Validation of Mega Composite Sampling and Nationwide Mass Inventories for 26 Previously Unmonitored Contaminants in Archived Biosolids from the U.S National Biosolids Repository

Bipin P. Chari and Rolf U. Halden

14 pages

Supplementary information:

Materials and methods:

Sampling procedure

The 2001 NSSS aimed at analyzing sewage sludge that was intended for land disposal for dioxin and dioxin-like compounds. During a 7-week sampling period between February and March 2001, 94 wastewater treatment plants were randomly selected from a pool of 174 facilities that had been sampled during the 1989 NSSS. These WWTPs were representative of 32 states and the District of Columbia. Eighty-nine facilities were noted to have a single system for treating and processing their sludge and hence one final sludge sample was collected from each of these facilities. Five facilities had two systems for treating their sludge material and therefore one sample per treatment process was taken. A total of 99 product samples were collected from the 94 wastewater treatment plants and for quality control testing and field duplicates were collected from 15% of treatment plants. The total number of samples that were analyzed was 113.

Sample analysis

Composite sludges were divided into two aliquots of up to 1 g dry solids, and adjusted for pH with phosphate buffer and ammonium hydroxide, respectively, prior to acid and base extraction. Acidic and base fractions were spiked with stable isotope-labeled surrogate standards of the target analytes. Both fractions were sonicated and extracted three times with a phosphate buffer/acetonitrile solution for the acid fraction, and with an ammonium hydroxide/acetonitrile solution for the base fraction. Then, both fractions were concentrated to remove acetonitrile and re-diluted with reagent water. For acid extraction Na4EDTA was added for stabilization. Both the acid fraction and the base fraction were cleaned using a

solid-phase extraction (SPE) hydrophilic-lipophilic balance (HLB) 20ccm cartridges containing 1 g of resin. The acid fraction was washed with reagent water to remove EDTA, and the analytes were eluted with methanol. In addition, triclocarban and triclosan were eluted with a mixture of equal parts of acetone and methanol. The base fraction was eluted with methanol followed by 2% formic acid. After extraction, both fractions were concentrated under a nitrogen atmosphere and reconstituted in methanol. Internal standards were added to both fractions just prior to analysis.

For the purpose of compound detection, the 120 analytes were divided into five groups. All analytes were separated by liquid chromatography and detected by tandem mass spectrometry. Groups 1,2,3 and 5 were extracted under acidic conditions at pH 2. Groups 1,2, 4 and 5 were analyzed in positive electrospray ionization (ESI) mode, with Group 2 being specific to tetracyclines. Group 3 was analyzed in negative ESI mode. Group 4 was extracted under basic conditions at pH 10 and analyzed in positive ESI mode. Hydrocodone and codeine were reported to suffer from analytical cross interference arising from their similar molecular weights and formulae. To address this challenge, the contract laboratory routinely utilizes an algebraic correction that is based on the peaks for the two compounds. The interference is taken into account and use of the algebraic correction was shown to lower the rate of false-positive occurrence.

Modeling of annual loading to agricultural soil

The release rates of individual PPCPs were calculated as the products of the total amount of biosolids yearly (7.2 million dry tons), the concentration of compound detected in the samples and the % of biosolids used beneficially (55%) as reported in NEBRA (2007). Although representing a crude estimate, the computed rates serve to inform on the approximate magnitude of chemical releases to soils from biosolids-borne compounds.

Table S1. List of 120 analytes that were detected for using the MLA-075 method. Compounds printed in bold indicate new analytes.

	Acetaminophen	Ciprofloxacin	Diltiazem	Lincomycin		
	Ampicillin ¹	Clarithromycin	1,7-Dimethyl-	Lomefloxacin		
	Azithromycin	Clinafloxacin	xanthine	Miconazole		
	Caffeine	Cloxacillin	Diphen-hydramine	Norfloxacin		
	Carbadox	Dehydroni-	Enrofloxacin	Norgestimate		
	Carbamazepine	fedipine	Erythromycin	Ofloxacin		
	Cefotaxime	Digoxigenin Flumequine		Ormetoprim		
List 1 (Acid		Digoxin	Fluoxetine			
List I (Aciu						
extraction,	Oxacillin	Sulfadiazine	Sulfathiazole			
positive ESI)	Ovalinia agid	Sulfadimathavina	Thisbandazola			
	Oxonine acid	Sunadimethoxine	Tillabelidazole			
	Penicillin G	Sulfamerazine	Trimethoprim			
	Penicillin V	Sulfamethazine	Tylosin			
	Roxithromycin	Sulfamethizole	Virginiamycin			
	Sarafloxacin	Sulfamethoxazole				
	Sulfachloro-	Sulfanilamide				
	pyridazine					
	Anhydrochlortetrac	Anhydrochlortetracycline (ACTC)		4-Epichlortetracycline (ECTC)		
List 2	Anhydrotetracycline (ATC)		4-Epioxytetracycline (EOTC)			
(Tetracyclines,	Chlortetracycline (CTC)	4-Epitetracycline (ETC)			
positive ESI)	Demeclocycline		Isochlortetracycline (ICTC)			
	Doxycycline		Minocycline			
	1					

	4-Epianhydrochlortetracycline		Oxytetracycline (OTC)
	(EACTC)		Tetracycline (TC)
	4-Epianhydrotetracycli	ne (EATC)	
	Bisphenol A	Ibuprofen	
	Furosemide	Naproxen	
	Gemfibrozil	Triclocarban	
List 3 (Acid	Glipizide	Triclosan	
extraction,	Glyburide	Warfarin	
negative ESI)	Hydrochlorothiazide		
	2-hydroxy-		
	ibuprofen		
	Albuterol	Cotinine	
	Amphetamine	Enalapril	
List 4 (Base	Atenolol	Hydrocodone	
extraction,	Atorvastatin	Metformin	
positive ESI)	Cimetidine	Oxycodone	
	Clonidine	Ranitidine	
	Codeine Triamterene		

List 5 (Acid Extraction, positive ESI)	Alprazolam Amitriptyline Amlodipine Benzoylecgonine Benztropine Betamethasone Cocaine	DEET (N,N- diethyl-m- toluamide) Desmethyl- diltiazem Diazepam Fluocinonide Fluticasone propionate Hydrocortisone 10-hydroxy- amitriptyline	Meprobamate Methyl- prednisolone Metoprolol Norfluoxetine Norverapamil Paroxetine Prednisolone	Prednisone Promethazine Propoxy- phene Propranolol Sertraline Simvastatin Theophylline Trenbolone Trenbolone- acetate Valsartan Verapamil
--	---	--	---	---

¹ Due to instability accuracy of Ampicillin data is unknown.

Table S2. Twenty-six PPCPs that were newly detected as a part of this analytical study. The number of positive occurrences in the five samples analyzed are marked beside the mean concentrations and for compounds that were inconsistently detected the maximum concentration has been reported. The rank of each compound is based on the number of prescriptions dispensed for the year 2009 (IMS Health, 2009). The half-life and EC_{50} values were estimated using PBT Profiler. Structure and chemical properties of each compound was taken from the Royal Society of Chemistry database.

Compound

OPR Recovery %: 55-130 logK_{ow}: 4.59 Half-life: N.A Soil loading: 499-2336 kg yr⁻¹ EC₅₀: N.A

CAS: 469-62-5 OPR Recovery %: 70-130 logK_{ow}: 4.18 Half-life: 120 d⁻¹ Soil loading: 64-304 kg yr⁻¹ EC₅₀: 15 μ g L⁻¹ Rank: 79

Valsartan*

logK_{ow}: 0.66 MDL: 1.2 μg kg⁻¹ Mean ± Std. dev: nd (n=3) Recovery: 108 % Half-life: 360 d⁻¹ Soil loading: 43-622 kg yr⁻¹ EC₅₀: 5400 μg L⁻¹ Rank: 33

Propranolol

с́н₃

CAS: 525-66-6 OPR Recovery %: 70-150 logK_{ow}: 3.48 Half-life: 30 d⁻¹ Soil loading: 231-578 kg yr⁻¹ EC₅₀: 360 μ g L⁻¹ Rank: - logK_{ow}: 2.57 Half-life: N.A Soil loading: 122-356 kg yr⁻¹ EC₅₀: 140 μg L⁻¹ Rank: 127

Sertraline

CAS: 79617-96-2 OPR Recovery %: 50-130 logK_{ow}: 5.29 Half-life: N.A Soil loading: 883-2519 kg yr⁻¹ EC₅₀: 4.3 x 10⁴ μg L⁻¹ Rank: 28 logK_{ow}: 4.81 Half-life: 120 d⁻¹ Soil loading: 60-117 kg yr⁻¹ EC₅₀: 34 μg L⁻¹ Rank: 113

Triamterene

CAS: 396-01-0 OPR Recovery %: 70-140 log K_{ow} : 0.98 Half-life: 75 d⁻¹ Soil loading: 1030-2309 kg yr⁻¹ EC₅₀: 4600 µg L⁻¹ Rank: 106

Verapamil

CAS: 137862-53-4 OPR Recovery %: 70-130 $\log K_{ow}$: 3.65 Half-life: N.A Soil loading: 95-254 kg yr⁻¹ EC₅₀: N.A Rank: 30

CAS: 52-53-9 OPR Recovery %: 70-145 logK_{ow}: 3.79 Half-life: 360 d⁻¹ Soil loading: 586-2665 kg yr⁻¹ EC₅₀: 1.3 μg L⁻¹ Rank: 198

Table S3. World-wide occurrences of the 26 PPCPs not previously detected in biosolids and reported in

 the present study

		Detection matrix							
#	Compound class	Wastewater		Surface	Biosolids	Source			
		Influent	Effluent	water					
1	Calcium channel blockers								
a.	Amlodipine	\checkmark				Nagarnaik et al., 2010			
b.	Verapamil		\checkmark			Batt et al., 2008			
2	Diuretics								
a.	Furosemide	\checkmark	\checkmark	\checkmark		Castiglioni et al., 2006			
		\checkmark	\checkmark		\checkmark	Jelic et al., 2011			
b.	Triamterene		\checkmark	\checkmark		Batt et al., 2008			
3	Selective serotonin reuptake inhibitors								
a.	Paroxetine		\checkmark			Batt et al., 2008			
			\checkmark	\checkmark		Schultz and Furlong 2008			
				\checkmark		Wu et al., 2009			
			\checkmark			Radjenović et al., 2009			
b.	Sertraline		\checkmark			Schultz and Furlong 2008			
					\checkmark	Barron, 2009			
			\checkmark			Batt et al., 2008			
4	4 Metabolites								
a.	Norverapamil			\checkmark		Batt et al., 2008			
b.	Norfluoxetine			\checkmark		Schultz and Furlong 2008;			
						Kolpin et al., 2002			

c.	10-hydroxy-					Batt et al., 2008
	amitriptyline					
d.	Desmethyldiltiazem		\checkmark	\checkmark		Batt et al., 2008
e.	Benzoylecgonine			\checkmark		Kasprzyk-Hordern et al.,2008
		\checkmark	\checkmark			Quintana et al., 2010
		\checkmark	\checkmark	\checkmark		Ventura et al., 2007; Postigo et
						al., 2010
		\checkmark				Field et al., 2008
		\checkmark	\checkmark			Castiglioni et al., 2006
5	Tricyclic antidepres	sants	l	I		I
a.	Amitriptyline			\checkmark		Kasprzyk-Hordern et al.,2008
					\checkmark	Batt et al., 2008
6	Duuge of abuse	l	l			l
0	Drugs of abuse	I	I	l	l	
			1			
a.	Cocaine	\mathcal{N}	N			Ventura et al., 2007; Quintana
						et al., 2010
					\checkmark	Kasprzyk-Hordern et al., 2008;
						Postigo 2010; Quintana 2010
		\checkmark				Field et al., 2008
7	Beta blockers					
a.	Metoprolol	\checkmark	\checkmark			Ternes et al., 2007; Scheurer et
						al., 2010
		\checkmark	\checkmark	\checkmark		Jelic et al., 2011
			\checkmark	\checkmark		Hernando et al., 2005

					\checkmark	Barron, 2009
b.	Propranolol	\checkmark	\checkmark			Bendz et al., 2005; Maurer et
						al., 2007; Scheurer et al., 2010
					\checkmark	Radjenović et al., 2009; Barron,
						2009
			\checkmark	\checkmark		Batt et al., 2008
c.	Atenolol		\checkmark	\checkmark		Batt et al., 2008
8	Analgesics		I	I	I	
a.	Oxycodone	\checkmark				Ternes et al., 2006; Chiaia et
						al., 2008
			\checkmark			Phillips et al., 2010
b.	Propoxyphene		\checkmark			Batt et al., 2008
c.	Hydrocodone		\checkmark	\checkmark		Batt et al., 2008
		\checkmark				Chiaia et al., 2008
9	Ungrouned chemica	ls	Į	I	ļ	
9	DEET	-~	1	l	l	Bartelt_Hunt et al 2008
а.	DLLI	v	v			
				N		I renholm et al., 2006
b.	Promethazine		\checkmark			Batt et al., 2008
c.	Valsartan		\checkmark	\checkmark		Batt et al., 2008
d.	Glyburide		\checkmark	\checkmark		Batt et al., 2008
e.	Alprazolam		\checkmark	\checkmark		Batt et al., 2008
f.	Benztropine					
g.	Atorvastatin	\checkmark	\checkmark		\checkmark	Jelic et al., 2011
			\checkmark			Metcalfe et al., 2003; Batt et
						al., 2008

*This is not a comprehensive list.

Figure S1. Rank order of mean concentrations of 59 PPCPs that were detected in composites of 110 U.S biosolids samples archived from the 2001 NSSS. Error bars depict \pm one standard deviation (n=5), and compounds marked with (*) indicate inconsistent detection.

References

Bendz, D., Paxeus, N.A., Ginn, T.R., Loge, F.J., 2005. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden. Journal of Hazardous Materials 122 (3), 195–204.

Chiaia, A.C., Banta-Green, C., Field, J., 2008. Eliminating solid phase extraction with large-volume injection LC/MS/MS: analysis of illicit and legal drugs and human urine indicators in U.S. wastewaters. Environmental Science and Technology 42(23), 8841-8848.

Hernando, M.D., Mezcua, M., Fernández-Alba, A.R., Barceló, D. 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2), 334– 342.

Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., Barcelo, D., 2011. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research 45(3), 1165–1176.

Maurer, M., Escher, B.I., Richle, P., Schaffner, C., Alder, A.C., 2007. Elimination of beta-blockers in sewage treatment plants. Water Research 41 (7), 1614–1622.

Nagarnaik, P., Batt, A., and Boulanger, B., 2010. Concentrations and mass loadings of cardiovascular pharmaceuticals in healthcare facility wastewaters. Journal of Environmental Monitoring 12(11), 2112-2119.

Postigo,C., López de Alda,M.J., Barceló,D., 2010. Drugs of abuse and their metabolites in the Ebro River basin: Occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environment International 36(1), 75-84. Schultz, M. M. and Furlong, E. T. 2008. Trace analysis of antidepressant pharmaceuticals and their select degradates in environmental aquatic matrices by LC/ESI/MS/MS. Analytical Chemistry 80(5), 1756–1762.

Wu, C.X., J.D. Witter, Spongberg A.L., and Czakowski, K.P., 2009. Occurrence of selected pharmaceuticals in an agricultural landscape, western Lake Erie basin. Water Research 43(14), 3407–3416.