
Supplementary Information:

Multi-scale Structure and Geographic Drivers of Cross-Infection

within Marine Bacteria and Phages

Cesar O. Flores1, Sergi Valverde2, and Joshua S. Weitz∗3,1

11School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
2Complex Systems Lab and Institute of Evolutionary Biology, University Pompeu

Fabra, E-08003 Barcelona, Spain
3School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA

S1 Dataset

The dataset analyzed here is a subset of the phage-bacteria cross-reaction tests reported by K.
Moebus and H. Nattkemper [6]. Among all the datasets reported in this paper, we have focused
in the largest collection of tests, i.e., the so-called A-series dataset. This dataset consists of
H = 733 bacteria and P= 258 bacteriophages strains collected at 48 water sample stations in
the Atlantic Ocean region (see Figure S1). Only 326 out of the 733 bacteria were found to be
susceptible to one or more phages. From the 326 bacteria strains, 250 are unique (the infection
pattern is different from each other), 38 are inter-sample doublets (bacteria that have the same
infection pattern of another bacteria belonging to a different water sample or station), and 38
intra-sample doublets (doublets from the same water samples). Similarly, there are 224 unique
phage strains and 4 inter-sample doublets.

The only source of information about the matrix of cross-reaction tests was the figure shown
in the Moebus and Nattkemper paper (see Figure 1 in [6], Figure S2 in this document). We were
unable to find other means to access this dataset and thus, we have developed a semi-automatic
scanning method to recover this matrix from the printed paper to a digital format suitable for
our analysis (see method below). For example, the original paper does not indicate the exact
number of bacteria and phages represented in the original figure (see Figure S2). Instead, these
numbers have been inferred from the original figure labels and the information given in the
whole document (see below). The digitalization process includes the following steps:

1. We scanned the source image from the printed figure in [6] (see Figure 1 in [6] and Figure
S2 in this document). The quality of the image made the extraction process difficult.
First, the original image is slightly rotated by an angle comprised between 0.4 and 0.6
degrees counterclockwise (depending on what side of the image is chosen as a reference).
In addition, there was a tear starting at the bottom (phage station number 484) and
running to the left (phage station number 462) of the image that slightly distorts the
orientation at the bottom right section. Here, we have estimated the rotation angle to be
0.45 degrees, which is good compromise between the left and bottom orientations. As a
consequence of the previous rotation, two bacteria records were lost.
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2. We assume that matrix size is approximately equal to the number of columns and rows
visible in the source image. We manually cross-checked the row and column counts and
find H = 288 bacteria and P = 222 phages. Further validation comes from a computer
program that counts the number of mouse clicks performed by a human over each bac-
teria/phage label in the “source” (scanned) image. The observed number of bacteria is
consistent with the caption of the source figure that reports 288 bacteria strains (250
unique + 38 inter-sample doubles). The case for phages is more ambiguous because the
original figure only labels 217 phages out of the 222 (readable) columns. Here, we have
only retained labeled and readable phages to yield H = 286 bacteria and P = 215 phages.

3. We performed a binary thresholding of the source matrix to automatically detect positive
interactions of phages with hosts by computing the density of filled pixels at every matrix
cell. We delimited the matrix cells by overlaying a grid in the source figure, and the
interactions were detected by specifying a threshold of filled pixels inside each cell. This
automatic process makes no distinction between matrix cells that denote clear lysis or
turbid spots.

4. We manually curated the binary thresholded image to identify and correct any false nega-
tives (undetected interactions) and false positives (empty cells marked as interactions). In
addition, empty columns were removed. The output is the curated MN (Moebus and Nat-
tkemper) matrix used for our study (see Figure 1 of main document, and supplementary
Figure S2).

S2 Bipartite Modularity

A host-phage interaction matrix can be described as a bipartite network G = (U, V,E) having
two disjoint sets of nodes (phages and hosts) and a set of edges ([3]). Here, H = ‖U‖ is the
number of hosts and P = ‖V ‖ is the number of phages and there is an edge {ui, vj} ∈ E when
phage vj ∈ V infects host ui ∈ U . Notice that interactions between nodes of the same type
are excluded. Alternatively, the adjacency matrix A = [Aij ] indicates whether the j−th phage
can infect the i−th host (Aij = 1) or not (Aij = 0). Notice that this matrix corresponds to
the binary thresholded image obtained in the previous section. A number of useful network
measures can be obtained from the adjacency matrix alone. The degree ki =

∑
j Aij of the

i−th host is the number of interactions with phages (i.e. how many phages can infect the i−th
host). The degree dj =

∑
iAij of the j−th phage is the number of interactions with hosts (i.e.

how many hosts can be infected by the j−th phage). See Figure S3 for a plot of the cumulative
degree frequency of the MN matrix.

An important collection of network measures involves the quantification of interaction pat-
terns in subsets of more than two network nodes. For example, a visual inspection of the
infection matrix shown in Figure 3 of main document suggests that there are modules of hosts
and phages exchanging many more “ones” between them (a higher density of internal links)
than with the rest of types (nodes). Following [2], we assess the quality of a given partition in
c (disjoint) modules with the bipartite modularity:

Q =
1

m

∑
ij

(Aij − Pij) δ(gi, gj) (1)

where Aij is the adjacency matrix, m =
∑

ij Aij is the total number of links, Pij = kidj/m is
the probability to connect nodes i and j, the node i has been assigned to the module gi, and
δ(x, y) = 1 if x = y and δ(x, y) = 0 when x and y are different. Intuitively, high values of Q
will correspond to highly modular partitions of the bipartite network. In this case, node i and
j are classified in the same module gi = gj (and thus δ(gi, gj) = 1) because the probability to
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have a link between nodes in the same module is significant (e.g., the difference Aij − Pij is a
large, positive value).

For convenience, we use the matrix form of the modularity Equation (1). Here, we replace
the function gi by the H × c index matrix R = [r1|r2|...|rc] and the P × c index matrix
T = [t1|t2|...|tc], for hosts and phages, respectively [2]. Notice that nodes cannot be classified
into more than one module. Vectors ri and ti consist of a single one (corresponding to the chosen
module) will all the other entries being zero. For example, rik = 1 if the i-th host belongs to
the k-th module and rij = 0 for every other j 6= k. Now, we can rewrite the modularity as
follows (see Equation (22) in [2]):

Q =
1

m
TrRT B̃T (2)

where B̃ = A−P is the bipartite modularity matrix. The goal of the modularity algorithm is to
find the optimal assignment of nodes to modules (i.e., the index vectors R and T) in a way that
Equation 2 becomes maximized. However, finding the optimal modularity is a NP-complete
problem. In this context, there are a number of practical heuristics that we can use to guide
modularity algorithms in the search for good solutions within computational constraints (we
always check that the solutions found by the algorithms are meaningful). Next, we discuss the
different heuristics explored here.

The original modularity algorithm (called BRIM for Bipartite, Recursively Induced Mod-
ules) described in [2] computes the optimal modularity by inducing the division of one set of
nodes (say vector T) from the division in the other set of nodes (say vector R). At each step,
BRIM assigns nodes of one type to modules in order to maximize the modularity. BRIM iter-
ates this process until a local maximum is reached. However, the choice of a predefined number
c of modules limits the efficacy of the algorithm. Barber extended the BRIM algorithm to
search for the optimal number of modules along the modularity maximization process [2]. This
method, which is called “adaptive BRIM”, assumes that there is a smooth relationship between
the number of modules c and the modularity Q(c). For continuous and smooth landscapes,
a simple bisection method ensures that we will find the optimal value of c corresponding to
maximum Q. Starting at c = 1 (and modularity Q(1) = 0 because all nodes belong to the
same module) the adaptive BRIM searches for optimal c by repeatedly doubling the number
of modules while modularity increases, Q(2c) > Q(c). At some point, the search crosses a
maximum in the modularity landscape, i.e., Q(2c) < Q(c), and we interpolate the number of
modules c∗ to some intermediate value in the current interval (c, 2c). This heuristic gives very
good modularity values for the case of small matrices. For example, we have used the adaptive
heuristic in the analysis of the 15 largest modules identified in the MN matrix.

A shortcoming of adaptive BRIM is that its performance degrades for large networks [4].
We propose a recursive algorithm based in [7] to find the optimal number of modules in the
full cross-infection matrix. Following [7], we perform repeated divisions of the network until
a local maximum of modularity is reached. The algorithm steps are: (i) find all the isolated
network components and place them into separated modules, (ii) subdivide each module into
c = 2 sub-modules using the standard BRIM algorithm and (iii) repeat the subdivision process
until there is no improvement in the overall network modularity. The stop condition evaluates
if the modularity change ∆Q corresponding to the subdivision event in (ii) is significant or not.
That is, ∆Q > 0 means there is still room for further subdivisions. Newman suggests that is not
correct to naively remove all edges falling between the subparts and apply the full modularity
algorithm to each subpart in isolation [7]. We compute ∆Q > 0 as the difference between the
modularity value computed after and before the splitting event:

∆Q =
1

m

[
TrR(g)T B̂(g)T (g) − Tr B̂(g)

]
(3)

where B̂(g) is the hg × pg bipartite modularity matrix of the hg hosts and pg pages within the
module g ⊆ G, and R(g) and T (g) are the index vectors describing the splitting of the subgraph
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g in two sub-modules. Notice that we can restrict our computation to the subgraph g and
thus, the index vectors are subsets of the full index vectors (see Equation 2). This is, to the
best of our knowledge, the first time that the Newman’s division algorithm has been applied to
bipartite networks.

S3 Multi-scale nested analysis

The MN matrix is significantly nested according to initial analysis using both the temperature
calculator and NODF. This result is surprising giving the apparent lack of nestedness in vi-
sual inspection. However, prior work has noted that standard nestedness measures can signal
spurious nested patterns when the network is comprised of nested modules [3]. In this con-
text, Almeida-Neto and co-workers argue that we need specific models for distinct non-nested
patterns because there is not an unique, working definition for the opposite of nestedness (“anti-
nestedness”) [1]. Here, we propose two new approaches (one for each nestedness measurement)
to discard any interference of modular organization in the assessment of “true” nestedness.

We start by computing the modular organization of the full network G with our division algo-
rithm (see Section S2). The modules will constrain the space of possible matrix re-arrangements
explored by the temperature calculator when searching for the maximum nestedness (minimum
temperature). In particular, our proposal for a constrained temperature calculator (i) permutes
full modules (or matrix blocks), (ii) permutes rows and columns within a module, (iii) cannot
perform any other permutation different from (i) and (ii). Still, the space of possible combi-
nations can be quite large. We developed a heuristic algorithm that obtains good results with
simple and deterministic sorting. First, we sort the rows and columns within any module in
decreasing degree order (notice that rows and columns are sorted independently). Second, we
rank modules according to the (sub-)matrix size and fill. The host (rows) ranking µg for the
module g ⊂ G is:

µg =

∑
i∈g ki

hg × P
(4)

where hg is the number of hosts in the module g, ki is the degree of the i−th host and P is the
number of phages in the full network. Notice that this score can be seen as the connectance
of a network composed of all phages presented in the entire network but only the hosts that
belongs to module g. Similarly, there is a phage (columns) ranking νg for the module g:

νg =

∑
j∈g dj

pg ×H
(5)

where pg is the number of phages in the module g, dj is the degree of the j − th phage and H
is the number of hosts in the full network.

In order to validate this measure of constrained nestedness, we have designed a theoretical
experiment with synthetic networks having 2 ≤ c ≤ 50 perfectly nested modules without in-
teractions between them. Model networks have the same size as the MN network (H = 286,
P = 215). Notice that µg = µ and νg = ν for all modules (blocks) because they have exactly the
same size and fill. We place modules along the main diagonal to achieve optimal nestedness (see
Figure S5). Every other arrangement (for example with off-diagonal blocks) yields sub-optimal
nestedness values.

Our experiment confirms the initial hypothesis, i.e., unconstrained nestedness is higher than
constrained nestedness (see Figure S6). This suggests how high unconstrained nestedness of the
MN matrix can be a consequence of its nested modular organization. As expected, we achieve
maximum nestedness when the matrix is perfectly nested, e.g., there is only c = 1 module (see
Figure S5 left). At c = 2 we have a sudden drop in (both constrained and unconstrained)
nestedness because there are interactions below the isocline and absence of interactions above
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the isocline (see Figure S5 center). For small values of modularity (c < 8), the two null models
have significantly lower values of constrained nestedness than the MN matrix. In general,
nestedness increases with the number of modules (c > 20, see Figure S6) because temperature
is directly related to the matrix filling (see Figure S5 right).

S4 Geographical analysis

Both nestedness and modularity are topological, aspatial characteristics of bipartite networks.
Here, we investigate the relationship between these network patterns and their spatial context.
The MN matrix describes observed infections between host and phages sampled from a set of
nearly equally-spaced, numbered stations in the Atlantic ocean. Here, we will review the origi-
nal hypothesis of the MN study, i.e., to what extent geographical location drives the infection
process. In the presence of strong spatial modularity, we should observe significant correla-
tions between stations numbers (a surrogate of geographical location) of nodes within the same
module. Otherwise, the geographical biodiversity will be very large.

We will use two different, standard metrics to measure the degree of geographical biodiversity
in a topological module. For each module, we will compute the Shannon’s entropy index:

Hk = −
R∑
i=1

ni
N

log
ni
N

(6)

and the Simpson’s diversity index:

Dk = 1−
R∑
i=1

ni(ni − 1)

N(N − 1)
(7)

where N are the number of different strains inside the module, R are the number of stations
inside the module, and ni are the number of strains from the i−th station. Low values in both
indices indicate low geographical diversity within modules. Using a combination of two diversity
indexes will provide additional support for our conclusions.

In order to test the NM hypothesis, we compare the observed diversity indexes (H1, D1),
(H2, D2) ... (H15, D15) for the largest 15 modules found by the BRIM algorithm in the NM
matrix (see above) with their expectations coming from an ensemble of 106 randomized matrices.
We generate each sample by randomly permuting the row and column labels of the NM matrix.
Once the random matrix is obtained, we will compare the diversity indexes of each observed
module (Hk, Dk) with the pair of indices (H̃k, D̃k) of random modules having the same size.
Figure S7 indicates that, overall, the largest 15 modules display low geographical diversity,
i.e., the observed value is lower than expected (considering a one-tailed p-value of 0.05 for
statistical significance). This observation appears to be equally valid for hosts and phages (we
have analyzed the two types of nodes separately), e.g., compare Figure S7a and Figure S7b.
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Table S1: Geographical data of microbial stations

Station Latitude Longitude Station Latitude Longitude

454 47.717 -6.633 526 29.600 -57.083
456 44.750 -10.917 531 27.933 -57.733
458 43.200 -14.283 536 30.000 -58.333
460 41.350 -18.067 541 31.500 -59.667
462 39.650 -21.800 547 28.833 -59.633
464 38.000 -24.633 554 26.517 -60.233
465 37.817 -29.050 559 28.500 -61.000
469 37.967 -33.283 564 30.500 -61.000
471 37.333 -37.350 565 32.333 -64.633
472 36.550 -42.383 568 33.050 -59.983
474 35.717 -47.083 570 34.017 -55.317
476 34.867 -51.517 572 36.050 -42.467
478 34.017 -55.317 576 36.433 -39.067
480 33.217 -59.333 581 37.050 -34.350
484 32.567 -62.950 588 37.767 -26.367
489 31.967 -65.183 590 37.333 -22.033
492 30.667 -62.750 593 36.850 -17.417
497 28.783 -60.350 596 36.500 -13.000
501 27.117 -58.550 598 36.117 -8.717
504 26.100 -58.583 600 36.333 -7.467
508 26.417 -58.783 601 41.583 -10.333
513 29.617 -58.883 602 43.617 -9.567
518 31.200 -62.017 603 44.783 -8.833
522 31.067 -57.300 605 47.533 -6.283

Information that were extracted from the original Table 1 [5].
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Table S2: Global properties of the extracted modules

Module H P S I M C Lp Lh

1 42 23 269 65 966 0.28 6.40 11.70
2 39 12 138 51 468 0.29 3.54 11.50
3 31 31 233 62 961 0.24 7.52 7.52
4 23 13 61 36 299 0.20 2.65 4.69
5 16 20 114 36 320 0.36 7.13 5.70
6 15 5 30 20 75 0.40 2.00 6.00
7 12 7 27 19 84 0.32 2.25 3.86
8 11 8 52 19 88 0.59 4.73 6.50
9 8 6 38 14 48 0.79 4.75 6.33

10 8 11 57 19 88 0.65 7.13 5.18
11 7 5 15 12 35 0.43 2.14 3.00
12 7 7 17 14 49 0.35 2.43 2.43
13 7 9 49 16 63 0.78 7.00 5.44
14 6 7 21 13 42 0.50 3.50 3.00
15 6 6 27 12 36 0.75 4.50 4.50
16 3 4 12 7 12 1.00 4.00 3.00
17 3 3 7 6 9 0.78 2.33 2.33
18 3 1 3 4 3 1.00 1.00 3.00
19 3 1 3 4 3 1.00 1.00 3.00
20 2 1 2 3 2 1.00 1.00 2.00
21 2 3 6 5 6 1.00 3.00 2.00
22 2 1 2 3 2 1.00 1.00 2.00
23 2 1 2 3 2 1.00 1.00 2.00
24 2 2 4 4 4 1.00 2.00 2.00
25 2 2 4 4 4 1.00 2.00 2.00
26 1 1 1 2 1 1.00 1.00 1.00
27 1 2 2 3 2 1.00 2.00 1.00
28 1 1 1 2 1 1.00 1.00 1.00
29 1 1 1 2 1 1.00 1.00 1.00
30 1 1 1 2 1 1.00 1.00 1.00
31 1 1 1 2 1 1.00 1.00 1.00
32 1 1 1 2 1 1.00 1.00 1.00
33 1 1 1 2 1 1.00 1.00 1.00
34 1 1 1 2 1 1.00 1.00 1.00
35 1 1 1 2 1 1.00 1.00 1.00
36 1 1 1 2 1 1.00 1.00 1.00
37 1 1 1 2 1 1.00 1.00 1.00
38 1 1 1 2 1 1.00 1.00 1.00
39 1 1 1 2 1 1.00 1.00 1.00
40 1 1 1 2 1 1.00 1.00 1.00
41 1 1 1 2 1 1.00 1.00 1.00
42 1 1 1 2 1 1.00 1.00 1.00
43 1 1 1 2 1 1.00 1.00 1.00
44 1 1 1 2 1 1.00 1.00 1.00
45 1 1 1 2 1 1.00 1.00 1.00
46 1 1 1 2 1 1.00 1.00 1.00
47 1 1 1 2 1 1.00 1.00 1.00
48 1 1 1 2 1 1.00 1.00 1.00
49 1 2 2 3 2 1.00 2.00 1.00

Average 5.84 4.39 24.88 10.22 75.41 0.83 2.29 2.75
Median 2.00 1.00 2.00 3.00 2.00 1.00 1.00 2.00

H : Number of hosts
P : Number of phages
S = H + P : Number of species
I : Number of interactions
M = HP : Size
C = I/M : Connectance or fill
Lp = I/P : Mean phage degree (Average number of susceptible hosts by phage)
Lh = I/H : Mean host degree (Average number of virulent viruses by host)
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Table S3: Geographical biodiversity indexes

Module
Phages Hosts

Simpson Shannon Simpson Shannon

1 0.953 (p = 0.086) 2.487 (p = 0.040) 0.970 (p = 0.272) 3.048 (p = 0.221)
2 0.939 (p = 0.065) 2.095 (p = 0.081) 0.964 (p = 0.093) 2.908 (p = 0.048)
3 0.897 (p = 0.000) 2.179 (p = 0.000) 0.920 (p = 0.000) 2.551 (p = 0.001)
4 0.808 (p = 0.000) 1.479 (p = 0.000) 0.909 (p = 0.000) 2.198 (p = 0.000)
5 0.816 (p = 0.000) 1.817 (p = 0.000) 0.825 (p = 0.000) 1.689 (p = 0.000)
6 1.000 (p = 0.280) 1.609 (p = 0.280) 0.962 (p = 0.158) 2.396 (p = 0.227)
7 0.714 (p = 0.000) 1.004 (p = 0.000) 0.833 (p = 0.000) 1.517 (p = 0.000)
8 0.857 (p = 0.004) 1.494 (p = 0.010) 0.909 (p = 0.012) 1.846 (p = 0.011)
9 0.333 (p = 0.000) 0.451 (p = 0.000) 1.000 (p = 0.552) 2.079 (p = 0.552)

10 0.909 (p = 0.020) 1.768 (p = 0.005) 0.893 (p = 0.013) 1.667 (p = 0.027)
11 0.900 (p = 0.025) 1.332 (p = 0.025) 0.857 (p = 0.005) 1.475 (p = 0.007)
12 0.952 (p = 0.111) 1.748 (p = 0.111) 1.000 (p = 0.453) 1.946 (p = 0.453)
13 0.889 (p = 0.010) 1.677 (p = 0.013) 0.857 (p = 0.006) 1.475 (p = 0.008)
14 0.571 (p = 0.000) 0.683 (p = 0.000) 0.533 (p = 0.000) 0.637 (p = 0.000)
15 0.600 (p = 0.000) 0.868 (p = 0.000) 0.733 (p = 0.001) 1.011 (p = 0.001)

Small values means low geographical biodiversity. p < 0.05 means the module is statistically no geographically

diverse. p-values were calculated as the ratio of random permutations index values that are smaller than the

real index. See Equation 4 in the main text for a mathematical description of these indexes.
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Figure S1: Originally appeared as Figure 1 on [5] with the label Track of RV “Friedrich Heincke”
in the Atlantic Ocean during cruise no. 160 and microbial stations. Here, each circle represents
the geographic location of each station. The radius of the circles corresponds linearly to the
number of strains that were extracted in the corresponding station. Some number stations are
indicated in order to clarify the direction of the route. Increasing station number indicate the
order of visit.
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Figure S2: Moebus & Nattkemper [6] cross-reaction test in the Atlantic Ocean region. This
matrix is subdivided in different stations, where each square delimits the infections inside strains
of the same station. The original label reads: “Fig 1. Sensitivity patterns of A-seres bacteria to
A-series bacteriophages in relation to stations successively sampled. Results found with bacteria
and phages isolated from the same sample are shown in boxes. The area delimited by the broken
line comprises only findings obtained with bacteria and phages found west of the Azores. The
numbers of bacteria intra-sample doublets are given in parentheses. Bacteriophage doublets are
not presented. Circles: clear lysis in PHCR tests; dots: turbid spots in PHCR tests.”.
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Figure S3: Cumulative degree frequency of the MN matrix. a) Cumulative frequency of the
MN matrix with distinction between host and phage nodes. b) Cumulative frequency of the
MN matrix without distinction between host and phage nodes. Both phages and hosts have a
wide range of degree values, in which small degree values are more likely to occur than large
degree values.
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Figure S4: Arrangement of the cross-infection matrix produced with the NTC algorithm. While
the nestedness value NNTC = 0.95 has a p-value < 10−5 in both null models, the nestedness
value NNODF = 0.0341 has a p-value < 10−5 only in the Bernoulli random null model (see
text).
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C = 1, N = 1 C = 2, N = 0.73653 C = 7, N = 0.74955

Figure S5: From left to right, correlation between nestedness and modularity in synthetic
networks with c = 1, 2, 7 perfectly nested modules. Bold red line represents the isocline of
perfect nestedness (see material and methods in the main text). Blocks with red outlines
indicate modules.
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Random expectation − Probabilistic degreee null model
Random expectation − Bernoulli null model

Figure S6: Comparison of constrained vs unconstrained temperature. We analyze synthetic
networks with perfect nestedness with varying number of modules 2 ≤ c ≤ 50 (see text).
The vertical line indicate where the fill of the MN matrix coincides with that of the synthetic
networks. Notice that for the corresponding fill, the nestedness of the two random expectations
are larger than the value of nestedness with module constraints.
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(d)

Figure S7: Distribution of geographical diversity for the 15 biggest modules. The index represent
the module index. The red lines represent the real geographical diversity value of those modules.
a) Simpson’s index distribution for phages. b) Simpson’s index distribution for hosts. c)
Shannon’s index distribution for phages. d) Shannon’s index distribution for hosts.
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Figure S8: Fraction of shared interactions across pair of nodes. The top shows phage species
and the bottom shows host species. The left shows the fraction of shared interactions across
every pair of nodes. The right shows the probability density function of shared interaction
between pair of nodes given that the pairs shared at least one interaction.
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