## Table S1: Patient History for PBT lines.

| Tumor ID | Patient ID        | Age | Gender | Diagnosis                                                | Prior Teatment                |
|----------|-------------------|-----|--------|----------------------------------------------------------|-------------------------------|
| PBT015   | UPN033            | 57  | М      | Glioblastoma Multiforme grade IV                         | Radiotherapy,<br>temozolomide |
| PBT030   | De-<br>Identified | 59  | М      | Glioblastoma Multiforme grade IV; right<br>temperal lobe | Newly diagnosed               |

Patient history for other PBT lines characterized in this manuscript is described in (Brown et al. 2009).

| Antibody                                                 | Clone  | Source: Catalogue Number               | Usage                 |
|----------------------------------------------------------|--------|----------------------------------------|-----------------------|
| Goat polyclonal anti-IL13R $\alpha$ 2                    | N/A    | R&D Systems: AF146                     | FC; Western:<br>P-IHC |
| Mouse monoclonal anti-IL13R $\alpha$ 2                   | B-D13  | Diaclone/Cell Sciences Inc: 852.120.00 | FC                    |
| Chicken polyclonal anti-IL13R $\alpha$ 2                 | N/A    | Sigma-Aldrich: GW22455A                | Western               |
| PE-conjugated mouse anti-CD133/1                         | AC133  | Miltenyi Biotec Inc.: 130-080-801      | FC                    |
| PE-conjugated mouse anti-CD133/2                         | 293C3  | Miltenyi Biotec Inc.: 130-090-853      | FC                    |
| Mouse monoclonal anti-CD133                              | W6B3C1 | Miltenyi Biotec Inc.: 130-092-395      | Western               |
| Goat polyclonal anti-Olig2                               | N/A    | R&D Systems: AF2418                    | Western, P-<br>IHC    |
| Rabbit polyclonal anti-ß-Actin                           | N/A    | Rockland Immunochemicals: 600-401-866  | Western               |
| Mouse monoclonal anti-ß-III Tubulin                      | TU-20  | Millipore: CBL412                      | Western; IF           |
| Rabbit polyclonal anti-GFAP                              | N/A    | Sigma-Aldrich: G9269                   | Western; IF           |
| Rabbit Polyclonal anti-GFAP                              | N/A    | Dako Corp: Z0334                       | P-IHC                 |
| Rabbit polyclonal anti-SOX2                              | N/A    | Abcam, Inc.: ab15830                   | IF                    |
| Mouse monoclonal anti-SOX2                               | 245610 | R&D Systems: MAB2018                   | P-IHC                 |
| Mouse monoclonal anti-Nestin                             | 10C2   | Millipore: MAB5326                     | IF; P-IHC             |
| FITC-conjugated mouse monoclonal anti-TCR $\alpha/\beta$ | WT31   | Becton Dickenson: 347773               | FC                    |
| FITC-conjugated mouse monoclonal<br>anti-CD3             | SK7    | Becton Dickenson: 349201               | FC                    |
| PE-conjugated mouse monoclonal<br>anti-CD8               | SK1    | Becton Dickenson: 340046               | FC                    |
| Anti-CD3zeta                                             | 8D3    | BD Biosciences: 51-6527GR              | Western               |

**Table S2: Primary Antibody Details** 

N/A, Not applicable FC, Flow cytometry IF, Immunofluorescence P-IHC, Immunohistochemistry of paraffin embedded tissue

| Primer<br>target     | Primer Sequences                                             | Amplification<br>Efficiency* |
|----------------------|--------------------------------------------------------------|------------------------------|
| IL13Rα2<br>exons 1-2 | 5'TGAAGTCGCCATAACCTG<br>5'AAGCATCCGATAGCCAAG                 | 85 ± 6.5%                    |
| IL13Rα2<br>exons 6-7 | 5'ATGCAGATTTCCCTATTTGGAGG<br>5'TGGCGGCAAAGGTTTAACTAT         | 80% ± 4.4%                   |
| β-actin              | 5'CCGCCGATCCACACGGAGTACTTG<br>5'CAGGATGCAGAAGGAGATCACTGCCCTG | 84% ± 2.4%                   |

\*, PCR products were evaluated by melting curve analysis and gel electrophoresis to verify amplification of a single product of the correct size.

| TS Line           | Number of<br>heterotopic<br>passages | Secondary<br>TS<br>Formation | Min. #<br>cells for<br>tumor<br>initiation<br>(2-4 mo) | Time to<br>Morbidity<br>(10 <sup>5</sup> cells) | Histological Features                     |
|-------------------|--------------------------------------|------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------------|
| UPN033-<br>PBT015 | 0                                    | 4.9 ± 0.6%                   | 10 <sup>5</sup> §                                      | ND                                              | Diffuse cells, no tumor mass              |
| PBT030            | 0                                    | 11.8 ± 0.4%                  | 10 <sup>5</sup> §                                      | 80 ± 9<br>(n = 12)                              | Tumor mass with highly infiltrative edges |
| PBT030-2          | 2                                    | 5.2 ± 1.4%                   | 10 <sup>5</sup> §                                      | 76 ± 2<br>(n = 4)                               | Tumor mass with highly infiltrative edges |

Table S4: In Vitro Self-Renewal and in Vivo Tumorigenicity.

§, Lower numbers of cells were not tested. ND, not done.

Characterization of other PBT lines is reported in (Brown et al. 2009).

Figure S1: Differential recognition of IL13Rα2 by commercial antibodies. (A) Flow cytometry analysis of IL13R $\alpha$ 2<sup>pos</sup> U251T and U87, and IL13R $\alpha$ 2<sup>neg</sup> T98 glioma cell lines using the mouse monocloncal (Cell Sciences, B-D13) and goat polyclonal (R&D Systems, AF146) antibodies. Daudi lymphoma serves as an IL13Rα2<sup>neg</sup> control cell line. Percent positive cells are indicated in each histogram. Note that monoclonal anti-IL13Rα2 B-D13 antibody (Cell Sciences) did not recognize IL13Ra2 protein by flow cytometry on the well documented IL13Rα2<sup>pos</sup> U251T or U87 cell lines, which express high levels of IL13Rα2 mRNA (**Fig. 2**), and are potently killed by the IL13R $\alpha$ 2-specific IL13-zetakine-engineered CTL (Fig. 4). Moreover, this antibody detects an antigen expressed by the IL13Rα2<sup>neg</sup> T98 cell line, which express very low levels of IL13Rα2 mRNA (Fig. 2), and are not recognized and killed by the IL13Rα2-specific IL13-zetakineengineered CTL (Fig. 4). (B) Western analysis of established cell lines U251T, U87, T98 and Daudi using chicken polyclonal anti-IL13Rα2 antibody (Sigma, GW22455A). Note that IL13R $\alpha$ 2 expression is detected for IL13R $\alpha$ 2<sup>neg</sup> T98 glioma cell line (Fig. 2). Detection of a similar Western reactive protein was detected for the IL13Rα2<sup>neg</sup> primary glioma lines PBT003, PBT008 and PBT009 (data not shown).



anti-IL13Ra2 goat polyclonal AF146 (R&D Systems)



в

А

Figure S2: Cell surface phenotype and chimeric antigen receptor (CAR) expression of ex vivo engineered and expanded effector cytolytic T lymphocytes (CTLs). (A) CTLs were analyzed by flow cytometry using FITC or PE-conjugated antibody against  $\alpha/\beta$  T cell receptor (TCR), CD3, and CD8 (grey histograms; BD Biosciences) or isotype control antibody (solid line). Percent positive cells are indicated in each histogram. (B) Western analysis using antihuman CD3-zeta mAb detects both endogenous CD3-zeta (16 kDa) and IL13-zetakine (52 kDa) or CD19R-zeta (67 kDa) CAR expression for engineered CTL lines. IL13-zeta CAR migrates as diffuse band consistent with glycosylation of human IL-13 (KS Kahlon et al, *Cancer Res* (2004) 64:9160-9166).



**Figure S3: IL13Rα2-specific CTLs kill IL13Rα2-expressing PBT017 brain tumor stem and differentiated cell populations.** (A) CRA measuring the lysis of IL13Rα2<sup>pos</sup> PBT017-4 TS and 7-day serum-differentiated (DIF), or serumexpanded (p7; ADH) cells at increasing effector:target ratios (x-axes). The IL13Rα2<sup>pos</sup> U251T established glioma line served as a positive control. The IL13Rα2<sup>neg</sup> CD19<sup>pos</sup> Daudi lymphoma served as a control target. Effector lines tested include the allogeneic CD8<sup>+</sup> IL13-zetakine<sup>+</sup> CTL clone 2D7 (HD003 IL13zeta<sup>+</sup> CTL) and the CD19-specific CD19R<sup>+</sup> CTL clone E8 (JD10 CD19R<sup>+</sup> CTL). (B) CRA measuring lysis of IL13Rα2<sup>pos</sup> PBT030 TS and 7-day serumdifferentiated (DIF). The IL13Rα2<sup>pos</sup> U87 and LCL-OKT3 lines served as a positive controls. Effector lines tested are as described in (A). Mean ± S.D. values of 6 wells are depicted.



Figure S4: INF-y and INF- $\alpha$  cytokine levels produced by IL13-zetakine<sup>+</sup> CTL following co-culture with IL13Rα2<sup>pos</sup> TS and DIF cells. (A) Representative experiment showing IFN-y and TNF- $\alpha$  cytokine production by UPN033 IL13-zetakine+ CD8<sup>+</sup> CTL clone 3C12 after overnight co-culture with IL13R $\alpha$ 2<sup>pos</sup> GSC lines (TS) and matched serum-differentiated lines (DIF: 7 days serum-differentiation). Mean ± S.D. values of 3 replicate measurements from a single sample are depicted. Note that IL13-zetakine CTLs produced greater levels of cytokine when challenged with IL13Ra2<sup>pos</sup> serum differentiated glioma lines (DIF) as compared to matched GSC TS lines. (B) Fold difference (DIF/TS) in cytokine release by two independent IL13-zetakine+ CTL clonal lines following co-culture with DIF and TS glioma lines. Each point represents an independent experiment. Line represents average fold increase in T cell cytokine production following engagement of DIF versus TS primary glioblastoma lines for all points (grand mean). Note that for the majority of experiments there was a 2-fold or greater increase in cytokine produced when targeting DIF versus matched TS targets (10 of 15 for INF-v, and 11 of 14 for TNF- $\alpha$ ). Upon comparison of all data sets, assuming all data points are independent, the difference between TS and DIF of PBT015 INF-v and TNF- $\alpha$  (pg/mL) levels was determined to be statistically significant (p < 0.05, Wilcoxon matched-pairs signed rank test); differences between that of TS and DIF of the other PBT lines approached but did not achieve significance.



**Figure S5: Characterization of IL13Ra2 expression for PBT030-2.** (A) PBT030-2 tumor sphere (TS), and 7-day serum-differentiated (DIF) cells analyzed by flow cytometry for expression of IL13Ra2 (grey histograms); black histograms are secondary antibody alone. Percent positive cells are indicated in each histogram. PBT030-2 is glioma line derived from donor PBT030 that was heterotopically passaged in mice two-times prior to expansion *in vitro*. Similar to the parental PBT030 (**Fig. 2**), PBT030-2 expresses comparable levels of IL13Ra2 on both TS and DIF cells. (B) IHC staining for IL13Ra2 demonstrating that PBT030-2 TS initiates tumors that remain IL13Ra2<sup>pos</sup>. As a control we show that the IL13Ra2<sup>neg</sup> TS line, PBT003-4, initiates tumors that do not express this receptor.



В

Α

