Supporting Material for

Integration of microplasma with transmission electron microscope: Real-time observation of gold sputtering and island formation

K. Tai,¹ T. J. Houlahan Jr.,² J. G. Eden,² and S. J. Dillon¹

¹Department of Materials Science and Engineering, University of Illinois, Urbana,

IL 61801 USA

²Department of Electrical and Computer Engineering, University of Illinois,

Urbana, IL 61801 USA

S1. In-situ TEM video of the plasma-sputtering of a gold cathode film. The video is played in $50 \times$ speed.

S2. Time-lapse bright field TEM images of the sputtering of Au film at the cathode side of the cell. (Note: the black spots are contamination partiles).

S3. In-situ TEM video of the plasma-deposition of gold on a region of the anode surface. The video is played in $16 \times$ speed.

S4. Time-lapse bright field TEM images of deposition of Au at the anode side of the cell.

S5. Ex-situ bright field TEM image of the Au deposition at the anode side of the cell,

in which the nanosized Au islands with twins structures can be seen.

S6. In-situ optical images of plasma-microcell (a) before DC voltage applied, (b) generation of purple colored Ar^+ plasma after DC voltage applied.