Supplementary Data

Manuscript: Plastid genome evolution across the genus *Cuscuta* (Convolvulaceae): two clades within subgenus *Grammica* exhibit extensive gene loss

Authors: Thomas Braukmann, Maria Kuzmina, and Saša Stefanović

Supplementary Table 2 – Oligonucleotides used in this study. Primers were used to amplify hybridization probes for the plastid and mitochondrial genes surveyed.

Gene	Primer name	Primer sequence (5' to 3')
16S rDNA	16S-F2	GACACGGCCCAGACTCCTAC
	16S-R4	ATCCAGCCGCACCTTCCAG
23S rDNA	23S 5F	GGCTTACGGTGGATACCTAG
	23S 4R	TTCAACATCAGTCGGTTCGG
ndhA	ndhA.ex1-F2	GAAGTCTATGGGATCATATG
	ndhA.ex1-R2	GACATAAGAAGTCCAACGGG
	ndhA.ex2-F1	TAAYAGTTYAAGTACAGTTG
	ndhA.ex2-F2	GGTAAAGTCCATCTTGTTGC
ndhB ¹	7F	GGAAGTTTSATTTTCCCAGAATG
	10R	CCTTCGTAGACGTCAGGAGTCCATTG
	12F	CTTTCTGTTACTTCGAAAGTAGC
	14R	GGTATAGTAGATGCTATCACACA
ndhC	ndhC-F1	GTTTCTGCTTTACGAATATG
	ndhC-R1	ATAAGCACGAAAATGAAAGC
ndhD	ndhD.5'-F1b	CTCCTTCTAACGACTTATGC
	ndhD.5'-R2	AATATAGAATGGGCATGAGG
	ndhD.3'-F2	GCAGCTTTAACATCTCTTGG
	ndhD.3'-R1b	ATGAAAGAACGAAATCCGGG
ndhE	ndhE-F1	ATGTACTTGTTTTGAGTGCC
	ndhE-R1tob	TTATTCAACAAATTTGATTG
ndhF ²	536F	TTGTAACTAATCGTGTAGGGGA
	1318R	CGAAACATATAAAATGCRGTTAATCC
ndhG	ndhG-F1	CCAATACATGATTTTCTTTT
	ndhG-R3	CGAGCTACAGCAATTGCACC
ndhH	ndhH.5'-F1	CTCATGATAGTCAATATGGG
	ndhH.5'-R2	TCTGCGCACCAATATCCGCC
	ndhH.3'-F3	GAAGGAGATTCATTAGCTCG
	ndhH.3'-R3b	TTGATAAAACCTGGTGGGCG
ndhI	ndhI-F2	ATGCTCCCTATGATAACTG
	ndhl-R1	TGTGTAATCATCAATTACTG
ndhJ	ndhJ-F1	TCGTTTGTCTGTTTGGCTAG
	ndhJ-R1	CAATGAGCATCTTGTATTTC
ndhK	ndhK-F2b	ACTCTCTAGTTTATGGCCGC

	ndhK-R1tob	TCTCGAGATATTTTCTTACG
psaA	psaA 5'F	TCGAGGAATGGGCCAGAC
	psaA 5'R	GGCCCCTGACCTAGTAAATGG
psaB	psaB angio F1	CATTAMGATTTCCAAGGTTTAGC
	psaB angio R1	ATACTGTGCCCAATCCCG
	psaB angio F3	RGGKCGTGGRCATAAGG
	psaB angio R3	CCTACMGAAAAGTGRGCTAATCCA
psaC	psaC angio F	TGTGTHCGAGCHTGYCCYACDGAT
	psaC angio R	CCCATRCTKCGRGTTGTMTC
psbA	psbA angio F	TGGGGTCGCTTCTGTAA
	psbA angioR	AGGTCTAGAGGGAAGTTRTGA
psbB	psbB f	AGCGGTTTTTGATCCTTCTG
	psbB r	CTGACGCCGTTGAGTTCAC
psbC	psbC 46F	GGTTTYGCTTGGTGGGCYGGGAATCG
	, psbC 49R	GTATTATTGAACCAGACAAAACAACAAGC
psbD	psbD 40F	ATGACTGGTTACGRAGGGACCG
	psbD 45R	CCTCCTCAGGGAATATAAGRTTTTCAT
psbE	, psbE angio F	GGAAGCACAGGAGAACG
	psbE angio R	AATBCCTTGTCGGCTCTCT
rbcL	rbcL 3F	GGAGAAAAAGATCAATATATTGC
	rbcL 14R	GGTAAAGAAACCCAATCTTGAG
petA	petA f	CGGACATCCATTTCAAGTGC
	petA 1R	TTGGTCAATTGGACCTTCTC
petB	petB exon 2 F	GAAGAACGTCTCGAGATTCAAGC
	petB exon 2 R	GGCCCAGAAATACCTTGTTTACG
petD	petD exon 2 F	GGAGAGCCCGCATGG
	petD 3' exon R	GTAATGTTGCACCAATGCCC
atpA	atpA angio F1	ATCCGTGAACGTATTGARCA
	atpA angio R1	CCAKYTGYTCCTGAATAGCTT
atpB	atpB H ³	TGTCCTGAAGTTCTTTGTAACGTTG
	atpB P ³	CCCGTTGATAATTTAGGTCC
atpF	atpF angio F	GTTTHYTTGGGYCACTG
	atpF angio R	RCTAKAGCTCCTYGTAAHGCTT
atpH	atpH angio F	ATGAATCCAYTGRTTKCTGC
	atpH angio R	GCTACRACCARRCCRTAAA
atpl	atpl angio F	TCCARRTYCATGSCCARG
	atpl angio R	ACAGGTATAGGAACYACYRARGGTAC
rpoA	rpoA F1	SAGTGGAARTGTGTKGAATCA
	rpoA R3	TCYTBVSTSTTABTCAAAAGKTCC
rpoB	rpoB F2	TAGTYCTATYATCAGCTATGGG
	rpoB R4	TCCAAYCCMGTTCCAACAATGC
rpoC1	rpoC1 F2	GATACACTTCTTGATAATGG

	rpoC1 3`R5	GACCAACAGTGGTTCGAATG
rpoC2	rpoC2 F3	CATTAAGAACTTTTCATACYGG
	rpoC2 R5	ATCCGYTGGACATAGATCCA
rps2	rps2 1	GCGAATACTAATTTGTTAAG
1	rps2 3c	GGAACATAAATTTGGAAGAG
rps4	rps4 angio F	GCTTTACCNGGACTAACTA
1001	rns/ angio R	CTATCTATKATTTGATTDACTAATCC
rnc7	rps7 angio F	GAACAAATCCACTATCYGTTTAC
1/27		CAAAAATECACTATETCOCCTCT
		GLAAAAGUTUTATTIGUUUTUT
rpsib		GAGULGICIAILGAAILG
	rps16 3 R1b	TIAGGATIGATIAGGACG
rpl2 ¹	20F	AAAGGTCGTAATGCCAGAGGAGGAAT
	25R	TTCCAAGYGCAGGATAACCCCA
rpl14	rpl14 angio F	GGGCTCGAGAATTGATGTG
	rpl14 angio R	CCTCRGGAGCTARKGAAACTAT
rpl20	rpl20 angio F	CGGAGRCGTMGAACAAAAAT
	rpl20 angio R	TTGTGCAAGTATTTTACGRTTAAGAAG
rpl23	rpl23 angio F	GGATGGAATCAAATATGCAG
	rpl23 angio R	YTMTAAGAGGTGGAATAGAATAACC
rpl32	rpl32 F	GGCAGTTCCAAAAAACG
	rpl32 R	ACTTATTTATTTTTGTTTGGCGTA
accD	accD 5'F1	GGGGGCAAGAAAACTCTATG
4000	accD 5'R3	
	cus R	AAGYACSGGGTTCGGTAA
ccc A	cccA ang E	GENTIATIADITACICCIICG
LLSA	CLSA ding F	
	CCSA ang K	TCCAAGTAATAAAWGCCCAAG
cemA	cemA ang F	GGRTTACTAATTGGTGGAATAC
	cemA ang R	TTGAATGATAAATCACTACAAG
clpP	clpP intr1/2F	CCTAATCAACCGACTTTATC
	clpP 2Rb	AGCGTGAGGGAATGCTAGAC
matK	trnK 685F	GTATCGCACTATGTATCATTTGA
	matK 1932R	CAGAACGGATTACTAATGGG
	matK MonoEx 4F	ATCTCAGAATTTACGATCAATTC
	matK MonoEx R3	CCCAAGCTTTGTAAAAAAGCGCG
vcf1 5'	vcf1 5' F1	AAATTCGGTCGTTGTGGTCGGAC
, ,	, ycf1 5`R2	AAGATATTCKTTSTTTTCCATCA
vcf2 3'	, vcf2 ang 3`F	TTGTAGCACTTACCAATGAGG
, , -	vcf2 ang 3`R	TCATTTCATCCGGGAAAAGCC
paf2 (vcf4)	vcf4 angio F	GGCGATCAGAACATATATGG
	,	

ycf15	ycf4 angio R solanac F solanac R	ATACTTCAATTGGTACACGC ATGTTACTGCTGAAACACGG CGCCTGTTGGCATTCCAGCC
atp1	5 4	GAGCTGCGGAACTMACVAVTC CATTCGATCACAGAAKCCRTT

¹Primer names and sequences after Graham and Olmstead (2000).

²Primer names and sequences after Olmstead and Sweere (1994).

³Primer names and sequences after Hoot et al. 1995.

Supplemental Table 3 – List of probes used in the hybridizations. The length (bp), GC content, and the structural location within the plastome of *Nicotiana tabacum* (tobacco) are provided for each probe. The typical plastome of a green plant is divided into three partitions; the inverted repeat (IR), small single copy region (SSC), and large single copy region (LSC)

Gene	length	GC	Location	Gene	length	GC	Location
<i>16S</i>	1185	0.567	IR	atpA	1459	0.411	LSC
235	747	0.534	IR	atpB	862	0.425	LSC
ndhA ex1	380	0.379	SSC	atpF	1132	0.348	LSC
ndhA ex2	429	0.347	SSC	atpH	212	0.495	LSC
ndhB ex1	692	0.379	IR	atpl	550	0.369	LSC
ndhB ex2	680	0.366	IR	rpoA	872	0.35	LSC
ndhC	306	0.359	LSC	rpoB	1162	0.387	LSC
ndhD 5'	698	0.355	SSC	rpoC1	979	0.392	LSC
ndhD 3'	583	0.365	SSC	rpoC2	1292	0.386	LSC
ndhE	289	0.322	SSC	rps2	655	0.395	LSC
ndhF	808	0.361	SSC	rps4	494	0.379	LSC
ndhG	509	0.334	SSC	rps7	293	0.44	IR
ndhH 5'	358	0.411	SSC	rps16	218	0.376	LSC
ndhH 3'	323	0.375	SSC	rpl2	1315	0.423	IR
ndhI	462	0.368	SSC	rpl14	318	0.406	LSC
ndhJ	467	0.411	LSC	rpl20	267	0.401	LSC
ndhK	390	0.415	LSC	rpl23	266	0.38	IR
psaA	936	0.439	LSC	rpl32	164	0.335	SSC
psaB 5'	898	0.431	LSC	accD	785	0.341	LSC
psaB 3'	898	0.431	LSC	ccsA	613	0.336	SSC
psaC	185	0.465	SSC	cemA	579	0.33	LSC
psbA	969	0.425	LSC	clpP	298	0.416	LSC
psbB	1104	0.444	LSC	matK	1256	0.326	LSC
psbC	791	0.43	LSC	ycf1 5'	1229	0.36	IR
psbD	978	0.438	LSC	ycf2 3'	1284	0.411	IR
psbE	183	0.437	LSC	paf2	543	0.39	LSC
rbcL	842	0.416	LSC	ycf15	187	0.417	IR
petA	866	0.426	LSC				
petB	617	0.42	LSC				
petD	367	0.401	LSC				