM     | protein tyrosine phosphatase, receptor type, mu   |
|        |   |                    |           | polypeptide                                       |
|        | 3 | HG2479-HT2575_s_at |           | Helix-Loop-Helix Protein Sef2-1d                  |

## References

- Aldous, D. (1989), Probability Approximation via Poisson Clumping Heuristic, Springer-Verlag, New York.
- [2] Alexe, B., Alexe, S., Axelrod, D. et al (2006), Breast cancer prognosis by combinatorial analysis of gene expression data, *Breast Cancer Research*, 8:R41.
- [3] Diaz-Uriate, R. and de Andres, S. A. (2006), Gene selection and classification of microarray data using random forest, *BMC Bioinformatics*, **7**:3.
- [4] Li, F. and Yang, Y. M. (2005), Analysis of recursive gene selection approaches from microarray data, *Bioinformatics*, 21(19), 3741-3747.
- [5] Liu, K. H. et al (2009), Microarray data classification based on ensemble independent component selection, Computers in Biology and Medicine, 39, 953-960.
- [6] Michiels, S. S. *et al.* (2005), Prediction of cancer outcome with microarrays: a multiple random validation strategy, *Lancet*, **365**(9458), 488-492.
- [7] Peng, Y. H. (2005), Robust ensemble learning for cancer diagnosis based on microarray classification, Adv. Data Min. and Appl., Proc., 3584, 564-574.

- [8] Pochet, N. F. *et al* (2004), Systematic benchmarking of microarray and classification: assessing the role of non-linearity and dimensionality reduction, *Bioinformatics*, **20**(17), 3185-3195.
- [9] Song, L., Bedo, J., Borgwardt, K.M., et al (2007), Gene selection via the BAHSIC family of algorithms, *Bioinformatics (ISMB)*, 23(13), i490-i498.
- [10] van't Veer, L. J. et al (2002), Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530 - 536.
- [11] Wahde, M. and Szallasi, Z. (2006), Improving the prediction of the clinical outcome of breast cancer using evolutionary algorithms, *Soft Comp.*, 10(4), 338-345.
- [12] Yan, X. and Zheng, T. (2008), Selecting informative genes for discriminant analysis using multigene expression profiles, *BMC Gen.*, 9(Spl. 2), 1471-2164-9-S2-S14.
- [13] Yeung, K. Y., *et al.* (2005), Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data, *Bioinformatics*, **21**(10), 2394-2402.
- [14] Zhu, J. X. et al. (2008), On selection bias with prediction rules formed from gene expression data, J. Stat. Plann. and Infer., 138, 374-386.