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SUPPLEMENTAL RESULTS 

Learn Phase: Behavioral Data 

Rationale behind use of inference score index during Learn Phase. 

The overall goal of the Learn phase paradigm was to provide an experimental setting in 

which participants would gradually acquire robust knowledge of the linear hierarchy, use 

this to make successful transitive inferences during test trials, and afford a means by 

which could track this process at behavioral and neural levels. Importantly, our aim was 

to target one specific type of neural representation –a relational representation of the 

hierarchy (i.e. A>B>C…>F : e.g. Cohen and Eichenbaum, 1993; Dusek and Eichenbaum, 

1997; Smith and Squire, 2005) – and thereby go beyond previous work in this field which 

has found it difficult to cleanly distinguish between the contribution of relational and 

procedural reinforcement-based mechanisms to successful transitive choices (Frank et al.,  

2003; Frank et al. 2005; Greene et al., 2006).  

 

To achieve this, we set out to develop a behavioral index which would afford a block-by-

block assessment of the level of hierarchy knowledge attained across the timecourse of 

learning, and thereby act as an online proxy for what is generally viewed as the “gold 

standard” test of relational hierarchy knowledge (e.g. Smith and Squire, 2005) – the post-

scan test where participants were required to construct the rank order of items in the 

hierarchy. Our rationale for using confidence data, as well as binary choice data, to 

capture test trial performance was two fold: 1) to index gradations in first-order processes 

that support task performance (Fleming et al., 2012) 2) to specifically target the 

contribution of relational memory representations of the hierarchy to transitivity 

performance, over the potential influence of procedural reinforcement-based 

representations, drawing on previous applications of confidence data, and related 

procedures in nonhuman primates and rodents (e.g. using changes in response criteria e.g. 

(Fortin et al., 2004; Guderian et al., 2011), to characterize MTL-dependent memory 

processes (e.g. (Eichenbaum et al., 2007; Squire et al., 2007). In this way, we aimed to 

gain a fine-grained estimate of the strength of the underlying hierarchy representation 

across the Learn phase of the experiment.  
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Results of Independent Behavioral Study: Critically, we validated this novel measure of 

test trial performance in an independent behavioral study (see below) involving 27 

healthy university students, none of whom took part in the fMRI study. In this way, we 

show that the inference score has objective explanatory value, over and beyond the binary 

choice data, in predicting the level of hierarchy knowledge attained by a given participant 

(i.e. as directly measured by the gold-standard test: Smith and Squire, 2005). 

 

The design of this behavioral experiment was similar to that of the current fMRI 

experiment: involving interleaved training and test blocks, and the use of a 3 point 

confidence scale during test trials, though participants were only required to learn a 

galaxy hierarchy. In contrast, however, this behavioral study was tailored (e.g. longer 8-

item hierarchy, fewer training blocks) to foster greater inter-individual variability in 

participants’ relational knowledge of the hierarchy as demonstrated in the post-

experimental hierarchy recall test. In this way, we were able to ask whether the inference 

score index provides a more robust measure of participants’ knowledge of the hierarchy, 

as compared to the binary choice data (i.e. correctness of participants’ responses). Indeed, 

this is what we observed - the inference score (averaged across the last block of learning) 

was found to show a significant correlation (r=0.7 p<0.001) with participants' knowledge 

of the linear structure of the items, an effect that remained robust when both the 

correctness of participants’ responses during test trials, and training trials, were partialled 

out (i.e r=0.4 p<0.05). 

 

To summarize, our data suggest that the inference score index both furnishes an online 

assessment of participants’ capacity for successful inference, and provides a window into 

the level of relational hierarchy knowledge attained across the timecourse of learning.  
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Learn Phase: Functional Neuroimaging Data 

The link between amygdala/anterior hippocampal activity and performance is specific 

to transitive judgements of social rank, and remains robust to the exclusion of the 

confidence data.  

 

Supplemental Analysis 1:  We carried out an analysis designed to identify brain regions 

whose activity during training trials showed a significant correlation with proficient 

performance, modelled by the probability_correct parametric regressor, over and above 

non-specific effects due to changes in reaction time (see Supplemental Experimental 

Procedures). In marked contrast to the robust activity observed in the amygdala/anterior 

hippocampus observed in relation to performance in social test trials – no brain regions 

showed a statistically significant correlation between performance in social training trials 

(Table S3A). Further, no significant differences were observed in this analysis when we 

directly compared social and non-social domains (Table S3B) – with no activity in the 

amygdala observed even at liberal thresholds (i.e. p<0.01 uncorrected).  

 

Supplemental Analysis 2: We also conducted an analysis that was designed to identify 

brain regions whose activity showed a significantly greater correlation with performance 

during test trials, where knowledge of the hierarchy was required, as compared to 

training trials where a rote memorization strategy was sufficient. In the main analyses 

reported, test trial performance was captured by the inference score index, which was 

derived by combining the correctness of participants' response with their confidence 

rating, to provide specific leverage on the evolution of hierarchical knowledge (see 

above). This supplemental analysis was configured to facilitate a direct comparison 

between two trial types: as such training and test trial performance was modelled through 

a regressor based solely on the binary performance data, which was entered as a second 

parametric regressor against an earlier regressor capturing trial-by-trial reaction time - i.e. 

test trial confidence ratings were not included in the analysis. 

 

In line with the results obtained from our principal analyses (i.e. where test trial 

performance was captured by the inference score index: Figure 2), activity in the 
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amygdala/anterior hippocampus, and in no other brain regions, showed a significantly 

greater correlation with successful performance during test trials, as compared to training 

trials (p<0.001 uncorrected and SVC p<0.05 corrected: Figure S1A). No above threshold 

activations were observed in the reverse comparison (i.e. training > test trials). This 

finding provides additional support for the assertion that our finding with respect to the 

amygdala is highly specific to the emergence of a capacity for successful transitive 

judgements of social rank, underpinned by knowledge about a social hierarchy, and does 

not reflect a more general correlation with proficient performance in the social domain.   

 

Further, the specificity of our findings to test trials also argues against an alternative 

account based on changing novelty responses to the faces themselves. Indeed, novelty-

related effects were additionally minimized by a conventional procedure (i.e. by pre-

exposing participants to the stimuli prior to the start of the experiment: see Supplemental 

Experimental Procedures), and would in any case be expected to produce a decrease in 

neural activity (i.e. habituation) across the Learn phase, rather than the parallel rise of 

neural activity and behavioral (i.e. transitivity) performance as was observed. Finally, it is 

worth noting that our results cannot be explained by non-specific effects (e.g. scanner 

drift) over the experimental phase - a qualitatively similar pattern of findings was 

observed when such effects of time were included as regressors in the general linear 

model.  

 

Supplemental Analysis 3: We examined the possibility that the observed correlation 

between neural activity in the amygdala/hippocampus and transitivity performance might 

have arisen due to the specific measure used to capture test trial performance (i.e. the 

inference score index), and in particular the incorporation of participants' confidence 

ratings in the analysis. In this analysis, test trial performance was indexed solely using the 

binary choice data. The time period during which participants’ made their choice during 

test trials was modeled as a separate regressor, parametrically modulated by the 

correctness of their responses- trial-by-trial reaction time was also included as an earlier 

parametric regressor. Additionally, a separate regressor, coding for the time period during 

which participants reported their confidence, was included to model neural activity at the 
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time of metacognitive report. Consequently, these analyses were set up to identify neural 

activity at the time of choice that correlates with successful test trial performance.  

 

Results from these additional fMRI analyses based on the binary choice data reveal a 

qualitatively similar pattern of findings to the principal analyses conducted with the 

inference score index (see Figure S1). Neural activity in the amygdala, and anterior 

hippocampus, showed a robust correlation with transitivity performance in the social 

domain (p<0.05 FWE corrected at cluster level). No significant correlation was observed 

in these regions in the non-social domain, even at liberal statistical thresholds (i.e. p<0.01 

uncorrected) - rather, neural activity in posterior hippocampus and VMPFC was 

correlated with successful test trial performance in this context (p<0.05 SVC corrected). 

Furthermore, activity in the amygdala, and anterior hippocampus, showed a significantly 

greater correlation with transitivity performance in the social, as compared to the non-

social, domain (p<0.05 SVC corrected). As such, neural activity in the amygdala was 

found to be selectively linked to successful transitivity performance in the social domain 

- in contrast to the significant correlation between neural activity in the hippocampus and 

vMPFC with transitivity performance observed in both social and non-social domains 

(p<0.05 SVC corrected).  

 

As a further step, we also performed an analysis where participants' raw confidence 

ratings (i.e. regardless of the correctness of response) were also included in the general 

linear model, as a parametric modulator of the regressor encoding the time period of 

confidence judgments. Of note, this can be considered a conservative analysis given that 

raw confidence ratings inherently show a degree of correlation with the binary choice 

data (average correlation across participants and conditions ~ 0.4), thereby reducing the 

statistical power of detecting significant choice-related effects. Nevertheless, our findings 

demonstrate that the profile of findings was qualitatively similar to the findings reported 

above: as such, neural activity in the right amygdala (and anterior hippocampus) showed 

a robust correlation with the correctness of transitivity choices that was restricted to the 

social domain - and was significantly greater than in the non-social domain (p<0.05 SVC).  
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Taken together, the results from these additional analyses provide evidence that the 

correlation between neural activity in the amygdala/hippocampus and transitivity 

performance does not rely on the use of the inference score index, and is robust to the 

exclusion of the confidence data from the analysis.  Further, these findings indicate that 

neural activity observed in the amygdala/hippocampus relates specifically to successful 

transitive choices during test trials, rather than subsequent metacognitive report. In 

support of this overall conclusion, no significant activity in the amygdala was observed 

even at liberal statistical thresholds (p<0.01 uncorrected for multiple comparisons), when 

neural activity at the time of metacognitive report, captured by the parametric regressor 

coding for participants’ confidence judgments, was directly compared between social and 

non-social domains. 

 
Learn Phase: Structural Neuroimaging Data 

Voxel-Based Morphometry: Region-of-Interest (ROI) Analyses 

We confirmed the robustness and specificity of the link between interindividual 

differences in the structure of the amygdala and social test trial performance in two ways: 

firstly, we performed an additional analysis where test trial performance was captured 

solely by the binary choice data (i.e. without inclusion of the confidence ratings). As in 

the principal analysis involving the inference score index, we observed a significant 

correlation in a whole brain voxel-wise analysis, and in a ROI analysis (see below), 

between amygdala GM volume and test trial performance in the social domain, that was 

significantly greater than that observed in the non-social domain (i.e. significant at 

p<0.001 uncorrected and p<0.05 SVC corrected).  

 

Secondly, we performed an ROI analysis in which GM volume was averaged across an 

anatomical defined mask. As in the voxel-based analysis, we observed a significant 

correlation between amygdala GM volume and social (left amygdala: r=0.52 p=0.003, 

right amygdala: r=0.51 p=0.004)(Figure 4B top panel), but not non-social (p>0.1)(Figure 

4B bottom panel), test trial performance. Moreover, no such correlation was observed 

with training trial performance in either domains (p>0.1), pointing towards an intimate 

link between increased GM volume in the amygdala and  social hierarchical knowledge.  
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In contrast, no such correlation was found between hippocampal GM volume (both left, 

right p>0.1) and test trial performance in either social or non-social domains. Further, the 

correlation between amygdala GM volume and social test trial performance remained 

significant when the poorest performing participant was excluded (left amygdala: 

p=0.004, right amygdala p=0.005), and in a regression model where other factors -- 

specifically, age, sex, non-social inference score, training trial performance in social 

domain and left hippocampal GM volume-- were partialled out (both left and right 

amygdala: p<0.01). Of note, an analogous set of findings - with significant correlations 

between amygdala GM volume and social test trial performance (both amygdala p<0.01) 

- were observed in a supplemental analysis where performance was captured using only 

the binary choice data , rather than the inference score index.  

 

We also conducted a median-split analysis, where we divided participants into two 

groups according to our behavioral index of test trial performance (i.e. averaged inference 

score across the Learn phase), and asked whether amygdala GM volume was 

significantly greater in “good” test trial performers, as compared to “poor” performers. A 

significant effect was found in this analysis in the left amygdala (poor group left 

amygdala GM volume: 38.0 (SD 1.4), good group GM volume 39.2 (SD 1.8)), with a 

trend observed in the right amygdala (left amygdala: t12=2.4 p<0.05, right amygdala:  

t12=1.8, p=0.09).  

 

Invest Phase: Neuroimaging Data 

Region-of-Interest Analysis: Amygdala activity shows a selective linear correlation 

with person rank during bid trials, the robustness of which influences participants’ 

behavior.   

We next explored the specificity of the link between amygdala activity and person rank, 

and the effects of task context (i.e. bid vs control trials), by performing a ROI analysis. 

Regions of interest in the left amygdala, and left hippocampus (a comparison region) 

were functionally defined based on an orthogonal selection contrast (see Supplemental 

Experimental Procedures and  S5B for full list of activations observed in this contrast). 
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Importantly, our analysis fulfils the criteria outlined by Kriegeskorte et al (2009): the 

definition of these ROI is unbiased, and therefore statistically independent, with respect 

to the contrasts relevant to addressing our two experimental questions of interest 

concerning the amygdala. Specifically, the main effect contrast used to define the ROIs is 

orthogonal to the relevant contrasts of interest (i.e. their matrix dot product equals zero). 

Further, all other parameters were balanced across the two tasks and stimulus types (i.e. 

person, galaxy), for example the number of experimental trials, preventing other sources 

of bias entering into the analysis.  

 

Parameter estimates, averaged across these ROIs, were entered into a repeated measures 

ANOVA with factors: region (left amygdala, left hippocampus), task (Bid, Control) and 

hierarchy type (Person, Galaxy). A significant three-way interaction, region x task x 

hierarchy type, was observed in this analysis: F(1,24)=8.2 p=0.009 (no significant main 

effects, p>0.1). Further analyses showed that this effect was driven by selective coding of 

person rank in the amygdala during bid trials (Figure  S2): as such, there was a significant 

interaction between task and hierarchy type in the left amygdala (F1,24=4.1, p=0.05), but 

not in the hippocampus (p>0.1). Paired t-tests confirmed that there was a significantly 

stronger link between neural activity and person, as compared to galaxy, rank in this 

region of the left amygdala during bid trials (t(24)=2.3, p=0.03 2-tailed). In contrast, no 

such effect was observed in the hippocampus (person > galaxy: p>0.1), which exhibited 

significant coding of both person rank and galaxy rank during bid trials (both ps<0.05). 

Finally, there was a significantly stronger link between neural activity and person rank in 

the left amygdala during bid trials, as compared to control trials (t(24)=2.2, p=0.04 2-

tailed), an effect that was not present in the hippocampus p>0.1. 

 

Interestingly, we also found that interindividual differences in the robustness of person 

rank coding in the amygdala correlated with participants’ behavior: specifically, the 

influence of person rank on participants’ WTP was significantly predicted by the strength 

of the linear correlation (i.e. parameter estimate) between neural activity in the amygdala 

and person (r=0.41, 1-tailed t-test p=0.02) rank. No such correlation was observed 
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between the influence of galaxy rank on participants’ WTP and the strength of galaxy 

rank coding in the amygdala (r=0.02, p>0.1).  
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Supplemental Figures and Legends.  

 

Figure S1: Learn Phase: Result of supplemental analyses where test trial 

performance was captured solely using the binary performance data (linked to Fig 

2) 

 (A) Activity in the bilateral amygdala/anterior hippocampus, and in no other brain 

regions, showed a significantly greater correlation with successful performance during 

test trials, as compared to training trials, in social domain (i.e. at threshold of p<0.001 

uncorrected and SVC p<0.05 corrected: see Supplemental Analysis 2). Note: no above 

threshold activations were observed in the reverse comparison (i.e. training > test trials).  

(B) Activity in the bilateral amygdala/anterior hippocampus showed a robust correlation 

with the correctness of participants’ responses during test trials in social domain (i.e. R 

amygdala/anterior hippocampus significant at threshold of p<0.001 uncorrected and 

whole brain p<0.05 FWE cluster corrected; left amygdala/anterior hippocampus at 

p<0.001 uncorrected and SVC p<0.05 corrected - see Supplemental Analysis 3).  

(C) Activity in the posterior hippocampus, and vMPFC, correlates with successful 

performance during test trials in the non-social domain (i.e. at threshold of p<0.001 

uncorrected and SVC p<0.05 corrected).  

(D) Activity in the right amygdala, and anterior hippocampus showed a significantly 

greater correlation with successful performance during test trials in social domain, as 

A BSocial
Test Trials > Training Trials  

5

0
C

Test Trials
Social > Non-Social
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0

D

Test Trials: Social 
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0
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0
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compared to non-social domain (i.e. at threshold of p<0.001 uncorrected and SVC p<0.05 

corrected: see Supplemental Analysis 3).  

Activations are displayed on the average structural image of the participants, and 

thresholded at p<0.005 for display purposes.  

 

 

 

 

Figure S2. Invest Phase:Activity in Amygdala specifically codes person rank during 

bid trials: region-of-interest (ROI) analysis. (linked to Fig 7). y-axis: parameter 

estimates reflecting the strength of the linear correlation between left amygdala activity 

and rank, with bid trials plotted in green, and control trials in blue. Significant task (bid, 

control) x hierarchy type (person, galaxy) interaction: see Supplemental Results for 

details. 
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Supplementary Table S1. Learn Phase (fMRI): Test Trials (linked to Fig 2). 

Table S1A: Social. Brain areas whose activity significantly correlated with the inference 
score index in the social (i.e. person) condition  
 
Region  Laterality x y z z-score 

Amygdala  R   20 -4 -18 4.18** 
  L  -12 -6 -18 3.88** 
Hippocampus (anterior)  L  -20 -18 -22 4.37** 
  R   26 -12 -22 4.10** 
Hippocampus (posterior) L L  -30 -36 -2 3.65* 
Putamen  R   30 -10  8 3.74** 
Insula  L  -56  -8 12 3.89 
  R   46 -16 -16 4.27** 
Intraparietal sulcus (anterior) R   38 -16  58 4.42** 
Temporoparietal junction  R   50 -64  22 4.03 
Lateral orbitofrontal PFC  R   34  38 -6 4.15 
Ventromedial PFC  L  -4  52 -12 3.18* 
Ventral Striatum  L  -28   8 -8 3.80 
Cerebellum  L  -24 -46 -22 3.50 
Caudate  L  -10 20 -4 3.35 

 
 
Table S1B: Social>Non-Social. Brain areas whose activity showed a significantly 
greater correlation with the inference score index in the social (i.e. person), as compared 
to the non-social (i.e. galaxy), condition  
 
Region  Laterality x y z z-score 

Amygdala  R   22 -4 -16 3.13 
Amygdala  L  -26 -10 -28 3.45* 
  L  -12 -6 -18 3.01* 
Hippocampus (anterior)  L  -26 -12 -20 3.32* 
          
All regions are significant at p<0.001 uncorrected for multiple comparisons. All 
coordinates are in MNI space.  
* indicates significant at p<0.05 SVC corrected in regions of a priori interest  
** indicates significant at p<0.05 whole brain FWE corrected at cluster level  
  
 
 



  15

Supplementary Table S2. Learn Phase (fMRI): Test Trials (linked to Fig 3) 
 
Table S2A: Non-Social. Brain areas whose activity significantly correlated with the 
correlated with the inference score index in the non-social (i.e. galaxy) condition  
 
Region  Laterality x y z z-score 

Hippocampus (posterior)  L  -34 -36 -6 3.77* 
Ventromedial PFC  R  4 52 -10 3.77* 
Ventral Striatum  R  14 10 -10 3.56 
Putamen  R  30 -8 4 4.19** 
Intraparietal sulcus (anterior) R  34 -24 50 5.14** 
Caudate  R  8 22 -6 4.46** 
Insula  R  60 -10 4 4.15 
 
Table S2B. Conjunction: Social & Non-Social. Conjunction (null) analysis showing 
brain areas whose activity showed a significant correlation with the inference score index 
in both the social (i.e. person) and the non-social (i.e. galaxy) domains. 
 
Region  Laterality x y z z-score 

Hippocampus (posterior)  L  -32 -36 -4 3.42* 
Intraparietal sulcus (anterior) R  42 -26 56 4.14** 
Ventromedial PFC  R  4 52 -12 3.18* 
Insula  R  42 -18 16 3.76 
Caudate  R  6 20 -6 3.56 
Putamen  R  30 -12  0 3.93 
 
Table S2C: Non-Social>Social. Brain areas whose activity showed a significantly 
greater correlation with the inference score index in the non-social (i.e. galaxy), as 
compared to the social (i.e. person), condition  
 
Region  Laterality x y z z-score 

Insula  L  -34 26 6 3.39 
 
All regions are significant at p<0.001 uncorrected for multiple comparisons. All 
coordinates are in MNI space.  
* indicates significant at p<0.05 SVC corrected in regions of a priori interest  
** indicates significant at p<0.05 whole brain FWE corrected at cluster level  
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Supplementary Table S3. Learn Phase (fMRI): Training Trials (linked to suppl 
analysis 1). 
 
Table S3A: Social. Brain regions exhibiting a significant correlation between neural 
activity and successful performance (i.e. probability correct regressor) in social  domain.  
 
Region  Laterality x y z z-score 

Insula  L  -40 0 -12 3.74 
Ventromedial PFC  R  8 54   8 3.97 
Posterior Cingulate Cortex R  10 -32 46 3.91 
 
Table S3B. Learn Phase: Functional Neuroimaging Data 
Training Trials: Social > Non-Social. Brain regions exhibiting a significantly greater 
correlation between neural activity and successful performance (i.e. probability correct 
regressor) in the social, as compared to the non-social, domain. 
 
Region  Laterality x y z z-score 

Posterior Parietal Cortex  R  48 -66 38 3.45 
 
All regions are significant at p<0.001 uncorrected for multiple comparisons. All 
coordinates are in MNI space.  
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Supplementary Table 4. Learn Phase: Structural Neuroimaging Data (VBM 
analyses) (linked to Fig 4) 
 
Table S4A: Social. Brain regions whose gray matter volume shows a significant 
correlation with participants’ capacity to perform transitive judgements of social (i.e. 
person) rank, indexed by the inference score. 
 
Region  Laterality x y z z-score 

Amygdala  L  -20 -6 -18 3.18* 
  R   20 -3 -18 3.01* 
Anterior fusiform gyrus/PHG L  -30 -8 -33 3.81 
Temporal Pole  L  -28  0 -43 3.16 
Frontopolar cortex  R   16  61   14 4.25 
 
Table S4B: Social > Non-Social Brain regions whose gray matter volume showed a 
significantly greater correlation with participants’ capacity to perform transitive 
judgements of social (i.e. person) rank, as compared to non-social (i.e. galaxy) rank. 
 
Region  Laterality x y z z-score 

Amygdala  L  -20 -6 -18 3.10* 
Anterior fusiform gyrus/PHG L  -30 -8 -33 3.70 
Temporal Pole  L  -28 0 -43 3.42 
Frontopolar cortex  R  16 61  14 4.19 
 
Table S4C: Non-Social Brain regions whose gray matter volume shows a significant 
correlation with participants’ capacity to perform transitive judgements of non-social (i.e. 
galaxy) rank, indexed by the inference score. 
 
Region  Laterality x y z z-score 

Intraparietal sulcus  L  -44 -42 54 3.79 
  R  38 -39 50 3.20 
Lateral PFC  L  -45 46 -3 3.78 
  R  43 54 -1 3.33 
 
All regions are significant at p<0.001 uncorrected for multiple comparisons. All 
coordinates are in MNI space. PHG = parahippocampal gyrus. 
* indicates significant at p<0.05 SVC corrected in regions of a priori interest  
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Supplementary Table S5. Invest Phase (fMRI): Bid Trials (linked to Fig 6).  
 
Table S5A: Increasing WTP. Brain areas whose activity showed a significant 
correlation with participants' WTP (i.e. price they were willing to pay) during bid trials  

 
Region  Laterality x y z z-score 

Hippocampus (mid)  L  -30 -16 -18 5.05** 
Ventromedial PFC  R  8 52 -8 4.08* 
  L  -12 54 -8 4.17* 
Nucleus Accumbens  R  12 8 -4 4.14** 
  L  -10 6 -8 3.46**  
Caudate  R  -16 -18 24 4.84** 
Posterior Cingulate Cortex R  12 -40 28 4.08** 
Visual Cortex  L  -10 -72 6 4.64** 
       
Table S5B. Main effect of Rank (i.e. collapsed across stimulus type, trial type). Brain 
areas whose activity showed a significant linear correlation with the rank of the person 
and galaxy presented during bid trials and control trials. 
 
Region  Laterality x y z z-score 

Hippocampus (mid)  R  26 -20 -12 4.15 * 
  L  -30 -18 -20 3.94* 
Hippocampus (posterior)  R  32 -34 -8 4.04* 
Amygdala  R  16 -4 -14 3.90** 
  L  -30 -8 -18 3.78* 
Posterior Cingulate Cortex R  8 -52 32 5.29** 
Ventromedial PFC  R  6 48 -8 3.77** 
Medial PFC  R  4 46 18 3.73 
Nucleus Accumbens  R  10 10 -12 3.89** 
Visual Cortex  L  -16 -94 4 4.86** 
Caudate  R  8 16 0 4.93** 
Superior temporal sulcus L L  -48 -36 6 3.93 
 
All regions are significant at p<0.001 uncorrected for multiple comparisons. All 
coordinates are in MNI space.  
* indicates significant at p<0.05 SVC corrected in regions of a priori interest  
** indicates significant at p<0.05 whole brain FWE corrected at cluster level  
 
 
Supplementary Table S6. Invest Phase (fMRI): Bid Trials (linked to Fig 7).  
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Table S6A: Person Rank.  Brain areas whose activity showed a significant linear 
correlation with the rank of the person presented during bid trials  (i.e. increasing activity 
with higher rank). 
 
Region  Laterality x y z z-score  

Hippocampus (mid)  R  24 -18 -10 3.41* 
Amygdala  R  16 -4 -12 4.34* 
  L  -28 -8 -16 3.69* 
Ventromedial PFC  R  4 52 -8 3.77** 
Posterior Cingulate Cortex R  4 -50 30 3.90** 
Nucleus Accumbens  R  14 10 -6 3.95** 
Visual Cortex  L  -16 -70 -10 4.53** 
 
Table S6B: Galaxy Rank. Brain areas whose activity showed a significant linear 
correlation with the rank of the galaxy presented during bid trials  (i.e. increasing activity 
with higher rank). 
       
Region  Laterality x y z z-score 

Hippocampus (mid)  L  -30 -24 -18 3.94* 
  R   36 -22 -14 3.42* 
Ventromedial PFC  L  -10 58 -6 3.46* 
Nucleus Accumbens  R  12 8 -6 3.70 
  L  -10 16 -8 4.13 
Caudate  R  8 4 22 4.29 
Posterior Cingulate Cortex R  12 -42 28 4.10 
Insula  R  48 -20 20 4.12 
Visual Cortex  L  -18 -88 2 4.75 
       
All regions are significant at p<0.001 uncorrected for multiple comparisons. All 
coordinates are in MNI space.  
* indicates significant at p<0.05 SVC corrected in regions of a priori interest  
** indicates significant at p<0.05 whole brain FWE corrected at cluster level  
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Supplemental Experimental Procedures 

Here we provide a full description of experimental procedures (including Appendix 

detailing task instructions given to participants), and analytic techniques used in the fMRI 

and voxel-based morphometry analyses.  

 

Participants. Twenty six healthy, right-handed individuals who were currently 

undertaking or had recently completed a university degree, participated in this experiment 

(age range 19-31; 12 female). One of these participants failed to fully learn either person 

or galaxy hierarchies and was therefore excluded from the fMRI analyses.  All 

participants gave informed written consent to participation in accordance with the local 

research ethics committee.  

 

Stimuli. Pilot experiments informed the selection of face and galaxy stimulus sets that 

ensured that behavioral performance across social and non-social conditions was equated 

in both experimental phases. Face pictures were obtained from a widely used database 

(Stirling database: http://pics.stir.ac.uk): pictures are rendered in grayscale and depict 

male individuals sitting on a chair, with a neutral expression. Images were cropped below 

the chin line and resized, though hair was retained to preserve the naturalistic properties 

of the stimuli. Pictures of galaxies (source: various sites on the internet including 

http://hubblesite.org/gallery/album/nebula) were chosen to be distinct from one another.  

 

Person and galaxy hierarchies were each comprised of 7 items (i.e. P1-P2-P3-P4-P5-P6-

P7 and G1-G2-G3-G4-G5-G6-G7, where P=person and G=galaxy, and 1 is the highest 

ranking item and 7 the lowest ranking)(Figure 1C). The allocation of individual pictures 

to position in the hierarchy randomized across the group of participants. In addition, two 

different face and galaxy pictures were used only during baseline trials. Prior to each 

scanning session, participants briefly performed a simple 1-back task where they viewed 

each individual face and galaxy three times – a procedure which is known  to minimize 

stimulus novelty effects during scanning based on previous data (e.g. (Johnson et al., 

2008)). Examples of faces and galaxies used are shown in Figure 1.  
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Tasks and Procedures. Participants were instructed that they would be playing a simple 

science-fiction computer game, and asked to imagine themselves as an investor in the 

future (i.e. AD 2100)(see Appendix for full details of task instructions). They were told 

they would be considering whether to invest in a space mining company which 

specializes in harvesting a precious mineral (Zircon) from far-away galaxies. They were 

informed that there would be two parts to the experiment: in the first phase ("Learn" 

phase) they would need to learn which individuals have more power within the company, 

and which galaxies have more precious mineral. In phase two ("Invest" phase), they were 

told that they would need to use knowledge acquired during phase 1 about people and 

galaxies to decide how much they would be willing to pay (in real monetary terms) for 

potential projects on offer. Participants were renumerated based on their performance (i.e. 

% correct responses during the Learn phase) and monetary payout from the Invest phase 

(see below for details). Our aim, therefore, was to develop a naturalistic experimental 

scenario where subjects would develop knowledge of a social (i.e. person) and non-social 

(i.e. galaxy) hierarchy (Learn phase), and subsequently use this information to make 

prudent investment decisions (i.e. Invest phase).  

 

Phase 1 (Learn) Our experimental task is grounded in the widely acknowledged 

importance of transitivity to judgements of social rank (Cheney and Seyfarth, 1990; 

Grosenick et al., 2007; Paz et al., 2004) - and classic implementations of the transitive 

inference task (Bryant and Trabasso, 1971) (McGonigle and Chalmers, 1977), where 

dimensions such as length and weight were emphasized (cf mineral content in our study). 

In this phase of the experiment participants acquired knowledge about the 7-item person 

and galaxy hierarchies in parallel.  

 

Training trials (Figure 1A).  During a training trial, participants viewed adjacent items 

(people or galaxies) in the hierarchy displayed on either side of the screen (i.e. 6 training 

pairs: e.g. in person condition: P1 vs P2, P2 vs P3, P3 vs P4, P4 vs P5, P5 vs P6, P6 vs 

P7). The left-right position of an item on the screen was randomized across trials. They 

had 3 seconds in which to choose, via button press (i.e. left or right, index or middle 

finger of right hand respectively), the item which had "more power" (person condition) or 
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"more mineral" (galaxy condition). After 3 seconds, a feedback screen appeared: this 

consisted of a green square border which indicated the participant’s choice together with 

either “+20 points” or “-20 points”, for a correct or incorrect response respectively. A 

fixation cross of 1.5 seconds duration preceded the onset of the next trial. The 

renumeration received by participants for this phase of the experiment was determined 

directly from the number of points won.  

 

Test trials (Figure 1B). During test trials, participants viewed pairs of non-adjacent 

items in the hierarchy (i.e. 6 inference pairs, e.g. in person condition: P2 vs P4, P2 vs P5, 

P2 vs P6, P3 vs P5, P3 vs P6). As in training trials, participants had 3 seconds in which to 

choose, via button press (i.e. left or right), the item which they thought had more power 

(person condition) or more mineral (galaxy condition). Importantly, however, no 

feedback was presented during test trials, though participants were instructed that their 

choices would still count towards their final payout. Instead, after 3 seconds, a screen 

appeared which required participants to rate (on a scale of 1 to 3) their confidence in their 

decision: participants were carefully instructed to enter a “1” response if they were 

guessing entirely, a “2” response if they were “had some idea but were not sure” about 

their choice, and to reserve a “3” response until they were “more than 90% certain” that 

their choice was the correct one. Participants were told that though their confidence 

responses would not count towards their final payout, they should still answer as 

accurately as possible.  

 

Inference score index: as outlined previously, this trial-by-trial measure of transitivity 

performance, which was validated in a separate behavioral experiment (see Supplemental 

Results), was designed to provide leverage on the level of hierarchical knowledge 

attained at a given timepoint during the Learn phase. It was derived by combining (i.e. 

multiplying) the correctness of participants response with their confidence rating (range 

0-3). In constructing this index, we assumed that for correct responses, the strength of 

memory representations of the hierarchy should vary as a function of participants’ 

confidence in their choice. Whilst incorrect responses were assumed to reflect a weaker 

memory strength (cf correct responses), we had no strong prediction that this would vary 
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as a function of confidence. Based on these intuitions, the inference score was 

constructed by multiplying the correctness of the binary choice, scored as 1 or 0, by the 

confidence rating – resulting in a scale that ranged from 0 to 3. Importantly, we validated 

the inference score index in an independent behavioral study prior to the fMRI 

experiment (see Supplemental Results), which provides objective evidence of its 

explanatory value by linking it to participants’ ability to accurately state the rank order of 

items, a direct test of relational knowledge of the hierarchy (e.g. Smith and Squire, 2005.  

 

It is worth noting that one could make a different starting assumption about the 

relationship between the measured variables (i.e. correctness, confidence) and underlying 

memory strength – specifically, that higher confidence ratings reflect stronger memories 

for both correct and incorrect responses, resulting in a scale that varies from -3 to +3 (i.e. 

formed through the multiplication of the correctness of the binary choice by the 

confidence rating – but with incorrect responses scored as -1 rather than zero). In fact, 

these two alternative schemes for constructing the inference score index would yield 

highly correlated measures in our experiment. Further, an additional analysis using this 

alternative inference score index (i.e. ranging from -3 to +3) in the fMRI analyses 

resulted in a highly similar pattern of findings for the reported contrasts.  

 

 

Baseline trials: These trials were designed to be similar to training trials in terms of visual 

display, requirement for motor response, reward (i.e. presence of positive and negative 

monetary feedback), but without requiring participants to learn associative information. 

The timeline of baseline trials was analogous to learning trials. However, an asterisk 

always appeared below one of the faces or galaxies indicating to the participants which 

button they should depress.  

 

Schedule of trial presentation. 

Blocks of Person trials alternated with blocks of Galaxy trials, with block order (i.e. 

whether person or galaxy condition appeared as the first block) counterbalanced across 

subjects. Each block was comprised of a 20 trial miniblock made up of 12 training trials 
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with 2 baseline (i.e. baseline) trials interspersed, followed by a 6 trial miniblock of test 

trials. The order of training and test trials was pseudorandomized and varied across 

blocks. The start of each miniblock was preceded with the relevant instruction which was 

presented for 7 seconds (i.e. “Get ready for Person Training trials”, “Get ready for Person 

Test trials”). In total, there were 15 blocks for each of the Person and Galaxy conditions – 

i.e. 180 training trials, 30 baseline trials, and 90 test trials, in each condition.  Phase one 

consisted of three sessions of approximately 20 minutes each, separated by a 1 minute 

break during which time participants remained inside the MRI scanner.  

 

Phase 2 (Invest). In this phase of the experiment, participants were required to use their 

knowledge about person and galaxy hierarchies to decide a) how much in real monetary 

terms to pay for potential projects on offer (“bid” trials: Figure 5A), by evaluating the 

potential worth of individual people and galaxies based on their rank or b) which item (i.e. 

person or galaxy) was more highly ranked, and by how much (“control” trials: Figure 5B).  

 

Bid trials. Participants were instructed that in this type of trial they would be required to 

declare the maximum amount of money they would be willing to pay (i.e. WTP) to 

purchase shares in potential projects on offer. A project was said to consist of the 

combination of a particular person and a particular galaxy, and participants told to 

imagine that this person would be heading up a mission to go to this galaxy to harvest 

mineral.  

 

On a given trial, the screen displayed one person and one galaxy (e.g. P4 and G2: Figure 

2), with the left-right location randomized between trials. All 49 person-galaxy 

combinations were presented in different trials, with two repetitions of each. As such, 

person rank and galaxy rank were orthogonalized by experimental design, allowing us to 

isolate brain regions showing a (linear) correlation with rank for each stimulus type. 

Participants had 8 seconds in which to declare their WTP by moving a cursor (leftward 

motion: index finger, rightward: middle finger) to the desired position on a continuous 

scale from zero to twenty pounds. Participants confirmed their bid (i.e. WTP) using their 

ring finger, which caused the cursor to change color from white to red.  
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Participants received detailed instructions on all aspects of the bid task (see Appendix for 

details). They were told that the actual worth of the shares was determined directly by the 

rank of the person and galaxy involved, and that the rank of each stimulus type was 

equally important. Participants were given examples of the actual worth of person/galaxy 

combinations (e.g. the highest ranking person together with the highest ranking galaxy 

would have an actual worth of essentially £20); they were not however explicitly 

informed that the relationship between person/galaxy rank and actual worth was linear, 

and determined by the following function:  

 

actual worth (£) = 20 – ((Rp - 1)+ (Rg -1))*k  

 

Where Rp and Rg denote the rank of person and galaxy, respectively, from 1 (high) to 7 

(low), and k denotes the price increment for each unit change in rank, and is equal to 1.67  

(i.e. £20 / (2*6)). For instance, the actual worth of a project involving P1 and G2 would 

be: 20 – 1.67=£18.23.  

 

2) Participants were told that they would be playing with £20 from their winnings from 

phase 1 of the experiment. Whilst they would place bids on many trials, only one trial 

(e.g. that involving P2 and G3) would be randomly selected to be played out as a real 

money transaction at the end of this phase of the experiment. As such, they would not 

need to spread the £20 over multiple trials, but could treat each trial as if it was the only 

one.  

 

3) The real money transaction was played out as a Becker-DeGroot-Marshak (BDM) 

auction, a widely used incentive-compatible mechanism in behavioral economics(Becker 

et al., 1964), and neuroeconomics (e.g.(Plassmann et al., 2007 

)) for ensuring that participants’ prices reliably reflect what they actually think a given 

option is worth. Participants received detailed instruction as to the workings of the BDM 

mechanism. Care was taken to ensure that participants understood that the optimal 

strategy in bid trials was to state a WTP that was close as possible to the actual worth of 
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shares in the project - and that assuming they adopted the optimal strategy, then the 

expected payout (i.e. expected value, EV) of a given trial would be greater for higher 

ranking people and galaxies (i.e. highest for a trial involving P1 and G1). 

 

Several illustrative scenarios were described (see Appendix for details): participants were 

told that for the selected trial (e.g. involving person 2 and galaxy 3), the market would 

issue shares at a random price (between £0 and 20, uniform distribution). If this randomly 

generated BDM price (termed “market issue” price e.g. £7) was lower than the maximum 

they were willing to pay for the shares (i.e. WTP: e.g. £12), then they would purchase the 

shares at the market price (i.e. £7). Having purchased the shares, they would then sell the 

shares at their actual worth, in this case amounting to £15.00 (i.e. determined by the 

linear function relating rank to actual worth described above).  In this case, they were told 

they would receive a net profit of: actual worth – BDM price =  £8.00.  

 

On the other hand, participants were told that if the market price was higher than their 

WTP, then the transaction would not proceeed (i.e. they would not purchase the shares), 

and therefore they would neither win or lose money from this section of the experiment.  

 

Control trials. Control trials were designed to closely match bid trials in terms of task 

demands (i.e. retrieval of hierarchical knowledge, motor requirements, and overall 

performance (see Supplemental Results: regression analyses). In control trials, however, 

participants were not required to evaluate the value of an investment project based on the 

worth of individual people and galaxies (i.e. as in bid trials)- but rather determine which 

of the two items were relatively higher in rank, and by how much, in a more abstract 

context. During control trials, therefore, the expected payout from a given trial was 

effectively unrelated (i.e. orthogonal) to the rank of the person and galaxy presented 

(with participants rewarded according to accuracy, up to a maximum of £20). In contrast, 

highly ranking items were of greater motivational significance during bid trials, with the 

expected payout of a given trial directly dependent upon the rank of the items (i.e. person, 

galaxy) presented. 
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As in bid trials, control trials involved the presentation of a particular person-galaxy 

combination (e.g. P6 G4), with left-right locations randomized across trials. All 49 

person-galaxy combinations were presented in different trials, with two repetitions of 

each: as before, person rank and galaxy rank were orthogonalized by experimental design, 

allowing us to isolate brain regions showing a (linear) correlation with rank for each 

stimulus type. Participants were required to position the cursor (using index, middle and 

ring fingers for leftward, rightward, and confirm actions respectively) on a continuous 

scale according to which item (i.e. person or galaxy) was higher in its respective “pecking 

order”, and by how much. Rather than indicating monetary amounts (i.e. as in Bid trials), 

the scale ranged from “galaxy higher” on its leftmost aspect to “person higher” on its 

rightmost aspect. As for the Bid trials, participants were given illustrative examples to 

ensure they understood their task in these trials, and informed that at the end of the 

experiment one trial would be randomly selected to count towards their monetary payoff 

(up to a maximum of £20): whilst no monetary transaction was to take place, participants 

were aware that they would be paid according to their accuracy in the selected control 

trial (i.e. calculated as the difference between their chosen cursor position and objectively 

correct cursor position).  

 

Bid trials and control trials were presented within blocks (7 trials each), with presentation 

order randomized across participants. 98 trials of each type were divided over 2 

experimental sessions lasting approximately 20 minutes each. Participants had a 1 minute 

break between sessions during which time they remained inside the scanner. 

 

Post-Experimental Debriefing (after completion of Phase 2). Participants were 

carefully debriefing following the end of phase 2 of the experiment. Included in this 

assessment was a test assessing participants' declarative knowledge of the hierarchy: 

pictures of the set of people and galaxies were presented to participants, and they were 

asked to rank them in terms of their order in the hierarchy, with their performance timed.  

 

Social realism score: Participants were also asked to evaluate how “real” the social rank 

dimension seemed: 
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"In phase 2, when you saw a picture of an individual who was more highly ranked in the 

company, how "real" did it seem that they were more highly ranked or had more power 

in the company etc? Please rate this on a scale of 1-10 (10 = a lot, 1 = not at all)- as an 

example, if when you saw the most highly ranked guy you thought to yourself that's the 

topdog/head-guy, then your answer is likely to be nearer the 10 end of the scale” 

 

Face ratings: participants were asked to rate the trustworthiness and attractiveness of the 

face stimuli: i.e. “How x is this person? (1=not at all, 9=extremely). Use your first 

impressions.” 

 

Behavioral analyses. Analyses were conducted using SPSS software (www.spss.com), 

Matlab 7.0 (www.mathworks.com/products/matlab), and using the state-space model (see 

below) toolbox obtained from www.neurostat.mit.edu. 

 

fMRI design. The temporal pattern of stimulus presentation was designed to maximise 

statistical efficiency whilst preserving psychological validity, in line with established 

procedure (Frackowiak et al., 2004; Friston et al., 1998; Josephs and Henson, 1999). 

Importantly, the haemodynamic response to events that occur a few seconds apart is 

explicitly modelled (via a haemodynamic response function), and therefore can be 

estimated separately for each event type by implementing the general linear model as is 

standard when using statistical parametric mapping software (SPM8) 

(www.fil.ion.ucl.ac.uk/SPM) (also see below) (Friston et al., 1998).  

Functional imaging acquisition parameters.  T2 weighted gradient-echo planar images 

(EPI) with BOLD (blood oxygen level dependent) contrast were acquired on a 3.0 tesla 

Siemens Allegra MRI scanner using a specialized sequence to acquire whole brain 

coverage, whilst minimizing signal dropout in the medial temporal lobe and ventromedial 

prefrontal cortex(Weiskopf et al., 2006). We used the following scanning parameters to 

achieve whole brain coverage: 48 oblique axial slices angled at 300 in the anterior-

posterior axis, TR 2.88 seconds, TE 30ms, 2mm thickness (1mm gap), in-plane resolution 

3x3 mm, z-shim -0.4mT/m*ms, negative phase encoding direction. During phase 1 of the 
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experiment, 3 runs of 479 volumes were acquired. 2 runs of 393 volumes were acquired 

during phase 2. High-resolution (1x1x1mm) T1-weighted structural MRI scan were also 

acquired for each participant after functional scanning.  These were coregistered to the 

functional EPIs, and averaged across participants to aid localization.  

 

fMRI data preprocessing. Images were analyzed in a standard manner using the 

statistical parametric mapping software SPM8 (www.fil.ion.ucl.ac.uk/SPM). After the 

first six “dummy volumes” were discarded to permit T1 relaxation, EPI images were 

spatially realigned and unwarped using fieldmaps(Andersson et al., 2001), followed by 

spatial normalization to a standard EPI template. Normalized images were smoothed 

using a gaussian kernel with full width at half maximum of 8mm.  

 

Phase 1 (Learn) fMRI data analysis. Following preprocessing, the event-related fMRI 

data were analyzed in SPM8 using the general linear model (GLM) following established 

procedures (Frackowiak et al., 2004; Friston et al., 1998). We targeted our analyses to 

detect brain regions whose activation pattern during test trials significantly correlated 

with participant-specific trial-by-trial parametric regressors.  

 

We focused our fMRI analyses on test trials, because it was here that successful 

performance in our paradigm was driven primarily by knowledge of the hierarchy, with 

the inference score index providing an online index charting the level of such knowledge 

across the experimental phase (see above). In contrast successful training trial 

performance in our paradigm - as well as transitive inference studies more generally (e.g. 

reviewed in (Zeithamova et al., 2012)) – can be achieved simply by memorizing the 

correct item in each pair, and therefore does not require knowledge about the hierarchy. 

Indeed, rodents with hippocampal damage show performance on trained trials that is 

indistinguishable from control animals, despite markedly impaired transitivity 

performance (e.g. Dusek and Eichenbaum, 1997).  

 

 

 



  30

Specification of first-level design matrix. 

Test trials. As a first step, the 5 second period during which item pair and confidence 

rating were displayed during test trials was modeled as a boxcar function and convolved 

with the canonical haemodynamic response function (HRF) to create  regressors of 

interest. All test trial types (i.e. 6 pairs: P2 vs P4, P2 vs P5, P2 vs P6, P3 vs P5, P3 vs P6, 

P4 vs P6) were modeled within these regressors, with one regressor for the person 

condition and one for the galaxy condition.  

 

The following participant-specific vectors were then included as parametric modulators 

in the design matrix (in order): 1) trial-by-trial reaction time (RT) 2) probability 

correct: trial-by-trial estimates of the probability of a correct response derived from 

learning curves, constructed separately for each of the 6 test pairs (e.g. P2 P6) by the 

state-space model (see(Smith et al., 2004) for a detailed description). The state-space 

model(Smith et al., 2004) www.neurostat.mit.edu, is a technique which computes an 

estimate of the learning curve (i.e. probability of correct response as a function of trial 

number) from the sequence of binary correct/incorrect responses, using an expectation 

maximisation (EM) algorithm(Smith et al., 2004). This technique has previously used to 

correlate neural activity with binary performance data during learning experiments in 

monkeys (Wirth et al., 2003) and fMRI (Kumaran et al., 2009; Law et al., 2005).  3) 

inference score index : a trial-by-trial measure (see above): where 3 points indexed 

correct responses given a  “very sure” confidence rating, 2 points a correct response 

given a “some idea” rating, and 1 point for a correct responses afforded a “guess” rating. 

Incorrect responses were scored as 0.  

 

These parametric regressors were also convolved with the HRF, leading to the height of 

the HRF for a given event being modulated accordingly. Thus, these regressors model 

BOLD signal changes that covary with specific behavioral indices of performance on a 

given trial (e.g. inference score during test trials). Note that, the automatic serial 

orthogonalization procedure carried out by SPM8 results in shared variance among 

regressors being captured by earlier regressors. This procedure, therefore, allows one to 

ask in which brain regions neural activity specifically tracks the emergence of 
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hierarchical knowledge, indexed by the inference score regressor, and cannot be 

explained by non-specific changes in RT with learning or the effects of an overall 

improvement in performance. 

 

 

Training trials. As a first step, the 5 second period during which item pair and outcome 

was displayed during training trials was modeled as a boxcar function and convolved 

with the canonical haemodynamic response function (HRF) to create regressors of 

interest. All training trial types (i.e. 6 pairs: P1 vs P2, P2 vs P3....P6 vs P7) were modeled 

within these regressors, with one regressor for the person condition and one for the 

galaxy condition.  

 

The following participant-specific vectors were then included as parametric modulators 

in the design matrix (in order): 1) trial-by-trial reaction time (RT) 2) a binary 

performance vector consisting of 1s for correct and 0s for incorrect responses 

respectively 3) probability_correct vector: trial-by-trial estimates of the probability of a 

correct response derived from learning curves, constructed separately for each training 

trial type (e.g. P1 vs P2), using the state space model (see above). 

 

As outlined previously, these parametric regressors were also convolved with the HRF, 

leading to the height of the HRF for a given event being modulated accordingly. This 

procedure, therefore, allows one to ask in which brain regions neural activity specifically 

tracks proficient performance during training trials, indexed by the probability correct 

regressor, and cannot be explained by non-specific changes in RT with learning or the 

effects of reinforcing feedback. 

 

We also included vectors coding for baseline trials, in the first level design matrix. 

Further, participant-specific movement parameters were included as regressors of no 

interest. A high pass filter with a cutoff of 180 seconds was employed. Temporal 

autocorrelation was modelled using an AR(1) process.  
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Phase 2 (Invest). fMRI data analysis. Following preprocessing, the event-related fMRI 

data were analyzed in SPM8 using the general linear model (GLM) following established 

procedures (Frackowiak et al., 2004; Friston et al., 1998). We set up two different 

parametric models to detect brain regions whose activation pattern 1) exhibited a 

significant linear correlation with the maximum amount of money participants were 

willing to pay for shares in a project during bid trials (i.e. WTP) 2) showed a significant 

linear correlation with the rank of person or galaxy in the hierarchy, during bid or control 

trials. Two statistical models were used since by experimental design the WTP for a 

given trial was a direct function of the rank of items displayed: as such including a WTP 

parametric regressor in the same model as the person (or galaxy) rank parametric 

regressor would lead to a substantial reduction in statistical power for detecting the 

relevant effects (i.e. relating to person and galaxy rank coding). 

 

Specification of first-level design matrix. In both models, the 8 second trial period 

during which the person/galaxy combination was displayed on the screen during bid and 

control trials, and participants made their response, was modeled as a boxcar function and 

convolved with the canonical haemodynamic response function (HRF) to create  

regressors of interest. 

 

fMRI parametric model one.  The following vectors were then included as parametric 

modulators in the design matrix (in order): 1) trial-by-trial reaction time (RT) 2) WTP: 

participants’ stated maximum price that they were willing to pay for the shares in the 

project. 

 

fMRI parametric model two. The following vectors were then included as parametric 

modulators in the design matrix (in order): 1) trial-by-trial reaction time (RT) 2) galaxy 

rank: from 1 to 7, linear and quadratic components modeled. 3) person rank, from 1 to 

7, linear and quadratic components modeled. As mentioned previously, galaxy rank and 

person rank are orthogonal by experimental design (i.e. all 49 combinations of person and 

galaxy were presented during Bid and Higher trials), which allowed us to identify brain 
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regions showing a specific correlation between neural activity and Rank for each stimulus 

type.  

 

In a supplemental analysis, post-scan ratings of attractiveness and trustworthiness were 

also entered as additional parametric regressors in the first level model, prior to the 

person rank parametric regressor.  

 

These parametric regressors were also convolved with the HRF, leading to the height of 

the HRF for a given event being modulated accordingly. Thus, these regressors model 

BOLD signal changes that covary with specific indices on a given trial (e.g. the rank of a 

person). Further, participant-specific movement parameters were included as regressors 

of no interest. A high pass filter with a cutoff of 180 seconds was employed. Temporal 

autocorrelation was modelled using an AR(1) process.  

 

"Illustrative" Model: The parametric models specified above were used for statistical 

inference- i.e. to ask which brain regions show a significant linear correlation between 

the amplitude of neural activity and person/galaxy rank. In contrast, this illustrative 

model, which included separate regressors for each person and galaxy rank in both bid 

and control conditions (i.e. 28 regressors of interest in total), was used solely to 

graphically represent the linear relationship between neural activity in a given brain 

region (e.g. amygdala) and person rank (see Figure 7; also see(Winston et al., 2002) for a 

similar useage).  

 

Model Estimation. Model estimation proceeded in two stages. In the first stage, 

condition-specific experimental effects (parameter estimates, or regression coefficients, 

pertaining to the height of the canonical HRF) were obtained via the GLM in a voxel-

wise manner for each participant. In the second (random-effects) stage, participant-

specific linear contrasts of these parameter estimates, collapsed across the three sessions, 

were entered into a series of one-sample t tests [as is standard when using 

SPM(Frackowiak et al., 2004)], each constituting a group-level statistical parametric map.  
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Statistical inference.  

Voxel-based analyses. Voxel-based analyses. We report results in a priori regions of 

interest - the hippocampus, amygdala and ventromedial prefrontal cortex - where 

activations are significant at p<0.001 uncorrected for multiple comparisons, and survive 

small volume correction (SVC) for multiple comparisons (at p<0.05 corrected) using 

SPM8. For the SVC procedure we used anatomical masks, for the hippocampus and 

amygdala, traced over the average structural image of the participants. The amygdala was 

outlined based on established criteria described in: ((Brierley et al., 2002). For the 

vMPFC we used an 8mm sphere centred on coordinates derived from a previous related 

study(Kumaran et al., 2009):[x, y, z = -4 52 -14].  

 

Activations in other brain regions were only considered significant if they were 

significant at a level of p<0.001 uncorrected, and additionally survived whole brain FWE 

correction at the cluster level (p<0.05 corrected), in line with established 

procedures(Frackowiak et al., 2004) -  but are reported for completeness at a threshold of 

P<0.001 uncorrected for multiple comparisons.  

 

All activations are displayed on sections of the average structural image of all the 

participants. Reported voxels conform to MNI (Montreal Neurological Institute) 

coordinate space. Right side of the brain is displayed on the right side. 

 

Conjunction analysis. We performed a conjunction “null” analysis as implemented in 

SPM8, which ensures that each individual contrast (i.e. brain regions whose activity 

correlates with the inference score index during test trials in the social condition and the 

non-social condition) was individually significant (at a threshold at p<0.001 uncorrected 

for multiple comparisons)(Friston et al., 2005). As for the main fMRI analyses, 

activations were considered significant in regions of interest (see above) if they survived 

a SVC correction at p<0.05.  

 

Region of Interest (ROI) analyses. We performed a functionally defined ROI analysis 

(using the MarsBar SPM toolbox: http://marsbar.sourceforge.net/) to ask whether the 



  35

amygdala showed a significantly greater linear correlation with person rank, as compared 

to galaxy rank, during bid trials. Regions in the left amygdala, as well as comparison 

regions (the left hippocampus and vMPFC) were functionally defined from the group 

statistical map pertaining to brain regions showing a linear correlation with rank, 

collapsed across stimulus type (person and galaxy) and task (bid and control), 

thresholded at p<0.001 uncorrected (i.e. the main effect of rank: Table S5B). Using the 

MarsBar SPM toolbox, we obtained parameter estimates for all voxels within this region, 

for the group as a whole. These parameter estimates were averaged across the ROI and 

entered into a repeated measures ANOVA with factors: brain region, task (bid, control) 

and hierarchy type (person, galaxy). It is important to note that these analyses treat data 

from a ROI as if it was from a single voxel and hence no correction for multiple 

comparisons is necessary. Results, therefore, were considered statistically significant 

where they pass a threshold of p<0.05.  

 

Selection contrast is unbiased with respect to contrasts of interest. ROI analyses are 

widely held to be a powerful tool for affording additional insights, above and beyond that 

provided by univariate fMRI analysis(Kriegeskorte et al., 2009). Recent work has 

highlighted potential shortcomings of previous work, and established a theoretically 

principled approach for carrying out an ROI analysis. Importantly, our analysis fulfils the 

criteria outlined by Kriegeskorte et al (2009): the definition of these ROI is unbiased, and 

therefore statistically independent, with respect to the contrasts relevant to addressing our 

two experimental questions of interest concerning the amygdala(Kriegeskorte et al., 

2009). Specifically, the main effect contrast used to define the ROIs is orthogonal to the 

relevant contrasts of interest (i.e. their matrix dot product equals zero). Further, all other 

parameters were balanced across the two tasks and stimulus types (i.e. person, galaxy), 

for example the number of experimental trials, preventing other sources of bias entering 

into the analysis.  

 

Voxel-Based Morphometry (VBM) Analysis.  

Structural MRI data acquisition and preprocessing. VBM is an analytic technique 

which allows regional volumetric differences in brain structure between participants to be 
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characterized(Ashburner, 2007; Ashburner and Friston, 2000; Kanai and Rees, 2011). A 

3.0T Allegra scanner was used to acquire high resolution T1-weighted whole brain scans 

(parameters to be added: 176 slices, echo time=3.56ms, TR=12.24ms, voxel size=1mm 

isotropic). To maximize the size of the group, all 26 participants who took part in the 

experiment were included in the VBM analysis. Note however, that all effects reported 

remained robust (as detailed in the Supplemental Results) when only the 25 participants 

included in the main fMRI analyses were included.  

 

Image preprocessing was conducted using SPM8 and allows gross morphological 

differences between participants to be removed whilst preserving regional gray matter 

volumes. As a first step, structural T1-weighted scans were segmented into cerebrospinal 

fluid, white matter, and gray matter (GM) in native space. Then, optimized intersubject 

image registration was performed using the DARTEL (diffeomorphic anatomical 

registration through exponentiated lie algebra) toolbox(Ashburner, 2007). DARTEL 

effects an iterative process by individual GM segment images are rigidly aligned and 

matched to an improving average template image across participants. Next, smoothed 

normalized images were generated using DARTEL’s “normalize to MNI space” module: 

individual GM images were transformed using a transformation specified by the affine 

registration of the DARTEL template generated in the previous step to MNI space, and 

DARTEL flow fields. This procedure ensures that local tissue volumes are preserved 

after the registration setup (i.e. equivalent to a Jacobian modulation step). Smoothing was 

performed with a Gaussian kernel of 8mm full width to half maximum. Preprocessed GM 

images were entered into a general linear model using SPM8, with adjustments made for 

total intracranial volume using proportional scaling. A binary mask (SPM8 grey.nii 

template > 0.3) was used to restrict the search volume to GM changes.  

 

We performed a whole-brain voxel-wise analysis to examine the relationship between 

gray matter volume across the brain and behavioral performance on the hierarchy 

learning task (i.e. phase 1).  T statistic maps were generated to reflect the correlation 

between behavioral measures (e.g. inference score) and regional GM volume, with effects 

reported as significant based on criteria defined previously for the fMRI analyses: i.e. 
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effects are considered significant in regions of interest at p<0.001 uncorrected for 

multiple comparisons, where they survive small volume correction (SVC) for multiple 

comparisons using anatomical masks (see above). For other regions, a significance 

threshold of p<0.05 family wise error (FWE) correction across the whole brain was 

applied. 

 

Region of Interest (ROI) analysis. Mean gray matter volume was calculated for the 

amygdala as a whole, defined by an anatomical mask traced over the average structural 

image of the participants based on previously outlined criteria(Brierley et al., 2002), 

using the MarsBar SPM toolbox (http://marsbar.sourceforge.net/). As mentioned 

previously, ROI analyses treat data from a single region of interest (e.g. amygdala) as if it 

was from a single voxel and hence no correction for multiple comparisons is necessary. 

Correlations observed in these analyses, therefore, are reported as statistically significant 

where they pass a threshold of p<0.05. 
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APPENDIX: Instructions for the Space Mining Task 
You are asked to imagine you are investor in the future (AD 2100). You are considering investing 
in a space mining company whci specializes in harvesting precious minerals from far away 
galaxies. There will be 2 parts to the experiment: in the first part, you will need to learn two 
things (through trial and error)- 1) which galaxies have more precious mineral (called Zircon) 2) 
which individuals have more power in the company. In the second phase of the experiment, 
you’ll need to use this knowledge about galaxies and individuals to decide whether to invest in 
projects on offer.  
 
LEARN PHASE (I). On training trials, you will see pairs of galaxies, or people, and need to 
learn which has more precious mineral, or has more power in the company. Your job is to collect 
points by choosing the correct one (pressing right or left keys). You’ll win 20 points for choosing 
the right one, and lose 20 for choosing the wrong one. You will be given a limited time in the 
actual experiment and see different pictures. In the next screen, a box will indicate your choice- 
and below this will be an indication of whether you were correct or incorrect. Of course you’ll not 
know which is the correct one to start with i.e. you have to guess – but you should be able to learn 
through feedback (though not an easy task, so do your best). And even at the start, better to guess 
than not to answer (since 50% if guess, but definitely wrong if don’t answer). Important to do 
your best throughout since you will be paid according to performance.  Don’t worry it’s a 
difficult task- so just do your best! Note you will also see “easy trials” (baseline) and all you need 
to do is just press the button corresponding to the side of the star. Now I want to tell you about the 
test trials: these are similar to training trials- i.e. you will need to choose which galaxy has more 
Zircon, or which person has more power, but no feedback is provided. Note, however, that your 
responses count just as training trials for computing your pay. You’ll notice that there will be 
pairs presented together that aren’t presented during training trials- here you’ll have to use your 
judgement to choose the correct one (you might find these trials difficult particularly early on). 
You will also be asked to rate your confidence in your choices during test trials on a scale of 1-3: 
we’d like you to answer 1 if you are literally guessing, 2 if you have some idea that your choice is 
the right one- only answer 3 if you are really very sure that your choice is correct (i.e. more than 
“90% sure” that your choice is the correct one. Though your confidence responses don’t count 
towards the pay, it’s important for our analysis that you answer truthfully. 
 
INVEST PHASE (II) There are 2 types of trials: in Bid trials you will be playing with £20 of 
your winnings from the previous session and have the opportunity to win more (up to a maximum 
of a further 20)- but you’ll have to play well! In bid trials you will be presented with potential 
projects (consisting of a person/galaxy pair), and decide the maximum amount you are willing to 
pay for shares relating to this project. You can imagine that it’s as if this person is heading up a 
mission to go and harvest mineral from this galaxy. To give you a real world example- consider 
this pen-you might say that the maximum you’re willing to pay for this is £1. This means that 
you’d be happy to get it for £0.90, or even £0.99, but you wouldn’t buy it at £1.01. You’ll be 
doing exactly the same kind of thing in this task. So on each trial, you’ll need to place the cursor 
(note the cursor appears at random starting position which doesn’t convey any useful 
information) at the position according to the maximum you would pay for shares in this project – 
scale is from 0 to £20 in real money terms to you- in this fictitious world, you could think of it as 
corresponding to thousands of pounds. You move the cursor by holding down left and right 
buttons, and you’ll also need to confirm your price using this third button- important to do this, 
and after you’ve confirmed you can’t change your mind (you’ll have 8 secs- so just do it as fast as 
you’re able and remember to confirm the price).  
 
Now I want to tell you a few things: firstly-the actual worth of shares is determined directly by 
the rank of person and galaxy- for example, a project involving the highest ranked person and 
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galaxy would be worth effectively £20, and the combination of the lowest ranked person and 
galaxy would be worth basically zero- other projects will be somewhere in between these 
extremes- e.g. a middle ranking person and galaxy containing an average amount of mineral 
would be something like £10. Note also that the rank of galaxy and person are equally important 
in determining share worth. Of course, I’m sure you appreciate you’ll need to use previous 
knowledge to determine how much shares in these projects are actually worth.What’s important is 
that you actually put the cursor at the maximum amount you are willing to pay for shares, because 
at the end of this phase, we’ll actually play out 1 of these transactions (i.e. trials) for real money. 
Which transaction it’ll be is randomly determined at the end of the experiment- I don’t know 
which one it’ll be and nor do you (it’s randomly determined by a computer program)- so it’s 
important to treat every single trial as if it were the one that will count 
 
Now what I want to do is to take one trial as an example: let’s imagine you said you would pay 
up to a max of £15 for the shares- and when you come out of the scanner, this trial gets selected 
to play out as a real money transaction. What happens is that the market issues these shares at a 
price- and this price is actually random and can fall anywhere between 0 and £20 with equal 
probability. If the market issue price is above your maximum price, then no transaction occurs-as 
such, you don’t win or lose money from this bit of this phase of the experiment. But if the market 
price is below your max price – i.e. it is below £15 -say £5- you’ll actually buy these shares from 
us at the market price- indeed you should be happy to buy at £5 since you said you’d be happy to 
pay up to a max of £15- so what happens is you effectively give us £5 from earlier winnings, and 
we give you the virtual shares in the project. Then what happens is you cash in on these shares at 
their actual worth-determined directly by the rank of the person and galaxy: in this case, let’s say 
that the project is actually worth £18 - hence you sell the shares at this price and pocket the 
difference i.e. £18-£5=£13.But I also want to show you how you could lose money- let’s say on 
the other trial, you said a maximum of £16- let’s say the market issue was less, actually £14- so 
the transaction would go through, and you’ll pay us £14- but imagine in this case, the actual 
worth was only £4, you’ll end up losing £10.  This explains why you should be willing to pay up 
to a maximum of exactly what you think the shares are actually worth (not more or less)- that way 
you’ll always make a profit when the market price comes up at less than the actual worth, and 
you’ll never lose when the market price comes up above the actual worth- as in the real world of 
course, it doesn’t make sense to want to pay more for something than it’s actually worth. And you 
can also appreciate that it’s not a good strategy to underbid in this task as well (explain why if 
they are not clear). To summarize-you can see you can both win and lose money- the best strategy 
is to put your maximum price as close as possible to what you think the actual worth of the 
project is- that way you can only win money in this session.   
 
Any Questions? Ok, so now let me tell you about the other type of trials (“control” trials): Again 
you’ll see a person/galaxy pair- and a slider below with a cursor that you need to position. But 
here you’ll notice the scale is different: not a real money scale but instead you see it says: “Person 
Higher – Same – Galaxy Higher. What you need to do is position the cursor according to whether 
the person or the galaxy is higher in their respective pecking order: and by how much. For 
example, if this galaxy has the most amount of mineral, and this person has little power in the 
company then you should put the cursor over the far right. But if the galaxy is still higher in the 
order than the person but the difference is less, then put the cursor to the right of the middle but 
less so. Is that clear? For these trials, you’re not stating a price of course, so there won’t be any 
transaction at the end. What we will do, however, is to randomly select one trial at the end of the 
experiment (exactly as was the case in bid trials), and mark you on how accurate you are, and you 
will be paid accordingly.  
GOOD LUCK! 
 


