Supporting Information

Table of Contents

General	S-2
General Procedure for the Synthesis of Alkynoates via Vinylogous Reactivity.	S-3
Optimization of Conditions for the Asymmetric Alkynoate Synthesis	S-16
General Procedure for the Asymmetric Alkynoate Synthesis	S-19
General Procedure for the Deprotection of the Disiloxyketal Alkynoate Product	tsS-22
References	S-27
¹ H and ¹³ C Spectra for all New Compounds	28 to S-49
Chiral HPLC Traces for all New Compounds	•50 to S-54
X-Ray Crystallographic Data for Compound 3	S-55

General Method. All reactions were conducted in flame-dried glassware under an inert atmosphere of dry argon. Flash chromatography was performed on silica gel 60 (230-400 mesh). Thin layer chromatography (TLC) was performed on aluminum backed plates, pre-coated with silica gel (0.25 mm, 60 F254) and developed using standard visualizing agents: UV fluorescence (254 nm) and potassium permanganate. ¹H NMR spectra were recorded on Varian Nuclear Magnetic Resonance spectrometers at 600, 500 or 400 MHz. The NMR data are reported as follows: chemical shift (in ppm on the δ scale relative to δ H 7.26 for the residual protons in CDCl₃ and δ H 7.16 for the residual protons in C₆D₆), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (J/Hz) and integration. ¹³C NMR spectra were recorded at 150 or 100 MHz with complete proton decoupling using the given solvent as an internal standard (CDCl₃, $\delta = 77.0$ and C₆D₆, $\delta = 128.0$). Mass spectral determinations were carried out by APCI/ESI as ionization source. Melting points are uncorrected. Infrared spectral data are reported in units of cm⁻¹. Optical rotations were measured on a JASCO P-2000 polarimeter.

Materials. $Rh_2(S-PTAD)_{4,1}^1 Rh_2(S-NTTL)_{4,2}^2 Rh_2(S-PTTL)_{4,3}^3 Rh_2(R-BNP)_{4,4}^4 Rh_2(S-BTPCP)_{4,5}^5 Rh_2(S-TBPTTL)_{4,6}^6$ were prepared according to the literature procedures and lyophilized using a SP VirTis BenchTop K freeze dryer. $Rh_2(esp)_2$ was purchased from Aldrich. Siloxyvinyldiazoacetates 2, 7, 4, 8 and 5^9 were synthesized according to literature procedures. Solvents were obtained from a Grubbs-type solvent purification system.

General Procedure for the Synthesis of Alkynoates via Vinylogous Reactivity

A solution of siloxyvinyldiazoacetate (1.0 mmol, 2.0 equiv) in 6 mL of dried degassed DCM was added by syringe pump over 3 h at room temperature to a flame-dried 25 mL flask containing $Rh_2(esp)_2$ (7.7 mg, 0.02 equiv) and enol ethers (0.5 mmol, 1.0 equiv) in 6 mL of dried degassed DCM under an argon atmosphere. The solution was stirred at room temperature for an additional 1 h. The mixture was concentrated under reduced pressure and purified by flash chromatography (pentane/Et₂O) on silica gel to yield the product.

Methyl 4-((1*SR*,2*SR*)-2-((*tert*-butyldimethylsilyl)oxy)-2-

((trimethylsilyl)oxy)cyclohexyl) but-2-ynoate 3: Derived from methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg , 1.0 mmol, 2.0 equiv) and (cyclohex-1-en-1-yloxy)trimethylsilane 1 (85 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O) on silica gel to provide **3** as a colorless oil which crystallized on standing (0.105 g, 53% yield). ¹H NMR (500 MHz, CDCl₃): δ 3.75 (s, 3H), 2.71 (dd, *J* = 17.5, 3.0 Hz, 1H), 2.11 (dd, *J* = 17.5, 10.5 Hz, 1H), 1.90-1.93 (m, 1H), 1.81-1.84 (m, 1H), 1.67-1.70 (m, 1H), 1.50-1.61 (m, 3H), 1.42-1.48 (m, 1H), 1.12-1.29 (m, 2H), 0.86 (s, 9H), 0.16 (s, 9H), 0.09 (s, 3H), 0.04 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): δ 154.5, 99.4, 90.8, 73.3, 52.7, 47.9, 41.8, 29.4, 26.2 (3 × C), 25.7, 24.0, 19.0, 18.3, 2.2 (3 × C), -2.3, -2.8; IR (neat): 2934, 2240, 1709, 1435, 1246,

1049, 806 cm⁻¹; HRMS (ESI) calc. for $C_{20}H_{38}O_4Si_2$ (M+Na)⁺ 421.2201 found 421.2200; M.p. 50-52 °C.

Methyl

4-((1SR,2RS)-2-((tert-butyldimethylsilyl)oxy)-2-

((trimethylsilyl)oxy)cyclohexyl) but-2-ynoate 6: Derived from methyl 2-diazo-3-((trimethylsilyl)oxy)but-3-enoate 4 (214 mg, 1.0 mmol, 2.0 equiv) and *tert*butyl(cyclohex-1-en-1-yloxy)dimethyl silane (106 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O) on silica gel to provide 6 as a colorless oil (98 mg, 49% yield). ¹H NMR (600 MHz, CDCl₃): δ 3.75 (s, 3H), 2.76 (dd, *J* = 17.4, 3.0 Hz, 1H), 2.18 (dd, *J* = 17.4, 10.8 Hz, 1H), 1.88-1.93 (m, 1H), 1.81-1.86 (m, 1H), 1.56-1.68 (m, 3H), 1.46-1.52 (m, 2H), 1.25 (qd, *J* = 12.6, 3.0 Hz, 1H), 1.12-1.20 (m, 1H), 0.92 (s, 9H), 0.15 (s, 6H), 0.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.4, 99.7, 90.6, 73.2, 52.5, 47.2, 41.4, 29.0, 26.1 (3 × C), 25.2, 23.9, 18.6, 18.4, 1.9 (3 × C), -1.8, -2.6; IR (neat): 2934, 2237, 1716, 1246, 1049, 833, 729 cm⁻¹; HRMS (ESI) calc. for C₂₀H₃₈O₄Si₂ (M+Na)⁺ 421.2201 found 421.2200.

Methyl 4-((1*SR*,2*SR*)-2-((*tert*-butyldimethylsilyl)oxy)-2-

((trimethylsilyl)oxy)cyclopentyl) but-2-ynoate 7: Derived from methyl 3-((*tert*butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and (cyclopent-1-en-1-yloxy)trimethylsilane (99.2 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O, R_f: 0.42) on silica gel to provide 7 as a colorless oil (0.153 g, 79% yield). ¹H NMR (600 MHz, CDCl₃): δ 3.75 (s, 3H), 2.49 (dd, *J* = 17.4, 3.6 Hz, 1H), 2.24 (dd, *J* = 17.4, 9.0 Hz, 1H), 1.92-1.98 (m, 2H), 1.75-1.81 (m, 2H), 1.57-1.71 (m, 2H), 1.35-1.43 (m, 1H), 0.84 (s, 9H), 0.16 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 154.3, 106.1, 90.3, 72.6, 52.5, 48.3, 40.2, 28.0, 25.8 (3 × C), 19.7, 18.1, 17.9, 1.7 (3 × C), -2.7, -3.2; IR (neat): 2954, 2238, 1717, 1247, 831, 777 cm⁻¹; HRMS (ESI) calc. for C₁₉H₃₆O₄Si₂Na (M+Na)⁺ 407.2044 found 407.2044.

Methyl4-((1SR,2SR)-2-((tert-butyldimethylsilyl)oxy)-2-((trimethylsilyl)oxy)cycloheptyl)but-2-ynoate8: Derived from methyl3-((tert-butyldimethylsilyl)oxy)-2-diazobut-3-enoate2(256 mg, 1.0 mmol, 2.0 equiv) and

(cyclohept-1-en-1-yloxy)trimethylsilane (92 mg, 0.5 mmol, 1.0 equiv) and purified through column chromatography (30/1 pentane/Et₂O) on silica gel to provide **8** as a colorless oil (0.126 g, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 3.73 (s, 3H), 2.64 (dd, J = 17.6, 2.8 Hz, 1H), 2.12 (dd, J = 17.6, 11.2 Hz, 1H), 1.66-1.86 (m, 5H), 1.30-1.63 (m, 6H), 0.84 (s, 9H), 0.14 (s, 9H), 0.06 (s, 3H), 0.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.6, 102.4, 91.3, 73.2, 52.7, 52.3, 42.8, 27.7, 26.5, 26.2 (3 × C), 25.9, 20.7, 20.4, 18.4, 2.28 (3 × C), -2.2, -2.8; IR (neat): 2953, 2929, 2237, 1717, 1251, 1046, 835; HRMS (ESI) calc. for C₂₁H₄₀O₄Si₂Na (M+Na)⁺ 435.2357 found 435.2361.

Methyl 4-((1*RS*,2*SR*)-1-((*tert*-butyldimethylsilyl)oxy)-1-((trimethylsilyl)oxy)-1,2,3,4tetrahydronaphthalen-2-yl)but-2-ynoate 9: Derived from methyl 3-((*tert*butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and ((3,4dihydronaphthalen-1-yl)oxy)trimethylsilane (109 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O, R_f: 0.38) on silica gel to provide 9 as a colorless oil (0.154 g, 69% yield). ¹H NMR (600 MHz, CDCl₃): δ 7.55-7.57 (m, 1H), 7.15-7.19 (m, 2H), 7.03-7.05 (m, 1H), 3.78 (s, 3H), 2.76-2.87 (m, 3H), 2.31 (dd, *J* = 17.4, 11.4 Hz, 1H), 2.14-2.18 (m, 1H), 2.05 (t, *J* = 10.8 Hz, 1H), 1.81-1.88 (m, 1H), 0.78 (s, 9H), 0.17 (s, 3H), 0.09 (s, 3H), -0.05 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 154.2, 140.6, 135.7, 128.5, 127.7, 126.7, 125.6, 97.9, 89.7, 73.4, 52.6, 47.0, 28.3, 25.9 (3 × C), 24.8, 19.1, 18.1, 1.4 (3 × C), -2.1, -2.3; IR (neat): 2953, 2929, 2238, 1717, 1249, 1069, 861, 797 cm⁻¹; HRMS (ESI) calc. for $C_{24}H_{38}O_4Si_2Na (M+Na)^+$ 469.2201 found 469.2199; M.p. 43-46 °C.

(+/-)-Methyl 4-(1,1-bis((*tert*-butyldimethylsilyl)oxy)-2,3-dihydro-1*H*-inden-2-yl)but-2-ynoate 10a: Derived from methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and ((1*H*-inden-3-yl)oxy)(*tert*-butyl)dimethylsilane (123 mg, 0.5 mmol, 1.0 equiv) and purified through column chromatography (30/1 pentane/Et₂O, R_f: 0.42) on silica gel to provide 10a as a colorless oil (79.4 mg, 33% yield). ¹H NMR (600 MHz, CDCl₃): δ 7.34 (d, J = 7.2 Hz, 1H), 7.25-7.27 (m, 1H), 7.22 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 3.79 (s, 3H), 3.17 (dd, J = 15.0, 6.6 Hz, 1H), 2.72-2.76 (m, 1H), 2.67 (dd, J = 15.6, 8.4 Hz, 1H), 2.54-2.61 (m, 2H), 0.96 (s, 9H), 0.77 (s, 9H), 0.18 (s, 3H), -0.05 (s, 3H), -0.07 (s, 3H), -0.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.2, 145.7, 140.2, 128.6, 126.3, 125.0, 122.9, 105.7, 89.1, 73.2, 52.6, 51.4, 35.0, 25.9 (3 × C), 25.7 (3 × C), 18.5, 18.2, 18.1, -2.5, -3.1, -3.2, -3.3; IR (neat): 2952, 2929, 2856, 2239, 1718, 1472, 1462, 1435, 1247, 1190, 1157, 1141, 1059, 878 cm⁻¹; HRMS (APCI) calc. for C₂₆H₄₃O₄Si₂ (M+H)⁺ 475.2694 found 475.2698.

(+/-)-*tert*-Butyl 4-(1,1-bis((*tert*-butyldimethylsilyl)oxy)-2,3-dihydro-1*H*-inden-2yl)but-2-ynoate 10b: Derived from *tert*-butyl 3-((*tert*-butyldimethylsilyl)oxy)-2diazobut-3-enoate 5 (298 mg, 1.0 mmol, 2.0 equiv) and ((1*H*-inden-3-yl)oxy)(*tert*butyl)dimethylsilane (123 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O, R_f: 0.46) on silica gel to provide 10b as a colorless oil (0.219 g, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, *J* = 7.2 Hz, 1H), 7.15-7.26 (m, 3H), 3.25 (dd, *J* = 15.6, 6.4 Hz, 1H), 2.62-2.73 (m, 2H), 2.51-2.57 (m, 2H), 1.51 (s, 9H), 0.94 (s, 9H), 0.75 (s, 9H), 0.15 (s, 3H), -0.07 (s, 3H), -0.09 (s, 3H), -0.12 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 152.9, 145.8, 140.3, 128.6, 126.3, 125.0, 122.9, 105.8, 86.2, 83.0, 74.8, 51.4, 35.1, 28.0 (3 × C), 25.9 (3 × C), 25.8 (3 × C), 18.5, 18.2, 18.1, -2.4, -3.0, -3.1, -3.3; IR (neat): 2950, 2930, 2230, 1709, 1374, 1255, 1205, 1170, 1104, 988 cm⁻¹; HRMS (APCI) calc. for C₂₅H₃₉O₃Si₂ (M-OC(CH₃)₃)⁺ 443.2438 found 443.2433.

(+/-)-Methyl 4-(2,2-bis((*tert*-butyldimethylsilyl)oxy)cyclobutyl)but-2-ynoate 11a: Derived from methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and *tert*-butyl(cyclobut-1-en-1-yloxy)dimethylsilane (92 mg, 0.5 mmol,

1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O, R_f: 0.42) on silica gel to provide **11a** as a colorless oil (105 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃): δ 3.74 (s, 3H), 2.60-2.68 (m, 1H), 2.41-2.54 (m, 2H), 2.14-2.21 (m, 2H), 1.84-1.92 (m, 1H), 1.31-1.40 (m, 1H), 0.89 (s, 9H), 0.88 (s, 9H), 0.16 (s, 3H), 0.15 (s, 3H), 0.13 (s, 3H), 0.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.3, 98.2, 89.0, 72.7, 52.5, 48.4, 38.3, 25.8 (6 × C), 18.7, 18.5, 18.0, 17.9, -2.8 (2 × C), -3.4 (2 × C); IR (neat): 2952, 2929, 2857, 2237, 1717, 1472, 1462, 1434, 1245, 1217, 1193, 1162, 1120, 1071, 1042, 992, 938 cm⁻¹; HRMS (APCI) calc. for C₂₁H₄₁O₄Si₂ (M+H)⁺ 413.2538 found 413.2533.

Methyl 1-((*tert*-butyldimethylsilyl)oxy)-5-(1-((*tert*-butyldimethylsilyl)oxy)vinyl) bicyclo[2.1.0]pentane-5-carboxylate 11b: Derived from methvl 3-((*tert*butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and tertbutyl(cyclobut-1-en-1-yloxy)dimethylsilane (92 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O, R_f: 0.50) on silica gel to provide **11b** as colorless oil (94 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃): δ 4.44 (d, J = 0.8Hz, 1H), 4.23 (d, J = 0.8 Hz, 1H), 3.65 (s, 3H), 2.79 (dd, J = 4.8, 1.6 Hz, 1H), 2.34 (td, J=10.8, 3.6 Hz, 1H), 2.11-2.17 (m, 1H), 1.96-2.04 (m, 1H), 1.12-1.17 (m, 1H), 0.90 (s, 9H), 0.85 (s, 9H), 0.20 (s, 6H), 0.11 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 150.0. 95.2, 68.7, 51.6, 45.1, 37.9, 31.5, 25.6 (3 × C), 25.5 (3 × C), 18.1, 17.7, 16.7, -4.1, - 4.2, -4.7, -5.0; IR (neat): 2949, 2929, 2857, 1720, 1638, 1472, 1462, 1434, 1359, 1277, 1248, 1221, 1170, 1119, 1083, 1059, 1024, 1005, 959, 939 cm⁻¹; HRMS (APCI) calc. for C₂₁H₄₁O₄Si₂ (M+H)⁺ 413.2538 found 413.2535.

(+/-)-*tert*-Butyl 4-(2,2-bis((*tert*-butyldimethylsilyl)oxy)cyclobutyl)but-2-ynoate (11c): Derived from *tert*-butyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate **5** (298 mg, 1.0 mmol, 2.0 equiv) and *tert*-butyl(cyclobut-1-en-1-yloxy)dimethylsilane (92 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O, R_f: 0.42) on silica gel to provide **11c** as colorless oil (224 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃): δ 2.60-2.68 (m, 1H), 2.38-2.52 (m, 2H), 2.16-2.21 (m, 2H), 1.84-1.92 (m, 1H), 1.48 (s, 9H), 1.31-1.41 (m, 1H), 0.90 (s, 9H), 0.89 (s, 9H), 0.17 (s, 3H), 0.16 (s, 3H), 0.13 (s, 3H), 0.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.0, 98.3, 86.0, 82.7, 74.3, 48.4, 38.3, 28.0 (3 × C), 25.9 (3 × C), 25.8 (3 × C), 18.7, 18.5, 18.0, 17.9, -2.8 (2 × C), - 3.4 (2 × C); IR (neat): 2953, 2930, 2896, 2857, 2237, 1708, 1472, 1463, 1391, 1368, 1250, 1218, 1161, 1120, 1069, 1042, 993, 938, 812 cm⁻¹; HRMS (APCI) calc. for C₂₀H₃₇O₃Si₂ (M-OC(CH₃)₃)⁺ 381.2281 found 381.2273.

(+/-)-Methyl 4-(2,2-bis((*tert*-butyldimethylsilyl)oxy)-1-methylcyclopentyl)but-2ynoate 12: Derived from methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (154 mg, 0.6 mmol, 2.0 equiv) and *tert*-butyldimethyl((2-methylcyclopent-1-en-1yl)oxy)silane (64 mg, 0.3 mmol, 1.0 equiv) under refluxed DCM, and purified through column chromatography (30/1 pentane/Et₂O, R_f: 0.42) on silica gel to provide 12 as a colorless oil (74 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): δ 3.75 (s, 3H), 2.53 (d, *J* = 17.2 Hz, 1H), 2.29 (d, *J* = 17.2 Hz, 1H), 2.00-2.08 (m, 1H), 1.85-1.92 (m, 1H), 1.53-1.72 (m, 4H), 1.03 (s, 3H), 0.89 (s, 9H), 0.87 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H), 0.13 (s, 3H), 0.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.3, 108.1, 90.1, 73.7, 52.5, 49.6, 36.5, 33.8, 26.1 (3 × C), 26.0 (3 × C), 25.5, 21.4, 18.4 (2 × C), 17.9, -1.6, -1.7, -2.1, -2.4; IR (neat): 2953, 2930, 2857, 2235, 1717, 1472, 1463, 1434, 1248, 1159, 1117, 1074, 1046, 1000, 938, 889 cm⁻¹; HRMS (APCI) calc. for C₂₃H₄₅O₄Si₂ (M+H)⁺ 441.2778 found 441.2805.

Methyl 4-((4aRS,7aSR)-7a-((*tert*-butyldimethylsilyl)oxy)hexahydro-2*H*cyclopenta[b][1,4]dioxin-4a-yl)but-2-ynoate 13: Derived from methyl 3-((*tert*-

butyldimethylsilyl)oxy)-2-diazobut-3-enoate **2** (256 mg, 1.0 mmol, 2.0 equiv) and 3,5,6,7-tetrahydro-2*H*-cyclopenta[*b*][1,4]dioxine (64 mg, 0.5 mmol, 1.0 equiv) under refluxed DCM, and purified through column chromatography (10/1 pentane/Et₂O, R_f: 0.26) on silica gel to provide **13** as a colorless oil (94 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): δ 3.89-3.95 (m, 1H), 3.76-3.83 (m, 1H), 3.73 (s, 3H), 3.56 (dt, *J* = 11.6, 2.8 Hz, 1H), 3.49 (dt, *J* = 11.6, 2.8 Hz, 1H), 2.77 (dd, *J* = 17.6, 0.8 Hz, 1H), 2.47 (d, *J* = 17.6 Hz, 1H), 2.15-2.22 (m, 1H), 1.95-2.02 (m, 1H), 1.57-1.86 (m, 4H), 0.89 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.0, 102.2, 87.0, 81.9, 74.0, 59.8, 59.4, 52.5, 35.7, 28.1, 26.4, 25.7 (3 × C), 18.1, 17.4, -3.2, -3.3; IR (neat): 2954, 2857, 2239, 1715, 1250, 1108, 1076, 1030, 837 cm⁻¹; HRMS (ESI) calc. for C₁₈H₃₀O₅SiNa (M+Na)⁺ 377.1755 found 377.1756.

Methyl 4-((1*RS*,2*SR*,5*SR*)-2-((*tert*-butyldimethylsilyl)oxy)-5-methyl-2-((trimethylsilyl)oxy)cyclopentyl)but-2-ynoate 20: Derived from methyl 3-((*tert*butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and trimethyl((3-methylcyclopent-1-en-1-yl)oxy)silane¹⁰ 17 (85 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (40/1 pentane/Et₂O) on neutral alumina to provide 20 as a colorless oil (114 mg, 57% yield). ¹H NMR (600 MHz, C₆D₆): δ 3.24 (s, 3H), 2.47 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.14 (dd, *J* = 18.0, 7.2 Hz, 1H), 1.56-1.76 (m, 4H), 1.45-1.49 (m, 1H), 1.00 (d, J = 6.6 Hz, 3H), 0.95-0.98 (m, 1H), 0.90 (s, 9H), 0.15 (s, 3H), 0.11 (s, 3H), 0.08 (s, 9H); ¹³C NMR (100 MHz, C₆D₆): δ 154.0, 106.9, 89.4, 74.0, 56.0, 51.6, 39.6, 36.8, 29.6, 26.0 (3 × C), 21.0, 18.0, 17.2, 1.5 (3 × C), -2.5, -3.1; IR (neat): 2953, 2856, 2238, 1716, 1248, 1166, 1043, 832 cm⁻¹; HRMS (ESI) calc. for C₂₀H₃₈O₄Si₂Na (M+Na)⁺ 421.2201 found 421.2208.

Methyl 4-((1*RS*,2*SR*,5*SR*)-5-butyl-2-((*tert*-butyldimethylsilyl)oxy)-2-

((trimethylsilyl)oxy)cyclopentyl)but-2-ynoate 21: Derived from methyl 3-((*tert*butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and ((3butylcyclopent-1-en-1-yl)oxy)trimethylsilane¹¹ 18 (106 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (40/1 pentane/Et₂O) on neutral alumina to provide 21 as a colorless oil (111 mg, 50% yield). ¹H NMR (400 MHz, C₆D₆): δ 3.22 (s, 3H), 2.49 (dd, *J* = 17.2, 5.2 Hz, 1H), 2.17 (dd, *J* = 17.2, 6.0 Hz, 1H), 1.69-1.79 (m, 1H), 1.56-1.63 (m, 4H), 1.20-1.32 (m, 4H), 1.06-1.14 (m, 3H), 0.90 (s, 9H), 0.85-0.88 (m, 3H), 0.16 (s, 3H), 0.11 (s, 3H), 0.09 (s, 9H); ¹³C NMR (100 MHz, C₆D₆): δ 154.0, 106.8, 89.5, 74.0, 54.1, 51.6, 42.0, 39.6, 35.6 30.0, 27.0, 26.0 (3 × C), 23.2, 18.0, 17.5, 14.2, 1.5 (3 × C), -2.5, -3.1; IR (neat): 2953, 2856, 2238, 1717, 1249, 1164, 1054, 832 cm⁻¹; HRMS (ESI) calc. for C₂₃H₄₄O₄Si₂Na (M+Na)⁺ 463.2670 found 463.2680.

Methyl 4-((1*RS*,2*SR*,5*SR*)-2-((*tert*-butyldimethylsilyl)oxy)-5-phenyl-2-((trimethylsilyl)oxy)cyclopentyl)but-2-ynoate 22: Derived from methyl 3-((*tert*butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and trimethyl((3-phenylcyclopent-1-en-1-yl)oxy)silane¹¹ 19 (116 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (40/1 pentane/Et₂O) on neutral alumina to provide 22 as a colorless oil (134 mg, 58% yield). ¹H NMR (400 MHz, C₆D₆): δ 7.01-7.15 (m, 5H), 3.17 (s, 3H), 2.69-2.76 (m, 1H), 3.39-2.46 (m, 1H), 2.08-2.18 (m, 2H), 1.96-2.04 (m, 1H), 1.83-1.91 (m, 1H), 1.68-1.75 (m, 1H), 1.50-1.59 (m, 1H), 0.96 (s, 9H), 0.25 (s, 3H), 0.15 (s, 12H); ¹³C NMR (100 MHz, C₆D₆): δ 153.9, 145.0, 128.8 (2 × C), 127.6 (2 × C, signal overlaps with C₆D₆ solvent signal), 126.6, 106.4, 88.7, 74.0, 56.2, 51.5, 48.3, 40.5, 30.3, 26.1 (3 × C), 25.8, 18.1, 16.4, 1.6 (3 × C), -2.5, -3.0; IR (neat): 2953, 2856, 2238, 1716, 1251, 1081, 835 cm⁻¹; HRMS (ESI) calc. for C₂₅H₄₀O₄Si₂Na (M+Na)⁺ 483.2357 found 483.2357.

(-)-(*S*)-trimethyl((3-phenylcyclopent-1-en-1-yl)oxy)silane¹² 19 : Silyl enol ether (-)-19 was prepared in accordance with the reported procedure by Hayashi and co-workers¹² and all spectroscopic data of the purified product was consistent with the reported values. $[\alpha]^{20}_{D}$ -31.6° (*c* 1.00, CHCl₃). The enantiomeric excess was determined by HPLC analysis of the corresponding ketone, which was prepared by protonolysis of (-)-19. $[\alpha]^{20}_{D}$ -82.8° (*c* 0.92, CHCl₃); HPLC analysis: 98% ee, CHIRALCEL ADH, 0.5% isopropanol/hexanes, 1 mL/min, UV: 254 nm, *t*_R: 19.99 min (minor), 20.82 min (major).

(+)-Methyl 4-((1*R*,2*S*,5*S*)-2-((*tert*-butyldimethylsilyl)oxy)-5-phenyl-2-((trimethylsilyl)oxy)cyclopentyl)but-2-ynoate 22: Derived from methyl 3-((*tert*butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (247 mg, 0.96 mmol, 2.0 equiv) and (–)-(*S*)-trimethyl((3-phenylcyclopent-1-en-1-yl)oxy)silane (–)-19 (112 mg, 0.0.48 mmol, 1.0 equiv), and purified through column chromatography (40/1 pentane/Et₂O) on neutral alumina to provide (+)-22 as a colorless oil (115 mg, 52% yield). [α]²⁰_D 3.6° (*c* 1.33,

CHCl₃); all data as previously stated. Product was determined to be 98% ee after derivatization (see 22a).

Optimization of Conditions for the Asymmetric Alkynoate Synthesis

This study began with the evaluation of the best catalyst that could be used to access enantioenriched alkynoates. For this exercise, 1-(trimethylsiloxy)-cyclohexene **1** and methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate **2** were selected as the substrates of choice. A series of dirhodium catalysts were tested and the results are summarized in Table 1. Although the desired alkynoate product was systematically isolated as a single diastereomer, the observed enantioselectivity was low (Table 1, entries 1-10). The best enantiomeric excess was obtained using $Rh_2(S-PTAD)_4$ (entry 1) and this catalyst was therefore selected to carry out further optimization studies.

General procedure for Table 1: A solution of methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (1.0 mmol, 2.0 equiv) in 6 mL of dried degassed DCM was added by syringe pump over 3 h at room temperature to a flame-dried 25 mL flask containing 1-(trimethylsiloxy)-cyclohexene 1 (0.5 mmol, 1.0 equiv) and catalyst (0.02 equiv) in 6 mL of dried degassed DCM under an argon atmosphere. The solution was stirred at room temperature for an additional 1 h. The mixture was concentrated under reduced pressure and purified by flash chromatography (30/1 pentane/Et₂O) on silica gel to yield the product.

OTMS	+ CO ₂ Me N ₂	Catalyst (2 mol%)	TMSO_OTBS	CO₂Me
Entry ^a	Catalyst	Yield ^b	d.r. ^c	ee ^d
1	S-PTAD	50	>20.1	37
2	S-NTTL	49	>20.1	-6 ^e
3	S-PTTL	62	>20.1	29
4	<i>R</i> -BNP	4	NA	NA
5	S-BTPCP	27	>20.1	24
6	S-PTA	38	>20.1	31
7	S-TBPTTL	37	>20.1	24
8	<i>R</i> -TCPTV	17	>20.1	17

^a Reaction condition: diazo compound **2** (1 mmol) in DCM (6 mL) was added over 3 h via a syringe pump at rt to a mixture of (cyclohex-1-en-1-yloxy)trimethylsilane **1** (0.5 mmol) and catalyst (2.0 mol%) in DCM (6 mL), and stirred for another hour at rt. ^b Isolated yield after chromatography on silica gel ^c Determined from ¹H NMR of the crude reaction mixture. ^d Determined by chiral HPLC after hydrolysis of the disiloxyketal. ^e Negative value indicates opposite asymmetric induction.

Table 1

A solvent screen was next performed. It was found that the enantioselectivity could be slightly improved using a different polar solvent such as TFT or DCE (Table 2, entries 2 and 3). However the use of non polar solvents had a negative impact on the reaction outcome and resulted in a significant erosion of enantioselectivity for the desired product (entries 4-6).

General procedure for Table 2: A solution of methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (1.0 mmol, 2.0 equiv) in solution (6 mL) was added by syringe pump over 3 h at room temperature to a flame-dried 25 mL flask containing 1-(trimethylsiloxy)-cyclohexene 1 (0.5 mmol, 1.0 equiv) and catalyst (0.02 equiv) in solution (6 mL). The solution was stirred at room temperature for an additional 1 h. The mixture was concentrated under reduced pressure and purified by flash chromatography (30/1 pentane/Et₂O) on silica gel to yield the product.

OTMS	+ CO ₂ Me	Rh ₂ (<i>S</i> -PTAD) ₄ (2 mol%) → rt, 4 h	TMSO OTBS	CO ₂ Me
Entry ^a	Solvent	Yield ^b	d.r. ^c	ee ^d
1	DCM	50	>20.1	37
2	TFT	57	>20.1	43
3	DCE	57	>20.1	39
4	2,2-DMB	56	>20.1	0
5	Pentane	50	>20.1	5
6	Toluene	46	>20.1	6

^a Reaction condition: diazo compound **2** (1 mmol) in solution (6 mL) was added over 3 h via a syringe pump at rt to a mixture of (cyclohex-1-en-1-yloxy)trimethylsilane **1** (0.5 mmol) and $Rh_2(S-PTAD)_4$ (2.0 mol%) in solution (6 mL), and stirred for another hour at rt. ^b Isolated yield after chromatography on silica gel ^c Determined from ¹H NMR of the crude reaction mixture. ^d Determined by chiral HPLC after hydrolysis of the disiloxyketal.

Table 2

Finally, the reaction temperature was investigated (Table 3). Using TFT the enantioselectivity was improved to 60% ee when the reaction was conducted at -25 °C (Table 3, entry 3). Remarkably the reaction conversion was only slightly affected by the temperature.

General procedure for Table 3: A solution of methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate **2** (1.0 mmol, 2.0 equiv) in solution (6 mL) was added by syringe pump over 3 h to a flame-dried 25 mL flask containing 1-(trimethylsiloxy)-cyclohexene (1) (0.5 mmol, 1.0 equiv) and catalyst (0.02 equiv) in solution (6 mL) at the indicated temperature. The solution was stirred at the indicated temperature for an additional 1 h. The mixture was concentrated under reduced pressure and purified by flash chromatography (30/1 pentane/Et₂O) on silica gel to yield the product.

^a Reaction condition: diazo compound **2** (1 mmol) in solution (6 mL) was added over 3 h via a syringe pump at the indicated temperature to a mixture of (cyclohex-1-en-1-yloxy)trimethylsilane **1** (0.5 mmol) and $Rh_2(S-PTAD)_4$ (2.0 mol%) in solution (6 mL), and stirred for another hour at the indicated temperature. ^b Isolated yield after chromatography on silica gel ^c Determined from ¹H NMR of the crude reaction mixture. ^d Determined by chiral HPLC after hydrolysis of the disiloxyketal.

Table 3

General Procedure for the Asymmetric Alkynoate Synthesis

A solution of siloxyvinyldiazoacetate (1.0 mmol, 2.0 equiv) in 6 mL of dried degassed TFT was added by syringe pump over 3 h at -25 °C to a flame-dried 25 mL flask containing $Rh_2(S-PTAD)_4$ (15.6 mg, 0.02 equiv) and enol ethers (0.5 mmol, 1.0 equiv) in 6 mL of dried degassed TFT under an argon atmosphere. The solution was stirred at -25 °C for an additional 1 h. The mixture was concentrated under reduced pressure and purified by flash chromatography (pentane/Et₂O) on silica gel to yield the product.

(-)-Methyl 4-(-2-((*tert*-butyldimethylsilyl)oxy)-2-((trimethylsilyl)oxy)cyclohexyl)but-2-ynoate 3: Derived from methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and (cyclohex-1-en-1-yloxy)trimethylsilane 1 (85 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O) on silica gel to provide (-)-3 as a colorless oil which crystallized on standing (106 mg, 53% yield). [α]²⁰_D -7.1° (*c* 1.18, CHCl₃); all data as previously stated. Product was determined to be 60% ee after derivatization (see (+)-16).

(-)-Methyl

4-((-2-((tert-butyldimethylsilyl)oxy)-2-

((trimethylsilyl)oxy)cyclopentyl)but-2-ynoate 7: Derived from methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and (cyclopent-1-en-1-yloxy)trimethylsilane (78 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O) on silica gel to provide (–)-7 as a

colorless oil (167 mg, 87% yield). $[\alpha]^{20}{}_{\rm D}$ -7.0° (*c* 1.56, CHCl₃); all data as previously stated. Product was determined to be 50% ee after derivatization (see **7a**).

(-)-Methyl 4-(2-((tert-butyldimethylsilyl)oxy)-2-((trimethylsilyl)oxy)cycloheptyl)but-

2-ynoate 8: Derived from methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate **2** (256 mg, 1.0 mmol, 2.0 equiv) and (cyclohept-1-en-1-yloxy)trimethylsilane (92 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (30/1 pentane/Et₂O) on silica gel to provide (–)-**8** as a colorless oil (0.142 g, 69% yield). $[\alpha]^{20}_{D}$ -7.1° (*c* 1.48, CHCl₃); all data as previously stated. Product was determined to be 70% ee after derivatization (see **8a**).

(+)-Methyl 4-(8-((*tert*-butyldimethylsilyl)oxy)-8-((trimethylsilyl)oxy)-1,4dioxaspiro[4.5]decan-7-yl)but-2-ynoate 23: Derived from methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-diazobut-3-enoate 2 (256 mg, 1.0 mmol, 2.0 equiv) and (1,4-dioxaspiro[4.5]dec-7-en-8-yloxy)trimethylsilane¹³ (114 mg, 0.5 mmol, 1.0 equiv), and purified through column chromatography (80/20 pentane/Et₂O) on silica gel to provide (+)-23 as a colorless oil (111 mg, 49% yield). [α] ²⁰_D 1.9° (*c* 1.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.90-3.98 (m, 4H), 3.74 (s, 3H), 2.67 (dd, *J* = 17.2, 3.2 Hz, 1H), 2.67 (dd, *J* = 17.2, 10.4 Hz, 1H), 1.75-1.99 (m, 5H), 1.65-1.75 (m, 1H), 1.52-1.58 (m, 1H), 0.84 (s, 9H), 0.16 (s, 9H), 0.08 (s, 3H), 0.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.5, 108.3, 98.7, 89.8, 73.7, 64.7, 64.5, 52.8, 44.6, 38.3, 37.6, 32.7, 26.2 (3 × C), 18.7, 18.3, 2.1 (3 × C), -2.3, -2.8; IR (neat): 2945, 2856, 2238, 1716, 1253, 1120, 1057, 835; HRMS (ESI) calc. for C₂₂H₄₀O₆Si₂ (M+Na)⁺ 479.2256 found 479.2262. Product was determined to be 46% ee after derivatization (see **23a**).

General Procedure for the Deprotection of the Disiloxyketal Alkynoate Products: To a solution of alkyne (1.0 equiv) in dry DMF (1.0 mL) at 0 °C was added a solution of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) (0.3 equiv) in dry DMF (0.5 mL). The reaction was stirred at 0 °C for 5 min. The mixture was then diluted with EtOAc (5 mL) and poured into a separating funnel containing a pH 7 phosphate buffer solution (5 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2 × 5 mL). The organics were dried over MgSO₄, concentrated under reduced pressure and purified by flash chromatography on silica gel (20% Et₂O/pentane).

(+)-Methyl 4-(2-oxocyclohexyl)but-2-ynoate 16^{14} : Derived from (–)-methyl 4-(2-((*tert*-butyldimethylsilyl)oxy)-2-((trimethylsilyl)oxy)cyclohexyl) but-2-ynoate **3** (83 mg, 0.21 mmol) and purified through column chromatography (80/20 pentane/Et₂O) on silica gel to provide **16** as a colorless oil (38 mg, 94%). [α]²⁰_D 2.8° (*c* 1.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.73 (s, 3H), 2.75 (dd, *J* = 17.6, 4.8 Hz, 1H), 2.51-2.59 (m, 1H), 2.35-2.45 (m, 2H), 2.25-2.34 (m, 2H), 2.06-2.12 (m, 1H), 1.88-1.94 (m, 1H), 1.58-1.71 (m, 2H), 1.39 (app. qd, *J* = 12.8, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 210.2, 154.3, 88.1, 74.1, 52.8, 49.0, 42.1, 33.6, 27.9, 25.3, 19.3; HPLC analysis: 60% ee, CHIRALCEL ODR, 1% isopropanol/hexanes, 1 mL/min, UV: 230 nm, *t*_R: 16.26 min (minor), 17.60 min (major). NMR data was consistent with the literature.¹⁴

(+)-Methyl 4-((1R,5S)-2-oxo-5-phenylcyclopentyl)but-2-ynoate 22a: Derived from (+)-Methyl 4-((1R,2S,5S)-2-((*tert*-butyldimethylsilyl)oxy)-5-phenyl-2-((trimethylsilyl)oxy)cyclopentyl)but-2-ynoate 22 (40 mg, 0.09 mmol) and purified through column chromatography (80/20 pentane/Et₂O) on silica gel to provide 22a as a

colorless oil (20 mg, 91%). $[\alpha]^{20}_{D}$ 37.3° (*c* 0.44, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.36 (m, 5H), 3.71 (s, 3H), 3.23 (td, *J* = 11.6, 6.0 Hz, 1H), 2.74 (dd, *J* = 18.8, 5.6 Hz, 1H), 2.54-2.60 (m, 1H), 2.34-2.43 (m, 3H), 2.25-2.34 (m, 1H), 1.97-2.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 216.0, 154.0, 141.4, 129.1 (2 × C), 127.5, 127.4 (2 × C), 86.0, 74.7, 54.4, 52.8, 47.2, 38.2, 29.3, 16.8; IR (neat): 2953, 2237, 1741, 1708, 1252, 721; HRMS (APCI) calc. for C₁₆H₁₅O₃ (M-H)⁺ 255.1027 found 255.1027; HPLC analysis: 98% ee, CHIRALCEL ADH, 3% isopropanol/hexanes, 1 mL/min, UV: 230 nm, *t*_R: 15.47 min (minor), 17.26 min (major).

(-)-Methyl 4-(2-oxocyclopentyl)but-2-ynoate 7a: Derived from (-)-methyl 4-(2-((*tert*-butyldimethylsilyl)oxy)-2-((trimethylsilyl)oxy)cyclopentyl)but-2-ynoate 7 (30 mg, 0.08 mmol) and isolated as a colorless oil (14 mg, 97%). $[\alpha]^{20}_{D}$ -77.7° (*c* 1.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.73 (s, 3H), 2.72 (dd, 1H, *J* = 17.2, 4.0 Hz, 1H), 2.29-2.44 (m, 4H), 2.02-2.17 (m, 2H), 1.68-1.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 218.0, 154.2, 87.1, 74.0, 52.9, 47.4, 37.9, 29.1, 20.6, 19.0; IR (neat): 2957, 2237, 1742, 1712, 1256; HRMS (APCI) calc. for C₁₀H₁₃O₃ (M+H)⁺ 181.0859 found 181.0858; HPLC analysis: 50% ee, CHIRALCEL OBH, 5% isopropanol/hexanes, 1 mL/min, UV: 230 nm, *t*_R: 29.24 min (major), 31.88 min (minor).

(+)-Methyl 4-(8-oxo-1,4-dioxaspiro[4.5]decan-7-yl)but-2-ynoate 23a: Derived from (+)-Methyl 4-(8-((*tert*-butyldimethylsilyl)oxy)-8-((trimethylsilyl)oxy)-1,4dioxaspiro[4.5]decan-7-yl)but-2-ynoate 23 (18 mg, 0.04 mmol) and purified through column chromatography (60/40 pentane/Et₂O) on silica gel to provide 23a as a colorless oil (7 mg, 70%). $[\alpha]^{20}_{D}$ 1.5° (*c* 0.83, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.99-4.07 (m, 4H), 3.72 (s, 3H), 2.85-2.94 (m, 1H), 2.71 (dd, *J* = 17.6, 4.8 Hz, 1H), 2.61-2.69 (m, 1H), 2.33-2.41 (m, 2H), 2.24-2.30 (ddd, *J* = 12.8, 5.6, 3.2 Hz, 1H), 1.95-2.06 (m, 2H), 1.79 (app. t, *J* = 13.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 208.7, 154.2, 107.2, 87.2, 74.4, 65.1, 64.9, 52.9, 44.9, 40.0, 38.1, 34.8, 19.0; IR (neat): 2955, 2238, 1709, 1435, 1253, 1075; HRMS (ESI) calc. for C₁₃H₁₆O₅Na (M+Na)⁺ 275.0890 found 275.0890; HPLC analysis: 46% ee, CHIRALCEL ADH, 5% isopropanol/hexanes, 1 mL/min, UV: 230 nm, *t*_R: 14.99 min (minor), 17.97 min (major).

(-)-Methyl 4-(2-oxocycloheptyl)but-2-ynoate 8a¹⁵ : Derived from (-)-4-(2-((*tert*-butyldimethylsilyl)oxy)-2-((trimethylsilyl)oxy)cycloheptyl)but-2-ynoate 8 (30 mg, 0.07

mmol) and purified through column chromatography (80/20 pentane/Et₂O) on silica gel to provide **8a** as a colorless oil (13 mg, 89%). $[\alpha]^{20}{}_{D}$ -41.3° (*c* 1.28, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.73 (s, 3H), 2.80 (tt, *J* = 8.8, 3.6 Hz, 1H), 2.66 (dd, *J* = 17.2, 4.8 Hz, 1H), 2.53-3.00 (m, 1H), 2.34-2.47 (m, 2H), 1.95-2.00 (m, 1H), 1.77-1.90 (m, 3H), 1.60-1.70 (m, 1H), 1.41-1.57 (m, 2H), 1.26-1.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 213.2, 154.3, 88.2, 73.8, 52.9, 50.1, 43.5, 30.7, 29.5, 29.1, 23.9, 21.2; IR (neat): 2929, 2856, 2237, 1711, 1435, 1254, 1078; HRMS (APCI) calc. for C₁₂H₁₇O₃ (M+H)⁺ 209.1172 found 209.1171; HPLC analysis: 70% ee, CHIRALCEL OBH, 3% isopropanol/hexanes, 1 mL/min, UV: 230 nm, *t*_R: 20.61 min (major), 30.08 min (minor).

References.

- ¹ Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett. 2006, 8, 3437.
- ² Muller, P.; Allenbach, Y.; Robert, E. Tetrahedron Asymmetry 2003, 14, 779.
- ³ Tsutsui, H.; Abe, T.; Nakamura, S.; Anada, M.; Hashimoto, S. *Chem. Pharm. Bull.* **2005**, *53*, 1366.
- ⁴ Pirrung, M. C.; Zhang, J. *Tetrahedron Lett.* **1992**, *33*, 5987.
- ⁵ Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M.
- L. J. Am. Chem. Soc. 2011, 133, 19198.
- ⁶ Goto, T.; Takeda, K.; Shimada, N.; Nambu, H.; Anada, M.; Shiro, M.; Ando, K.;
- Hashimoto, S.-I. Angew. Chem., Int. Ed. 2011, 50, 6803.
- ⁷ Davies, H. M. L.; Ahmed, G.; Churchill, M. R. J. Am. Chem. Soc. 1996, 118, 10774.
- ⁸ Kundu, K.; Doyle, M. P. Tetrahedron Asymmetry 2006, 17, 574.
- ⁹ Xu, X.; Shabashov, D.; Zavalij, P. Y.; Doyle, M. P. Org. Lett. 2012, 14, 800.
- ¹⁰ Bergdahl, M.; Eriksson, M.; Nilsson, M.; Olsson, T. J. Org. Chem. **1993**, 58, 7238.
- ¹¹ Johnson, C. R.; Marren, T. J. Tetrahedron Lett. 1987, 28, 27.
- ¹² Tokunaga, N.; Yoshida, K.; Hayashi, T. Proc. Natl. Acad. Sci. 2004, 101, 5445.
- ¹³ Sole, D.; Urbaneja, X.; Cordero-Vargas, A.; Bonjoch, J. Tetrahedron 2007, 63, 10177.
- ¹⁴ Vizniowski, C. S.; Green, J. R.; Breen, T. L.; Dalacu, A. V. J. Org. Chem. **1995**, 60, 7496.

¹⁵ Mori, M.; Akashi, M.; Hori, M.; Hori, K.; Nishida, M.; Sato, Y. *Bull. Chem. Soc. Jpn.* **2004**, 77, 1655.

S-36

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl(ppm)

#	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	14.99	27.06	394.3	324.5	27.061
2	17.97	72.94	1271.8	874.6	72.939

#	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	15.47	0.71	11.6	4.7	0.708
2	17.26	99.29	1321.3	654.0	99.292

X-Ray Crystallographic Data for Compound 3.

Table 1. Crystal data and structure fermer	lient for TL_9A.		
Identification code	yl_9x		
Empirical formula	C20 H38 O4 Si2	C20 H38 O4 Si2	
Formula weight	398.68		
Temperature	173(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 8.1472(2) Å	α= 90°.	
	b = 11.3292(3) Å	β= 90°.	
	c = 26.4033(7) Å	$\gamma = 90^{\circ}$.	
Volume	2437.06(11) Å ³		
Z	4		
Density (calculated)	1.087 Mg/m ³		
Absorption coefficient	1.474 mm ⁻¹	1.474 mm ⁻¹	
F(000)	872	872	
Crystal size	0.34 x 0.10 x 0.04 mm ³	0.34 x 0.10 x 0.04 mm ³	
Theta range for data collection	3.35 to 67.95°.	3.35 to 67.95°.	
Index ranges	-9<=h<=8, -13<=k<=10	-9<=h<=8,-13<=k<=10,-29<=l<=27	
Reflections collected	19192	19192	
Independent reflections	4059 [R(int) = 0.0223]	4059 [R(int) = 0.0223]	
Completeness to theta = 67.95°	96.1 %		
Absorption correction	Semi-empirical from eq	uivalents	
Max. and min. transmission	0.9434 and 0.6342	0.9434 and 0.6342	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	4059 / 0 / 236		
Goodness-of-fit on F ²	1.040	1.040	
Final R indices [I>2sigma(I)]	R1 = 0.0305, wR2 = 0.0	R1 = 0.0305, wR2 = 0.0835	
R indices (all data)	R1 = 0.0321, wR2 = 0.0)848	
Absolute structure parameter	0.45(2)	0.45(2)	
Largest diff. peak and hole	0.265 and -0.157 e.Å ⁻³	0.265 and -0.157 e.Å ⁻³	

Table 1. Crystal data and structure refinement for YL_9X.

	Х	у	Z	U(eq)
C(1)	7259(2)	9942(2)	8533(1)	34(1)
C(2)	6046(2)	10284(2)	8121(1)	44(1)
C(3)	4887(2)	9279(2)	7989(1)	52(1)
C(4)	5836(3)	8158(2)	7846(1)	53(1)
C(5)	7016(2)	7821(2)	8267(1)	45(1)
C(6)	8209(2)	8824(2)	8387(1)	36(1)
C(7)	9422(2)	8495(2)	8807(1)	42(1)
C(8)	10558(2)	7554(2)	8667(1)	42(1)
C(9)	11516(2)	6790(2)	8565(1)	43(1)
C(10)	12642(2)	5848(2)	8457(1)	45(1)
C(11)	15092(3)	4932(2)	8691(1)	81(1)
C(12)	5596(3)	11967(2)	9436(1)	55(1)
C(13)	8211(2)	10373(2)	9888(1)	49(1)
C(14)	4618(2)	9516(2)	9866(1)	41(1)
C(15)	3002(2)	9559(2)	9573(1)	63(1)
C(16)	5169(3)	8232(2)	9911(1)	56(1)
C(17)	4345(3)	10009(2)	10403(1)	66(1)
C(18)	10649(3)	10993(3)	7803(1)	73(1)
C(19)	8317(3)	12989(3)	8036(2)	104(1)
C(20)	11030(4)	12347(2)	8776(1)	75(1)
O(1)	6380(2)	9689(1)	8982(1)	36(1)
O(2)	8353(1)	10878(1)	8649(1)	38(1)
O(3)	12458(2)	5137(2)	8124(1)	79(1)
O(4)	13877(2)	5843(1)	8777(1)	66(1)
Si(1)	6247(1)	10403(1)	9526(1)	33(1)
Si(2)	9527(1)	11772(1)	8312(1)	40(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for YL_9X. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(1)	1.415(2)
C(1)-O(2)	1.418(2)
C(1)-C(2)	1.520(2)
C(1)-C(6)	1.534(2)
C(2)-C(3)	1.521(3)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.533(3)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(5)	1.518(3)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.529(3)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-C(7)	1.531(2)
C(6)-H(6A)	1.0000
C(7)-C(8)	1.460(3)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(9)	1.195(3)
C(9)-C(10)	1.437(3)
C(10)-O(3)	1.202(3)
C(10)-O(4)	1.314(3)
C(11)-O(4)	1.447(3)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-Si(1)	1.8650(19)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-Si(1)	1.8642(19)

Table 3. Bond lengths [Å] and angles [°] for YL_9X .

C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-C(16)	1.528(3)
C(14)-C(15)	1.528(3)
C(14)-C(17)	1.539(3)
C(14)-Si(1)	1.8915(18)
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-Si(2)	1.850(2)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-Si(2)	1.845(2)
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-Si(2)	1.851(2)
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
O(1)-Si(1)	1.6502(12)
O(2)-Si(2)	1.6529(12)
O(1) - C(1) - O(2)	106 80(13)
O(1)-C(1)-C(2)	108.82(14)
O(2)-C(1)-C(2)	111.84(14)
O(1)-C(1)-C(6)	107.36(14)
O(2)-C(1)-C(6)	110.75(13)
· · · · · · · · · · · · · · · · · · ·	()

C(2)-C(1)-C(6)	111.05(14)
C(1)-C(2)-C(3)	112.13(16)
C(1)-C(2)-H(2A)	109.2
C(3)-C(2)-H(2A)	109.2
C(1)-C(2)-H(2B)	109.2
C(3)-C(2)-H(2B)	109.2
H(2A)-C(2)-H(2B)	107.9
C(2)-C(3)-C(4)	111.32(16)
C(2)-C(3)-H(3A)	109.4
C(4)-C(3)-H(3A)	109.4
C(2)-C(3)-H(3B)	109.4
C(4)-C(3)-H(3B)	109.4
H(3A)-C(3)-H(3B)	108.0
C(5)-C(4)-C(3)	110.34(17)
C(5)-C(4)-H(4A)	109.6
C(3)-C(4)-H(4A)	109.6
C(5)-C(4)-H(4B)	109.6
C(3)-C(4)-H(4B)	109.6
H(4A)-C(4)-H(4B)	108.1
C(4)-C(5)-C(6)	111.59(16)
C(4)-C(5)-H(5A)	109.3
C(6)-C(5)-H(5A)	109.3
C(4)-C(5)-H(5B)	109.3
C(6)-C(5)-H(5B)	109.3
H(5A)-C(5)-H(5B)	108.0
C(5)-C(6)-C(7)	112.37(15)
C(5)-C(6)-C(1)	110.20(14)
C(7)-C(6)-C(1)	110.19(14)
C(5)-C(6)-H(6A)	108.0
C(7)-C(6)-H(6A)	108.0
C(1)-C(6)-H(6A)	108.0
C(8)-C(7)-C(6)	113.79(16)
C(8)-C(7)-H(7A)	108.8
C(6)-C(7)-H(7A)	108.8
C(8)-C(7)-H(7B)	108.8
C(6)-C(7)-H(7B)	108.8

H(7A)-C(7)-H(7B)	107.7
C(9)-C(8)-C(7)	177.9(2)
C(8)-C(9)-C(10)	178.0(2)
O(3)-C(10)-O(4)	124.29(19)
O(3)-C(10)-C(9)	124.4(2)
O(4)-C(10)-C(9)	111.33(18)
O(4)-C(11)-H(11A)	109.5
O(4)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
O(4)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
Si(1)-C(12)-H(12A)	109.5
Si(1)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
Si(1)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
Si(1)-C(13)-H(13A)	109.5
Si(1)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
Si(1)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(16)-C(14)-C(15)	108.83(19)
C(16)-C(14)-C(17)	108.46(17)
C(15)-C(14)-C(17)	109.25(18)
C(16)-C(14)-Si(1)	109.67(13)
C(15)-C(14)-Si(1)	110.28(13)
C(17)-C(14)-Si(1)	110.30(15)
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5

C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(14)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(14)-C(17)-H(17A)	109.5
C(14)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(14)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
Si(2)-C(18)-H(18A)	109.5
Si(2)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
Si(2)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
Si(2)-C(19)-H(19A)	109.5
Si(2)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
Si(2)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
Si(2)-C(20)-H(20A)	109.5
Si(2)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
Si(2)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(1)-O(1)-Si(1)	131.50(11)
C(1)-O(2)-Si(2)	134.90(11)
C(10)-O(4)-C(11)	115.21(19)
O(1)-Si(1)-C(13)	112.35(8)
O(1)-Si(1)-C(12)	111.95(9)
C(13)-Si(1)-C(12)	109.05(11)

O(1)-Si(1)-C(14)	101.50(8)
C(13)-Si(1)-C(14)	110.41(9)
C(12)-Si(1)-C(14)	111.44(9)
O(2)-Si(2)-C(19)	111.20(11)
O(2)-Si(2)-C(18)	112.63(10)
C(19)-Si(2)-C(18)	109.51(16)
O(2)-Si(2)-C(20)	104.01(9)
C(19)-Si(2)-C(20)	110.58(15)
C(18)-Si(2)-C(20)	108.78(14)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	33(1)	38(1)	33(1)	2(1)	3(1)	0(1)
C(2)	41(1)	51(1)	39(1)	5(1)	-2(1)	9(1)
C(3)	42(1)	66(1)	49(1)	-2(1)	-11(1)	-1(1)
C(4)	55(1)	58(1)	47(1)	-11(1)	-7(1)	-9(1)
C(5)	51(1)	41(1)	43(1)	-6(1)	2(1)	0(1)
C(6)	38(1)	39(1)	32(1)	-1(1)	2(1)	3(1)
C(7)	46(1)	44(1)	37(1)	-2(1)	-3(1)	13(1)
C(8)	45(1)	43(1)	37(1)	3(1)	0(1)	5(1)
C(9)	47(1)	42(1)	41(1)	6(1)	2(1)	8(1)
C(10)	51(1)	40(1)	45(1)	6(1)	9(1)	10(1)
C(11)	56(1)	60(2)	127(3)	4(2)	-10(2)	23(1)
C(12)	59(1)	33(1)	72(2)	0(1)	9(1)	9(1)
C(13)	43(1)	57(1)	47(1)	-8(1)	-8(1)	-3(1)
C(14)	38(1)	45(1)	40(1)	7(1)	7(1)	4(1)
C(15)	34(1)	80(2)	75(2)	26(1)	4(1)	-6(1)
C(16)	62(1)	45(1)	59(1)	14(1)	13(1)	0(1)
C(17)	71(2)	77(2)	52(1)	2(1)	22(1)	6(1)
C(18)	66(2)	83(2)	69(2)	-5(1)	31(1)	-19(1)
C(19)	62(2)	78(2)	170(3)	78(2)	-3(2)	9(1)
C(20)	89(2)	66(2)	69(2)	8(1)	-17(1)	-39(1)
O(1)	36(1)	38(1)	34(1)	0(1)	4(1)	-3(1)
O(2)	38(1)	36(1)	39(1)	2(1)	4(1)	-1(1)
O(3)	96(1)	74(1)	66(1)	-19(1)	-11(1)	39(1)
O(4)	53(1)	54(1)	90(1)	-6(1)	-18(1)	17(1)
Si(1)	32(1)	31(1)	36(1)	-2(1)	3(1)	3(1)
Si(2)	35(1)	38(1)	46(1)	11(1)	1(1)	1(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for YL_9X. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	X	у	Z	U(eq)
H(2A)	6658	10522	7814	52
H(2B)	5397	10972	8236	52
H(3A)	4180	9518	7702	62
H(3B)	4169	9111	8283	62
H(4A)	5054	7504	7786	64
H(4B)	6455	8296	7529	64
H(5A)	7644	7113	8164	54
H(5B)	6384	7620	8575	54
H(6A)	8853	8999	8074	44
H(7A)	10064	9205	8900	51
H(7B)	8797	8246	9110	51
H(11A)	15959	4995	8947	121
H(11B)	15570	5030	8353	121
H(11C)	14570	4155	8715	121
H(12A)	6464	12402	9259	82
H(12B)	5394	12330	9767	82
H(12C)	4587	11990	9234	82
H(13A)	8559	9553	9937	74
H(13B)	8049	10749	10218	74
H(13C)	9057	10802	9698	74
H(15A)	2170	9096	9753	94
H(15B)	3166	9230	9234	94
H(15C)	2633	10380	9545	94
H(16A)	4322	7775	10087	83
H(16B)	6197	8193	10103	83
H(16C)	5340	7903	9572	83
H(17A)	3500	9541	10575	100
H(17B)	3986	10833	10381	100
H(17C)	5373	9965	10594	100
H(18A)	9864	10686	7554	109

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for YL_9X.

H(18B)	11274	10336	7948	109
H(18C)	11404	11543	7636	109
H(19A)	7722	13401	8306	156
H(19B)	7532	12670	7790	156
H(19C)	9056	13544	7865	156
H(20A)	10449	12766	9046	113
H(20B)	11786	12890	8606	113
H(20C)	11652	11688	8921	113

Table 6. Torsion angles [°] for YL_9X.

O(1)-C(1)-C(2)-C(3)	-63.2(2)
O(2)-C(1)-C(2)-C(3)	179.07(15)
C(6)-C(1)-C(2)-C(3)	54.8(2)
C(1)-C(2)-C(3)-C(4)	-54.6(2)
C(2)-C(3)-C(4)-C(5)	55.2(2)
C(3)-C(4)-C(5)-C(6)	-57.1(2)
C(4)-C(5)-C(6)-C(7)	-179.36(16)
C(4)-C(5)-C(6)-C(1)	57.3(2)
O(1)-C(1)-C(6)-C(5)	63.41(18)
O(2)-C(1)-C(6)-C(5)	179.66(14)
C(2)-C(1)-C(6)-C(5)	-55.44(19)
O(1)-C(1)-C(6)-C(7)	-61.16(18)
O(2)-C(1)-C(6)-C(7)	55.10(19)
C(2)-C(1)-C(6)-C(7)	179.99(15)
C(5)-C(6)-C(7)-C(8)	65.8(2)
C(1)-C(6)-C(7)-C(8)	-170.86(16)
C(6)-C(7)-C(8)-C(9)	169(6)
C(7)-C(8)-C(9)-C(10)	76(10)
C(8)-C(9)-C(10)-O(3)	96(7)
C(8)-C(9)-C(10)-O(4)	-82(7)
O(2)-C(1)-O(1)-Si(1)	11.1(2)
C(2)-C(1)-O(1)-Si(1)	-109.80(16)
C(6)-C(1)-O(1)-Si(1)	129.92(13)
O(1)-C(1)-O(2)-Si(2)	-168.37(11)
C(2)-C(1)-O(2)-Si(2)	-49.4(2)
C(6)-C(1)-O(2)-Si(2)	75.04(19)
O(3)-C(10)-O(4)-C(11)	2.7(3)
C(9)-C(10)-O(4)-C(11)	-179.03(19)
C(1)-O(1)-Si(1)-C(13)	-68.60(17)
C(1)-O(1)-Si(1)-C(12)	54.51(17)
C(1)-O(1)-Si(1)-C(14)	173.47(15)
C(16)-C(14)-Si(1)-O(1)	58.20(15)
C(15)-C(14)-Si(1)-O(1)	-61.64(17)
C(17)-C(14)-Si(1)-O(1)	177.60(14)

C(16)-C(14)-Si(1)-C(13)	-61.13(17)
C(15)-C(14)-Si(1)-C(13)	179.04(16)
C(17)-C(14)-Si(1)-C(13)	58.27(17)
C(16)-C(14)-Si(1)-C(12)	177.52(15)
C(15)-C(14)-Si(1)-C(12)	57.69(19)
C(17)-C(14)-Si(1)-C(12)	-63.08(17)
C(1)-O(2)-Si(2)-C(19)	79.8(2)
C(1)-O(2)-Si(2)-C(18)	-43.54(19)
C(1)-O(2)-Si(2)-C(20)	-161.16(17)