Fluorescence of Tryptophan in Designed Hairpin and Trp-cage Miniproteins: Measurements of Fluorescence Yields and Calculations by Quantum Mechanical Molecular Dynamics Simulations

Andrew W. McMillan,^{†,§} Brandon L. Kier,^{‡,§} Irene Shu,[‡] Aimee Byrne,[‡] Niels H. Andersen^{‡,§} and William W. Parson^{*,†,§}

[†]Department of Biochemistry, [‡]Department of Chemistry and [§]Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195

SUPPORTING INFORMATION

1. Molecular Dynamics Parameters

The center of mass of the protein $(\mathbf{X}_{\mathbf{M}})$ was constrained to a point (\mathbf{X}_{0}) by subjecting each protein atom (*i*) to a force $\mathbf{F}_{\mathbf{M},\mathbf{i}} = -k_{M}(\mathbf{X}_{\mathbf{M}} - \mathbf{X}_{0})m_{i}/M$, where m_{i} is the atomic mass, M is the total mass of the protein, and $k_{M} = 10^{4} \text{ kcal} \cdot \text{mol}^{-1} \cdot \text{Å}^{-2}$. To hold the water molecules in a sphere with radius R around \mathbf{X}_{0} , force $\mathbf{F}_{\mathbf{R},\mathbf{j}} = -k_{R}\mathbf{D}_{\mathbf{j}}$ was applied to each water O atom j for which $D_{j} > R$, where $D_{j} = |\mathbf{D}_{\mathbf{j}}|$, $\mathbf{D}_{\mathbf{j}} = \mathbf{X}_{\mathbf{j}} - \mathbf{X}_{0}$, $\mathbf{X}_{\mathbf{j}}$ is the position of j, and $k_{R} = 25$ kcal·mol⁻¹·Å⁻². The total angular momentum of the water ($\mathbf{L}_{\mathbf{W}}$) was held to zero by subjecting each water atom j (including hydrogens) to a force $\mathbf{F}_{\mathbf{L},\mathbf{j}} = -k_{L}m_{j}\mathbf{L}_{\mathbf{W}}\mathbf{X}\mathbf{v}_{\mathbf{j}}$, where $\mathbf{v}_{\mathbf{j}}$ is the velocity of atom j, $k_{L} = 5 \times 10^{-5} \text{ kcal·mol}^{-1} \cdot (\text{Da} \cdot \text{Å}^{2} \cdot \text{fs}^{-1})^{-2}$.

Tables S1 and S2 give the parameters used for stretching and bending of the bonds of 3methylindole and tryptophan in the ground and excited singlet $({}^{1}L_{a})$ states.

Bond	(a)	Ground	State	^{1}L	a
atom <i>i</i>	atom j	$b_{ extsf{0}}{}^{(\mathrm{b})}$	$f_b^{(\mathrm{c})}$	b_0 ^(b)	$f_b^{(c)}$
CG	CD1	1.344	474.7	1.428	375.9
CG	CD2	1.451	356.6	1.400	403.8
CD1	NE1	1.377	430.5	1.354	455.1
NE1	CE2	1.391	413.9	1.416	391.2
CE2	CZ2	1.400	403.8	1.377	430.5
CE2	CD2	1.382	424.4	1.414	389.2
CZ2	CH2	1.399	404.9	1.502	325.9
CH2	CZ3	1.386	419.7	1.364	447.1
CZ3	CE3	1.397	407.1	1.423	380.5
CE3	CD2	1.412	391.2	1.462	348.6
NE1	HE	0.980 ^(d)	434.0 ^(d)	1.000	434.0
CZ2	HZ1	1.000 ^(d)	340.0 ^(d)	0.980	340.0
CE3	HE2	1.000 ^(d)	340.0 ^(d)	0.980	340.0

Table S1. Bond-stretching Parameters.

^a Atom designations are shown in the structure to the right. Indole atom 3 is CG.
^b Ideal bond length (Å).
^c Force constant (kcal·mol⁻¹·Å⁻²).
^d Enzymix default value for bonds of this type.

	Angle ^(a)		Ground	¹ L _a
atom i	atom j	atom k	$\theta_0^{(b)}$	$\theta_0^{(b)}$
СВ	CG	CD1	128.0	130.0
CB	CG	CD2	126.5	127.3
CD1	CG	CD2	105.5	102.6
CG	CD1	NE1	111.5	111.0
CD1	NE1	CE2	107.4	111.8
NE1	CE2	CZ2	129.0	132.7
NE1	CE2	CD2	107.8	104.7
CZ2	CE2	CD2	123.2	123.3
CG	CD2	CE3	131.2	131.3
CG	CD2	CE2	107.7	111.6
CE2	CD2	CE3	121.1	117.2
CZ3	CE3	CD2	114.6	122.8
CH2	CZ3	CE3	124.8	120.5
CZ2	CH2	CZ3	119.7	119.6
CE2	CZ2	CH2	116.4	118.8

Table S2. Bond-bending parameters.

^a Atoms are designated as in Table S1. ^b Ideal bond angle (degrees). A force constant of 85 kcal·mol⁻¹·radian⁻² was used for all these angles.

2. Contributions of Induced Dipoles to Reorganization Energies

Figure S1 shows distributions of the reorganization energies associated with induced dipoles, as calculated by eq. (22) for excitations of the hairpin peptide with Trp in position 1 and protonated His in position 8 (Ac-WVTIpGKHIFTG-NH₂). The left-most curve (*red*, peak at 30 cm⁻¹ off scale vertically) is the reorganization energy of the first excited singlet π - π * state of Trp1. The other curves are the reorganization energies for electron transfer from the indole ring of Trp1 to the protonated imidazole ring of His8 (*black*) and amides *a*1 (*magenta*), *a*2 (*blue*), *a*9 (*cyan*), and *a*8 (*green*), where the number following "*a*" indicates the residue that provides the amine group for the amide. The histograms include data from twenty 0.5-ns trajectories in the lowest excited singlet π - π * state, and are normalized to constant area. Trajectories were propagated in steps of 1 fs, and $\Delta E_{k,n}^g$ and $\Delta E_{k,n}^e$ were evaluated every 500 steps. The quantum charges were scaled by a factor of 0.8 before they were used in the MD forcefield (see Figure S4 below).

Figure S1.

3. Calculated Properties of Liquid Water

Dipole moment. Figure S2 shows the distribution of dipole moments calculated for liquid water as described in the text. The mean dipole moment ($|\mu_{total}|$) was 2.95 debye (D), including 2.34 D from the permanent charges of the atoms ($|\mu_{perm}|$). As noted in the text, the permanent charges in the ENZYMIX force field implicitly incorporate some polarization because they are parameterized for molecules in solution. The atomic polarizabilities of H and O were adjusted to bring the mean $|\mu_{total}|$ into accord with the experimental value (2.95 ± 0.2 D)¹ and *ab initio* MD calculations by Silvestrelli and Parrinello.² The latter calculations gave the same mean but a broader distribution, possibly because the computational model was smaller (12 MD configurations of 64 water molecules), and thus presumably more sensitive to edge effects. The distribution of $|\mu_{total}|$ shown in Fig. S1 is fit well by a Gaussian, $\exp[-(|\mu_{total}|-\mu_0)^2/2\sigma^2]$ with $\mu_0 = 2.94$ and $\sigma = 0.194$ D. Calculations by Bernardo et al.,³ Burnham and Xantheas,⁴ Ren and Ponder⁵ and Jensen *et al.*⁶ have given mean dipole moments between 2.55 and 2.81 D.

Figure S2.

Radial distribution functions. To evaluate the O-O and O-H radial distribution functions (g_{OO} and g_{OH}), we averaged over the distributions around each of the ~261 water molecules with an O atom within 12 Å of the center of each ensemble, not including the molecule that was held at the center. The O-O distribution (g_{oo} , Figure S3*A*) peaks at 2.73 Å, in reasonable accord with the distances between 2.73 and 2.83 Å obtained in current analyses of X-ray and neutron diffraction data.⁷⁻⁹ The peaks at 1.74 and 3.23 Å in g_{OH} (Figure S3*B*) match the peaks in the distributions derived from diffraction data to within ±0.05 Å.

Figure S3.

Bond length and angle. The O-H bond length, H-O-H bond angle and molecular dipole moment were averaged over the 1000 ensembles saved during the simulation and over the \sim 746 molecules with an O atom within 17 Å of the center of each ensemble (again not counting the molecule at the center), leaving the shell between 17 and 21 Å to buffer edge effects. The mean bond length was 1.015 Å, in agreement with the experimental value of 1.01 Å reported by Soper & Benmore,⁷ but somewhat greater than the 0.97 Å measured by Ichikawa *et al.*¹⁰ and Silvestrelli and Parrinello's² *ab initio*-MD value of 0.991 Å. The mean bond angle of 106.0° matched both the measured angle¹⁰ and the value obtained by *ab initio* MD calculations.²

Diffusion coefficient. The translational diffusion coefficient of water was obtained by identifying the water molecules within 8 Å of the center of each ensemble (skipping the central molecule again), and tracking their positions at 0.5-ps intervals for the 25-ps period represented by the next 50 ensembles. The mean-square displacement (MSD) at each delay time was averaged over all the possible ensembles (950 ensembles for the maximum delay of 25 ps, 999 for 0.5 ps). The period of 25 ps was short enough so that none of the molecules that were tracked approached the surface of the 21-Å sphere. Neglecting the expected nonlinearity at times below 0.5 ps, the MSD increased linearly with a slope (*s*) of 1.477 ± 0.001 Å²/ps, giving a diffusion coefficient (*s*/6) of 0.246 Å2/ps or 2.46×10^{-5} cm²/s. The experimental value for water at 300 K is 2.30×10^{-5} cm²/s.^{11,12}

4. Calculated Fluorescence Properties of 3-Methylindole in Water

Figure S4 shows calculated emission peak (A and C) and full width at half-maximum amplitude (FWHM, B and D) of 3-methylindole (3MI), when the atomic charges or classical potentials were scaled by variable factors. Simulations of 3MI in a 16-Å sphere of water were propagated as described in the text. In panels A and C, the quantum charges of the 3MI atoms were multiplied by the factor indicated on the abscissa before they were used in the MD forcefield. In panels B and D, the classical potentials from the solvent atoms were multiplied by the indicated factor before they were added to the diagonal terms of the Fock Hamiltonian.

Figure S4.

5. NMR Structures of the His8 Hairpin Peptide

An ensemble of 17 of the 20 accepted NMR structures of the β -hairpin peptide Ac-WVTIpGKHIFTG-NH₂ is shown in Figure S5. The Mean global root-mean-square deviations (RMSDs) of the backbone atoms and all heavy atoms were 0.69 ± 0.34 and 1.25 ± 0.45 Å, respectively. Table S3 gives the atomic coordinates of the structure we used for MD simulations and for generating initial structures of other peptides of the hairpin series.

Figure S5.

Table S3.

```
REMARK FILENAME="HP8 1.pdb"
REMARK Accepted structure 1 of 20 structures.
REMARK Molecular dynamics scheme : torsion; torsion; cartesian; minimize.
REMARK High temperature dynamics :
          temp: 50000; steps: 1000; time(ps): 15.
REMARK
REMARK 1st cooling stage :
         temp: 50000->0; steps: 1000; time(ps): 15; temp step: 250.
REMARK
REMARK 2nd cooling stage :
REMARK
         temp: 2000->0; steps: 3000; time(ps): 15; temp step: 25.
REMARK Total of 2000 steps of minimization.
REMARK VDW scale factors 0.1; 0.1->1; 1->4; 1.
REMARK 154 NOEs in 1 class(es) with scale factors of 150; 150; 150; 75.
REMARK averaging function: sum.
REMARK 0 3-bond j-couplings.
REMARK 0 1-bond j-couplings.
REMARK 0 carbon chemical shifts.
REMARK 0 proton chemical shifts.
REMARK 0 diffusion anisotropy restraints.
REMARK 0 susceptability anisotropy restraints.
REMARK 0 dihedral restraints.
REMARK 0 planarity restraints.
REMARK NCS restraints not used.
bond, angles, improp, vdw(<1.6), dihed</pre>
REMARK
REMARK violations: 0 1 0
                                         0
                                                 6
REMARK RMSD : 0.0060 0.658 0.491
                                      26.029
noe, cdih, coup, oneb, carb-a, carb-b,
REMARK
REMARK violations: 0 0 0
                                     0 0 -----
REMARK RMSD : 0.063 0.000 0.000 0.000 0.000 0.000
REMARK 0.2/2 viol.: 5 0
                              0
dani, sani
REMARK
REMARK violations : 0
                       0
REMARK RMSD : 0.000 0.000
REMARK .2/.1 viol.: 0 0
REMARK overall = 50.7669
REMARK bon = 7.45625
           = 24.3984
REMARK ang

        REMARK ang
        _

        REMARK imp
        = 4.21964

        REMARK vdw
        = -31.3351

REMARK harm = 0
REMARK noe = 46.0277
REMARK coup = 0
REMARK oneb = 0
          = 0
REMARK carb
REMARK prot = 0
REMARK dani = 0
REMARK sani = 0
REMARK cdih = 0
           = 0
REMARK ncs
```

REMARK	=====	=====	=====			=======	=======	======	==
АТОМ	1	N	TRP	1	2.082	0.895	5.836	1.00	0.00
АТОМ	2	HN	TRP	1	2.185	0.498	6.721	1.00	0.00
АТОМ	3	CA	TRP	1	1.281	0.182	4.857	1.00	0.00
АТОМ	4	HA	TRP	1	1.914	-0.054	4.018	1.00	0.00
ATOM	5	CB	TRP	1	0.765	-1.117	5.466	1.00	0.00
ATOM	6	HB1	TRP	1	0.059	-1.555	4.802	1.00	0.00
АТОМ	7	HB2	TRP	1	0.282	-0.909	6.406	1.00	0.00
АТОМ	8	CG	TRP	1	1.841	-2.117	5.703	1.00	0.00
АТОМ	9	CD1	TRP	1	2.400	-2.454	6.891	1.00	0.00
АТОМ	10	HD1	TRP	1	2.114	-2.019	7.831	1.00	0.00
АТОМ	11	CD2	TRP	1	2.481	-2.909	4.712	1.00	0.00
АТОМ	12	NE1	TRP	1	3.369	-3.412	6.701	1.00	0.00
АТОМ	13	HE1	TRP	1	3.918	-3.816	7.405	1.00	0.00
АТОМ	14	CE2	TRP	1	3.434	-3.709	5.363	1.00	0.00
АТОМ	15	CE3	TRP	1	2.336	-3.013	3.335	1.00	0.00
АТОМ	16	HE3	TRP	1	1.602	-2.420	2.800	1.00	0.00
АТОМ	17	CZ2	TRP	1	4.244	-4.607	4.672	1.00	0.00
АТОМ	18	HZ2	TRP	1	4.977	-5.221	5.172	1.00	0.00
АТОМ	19	CZ3	TRP	1	3.128	-3.898	2.651	1.00	0.00
АТОМ	20	HZ3	TRP	1	3.017	-3.986	1.587	1.00	0.00
АТОМ	21	CH2	TRP	1	4.077	-4.689	3.315	1.00	0.00
АТОМ	22	HH2	TRP	1	4.679	-5.372	2.734	1.00	0.00
АТОМ	23	C	TRP	1	0.113	1.024	4.360	1.00	0.00
АТОМ	24	0	TRP	1	-0.669	1.557	5.150	1.00	0.00
АТОМ	25	СТ	TRP	1	3.480	2.681	6.688	1.00	0.00
АТОМ	26	HA1	TRP	1	2.830	3.327	7.265	1.00	0.00
АТОМ	2.7	HA2	TRP	1	4,286	3.258	6.271	1.00	0.00
АТОМ	28	HA3	TRP	1	3.882	1.893	7.312	1.00	0.00
АТОМ	29	CX	TRP	1	2.679	2.059	5.565	1.00	0.00
АТОМ	30	0X	TRP	1	2.599	2.614	4.467	1.00	0.00
АТОМ	31	N	VAT.	2	0.004	1.122	3.039	1.00	0.00
АТОМ	32	HN	VAT.	2	0.653	0.665	2.477	1.00	0.00
АТОМ	33	CA	VAT.	2	-1.061	1.877	2.404	1.00	0.00
	34	НΔ	VAT.	2	-1.768	2 141	3 169	1 00	0 00
	35	CB	VIII VAT.	2	-0 544	3 178	1 748	1 00	0 00
	36	НВ	VIII VAT.	2	_1 379	3 647	1 247	1 00	0 00
АТОМ	37	CG1	VAL VAL	2	-0.018	4 148	2 803	1 00	0.00
	38	HG11	VAT.	2	1 044	4 289	2.664	1 00	0 00
	30	HG12	VAT.	2	_0 200	3 747	3 789	1 00	0 00
	40	HG12	VIII VAT.	2	-0.522	5 098	2 702	1 00	0 00
	40	CC2	VAL VAL	2	0 534	2 884	0 707	1 00	0.00
	41	uC21		2	0.229	2.004	-0.250	1 00	0.00
	42			2	0.229	1 818	-0.230	1 00	0.00
	43	HG22		2	1 462	3 3/0	1 008	1 00	0.00
	44	nGZ J		2	1.402	1 026	1 254	1 00	0.00
	45	0		2	-1.709	0 217	1.554	1 00	0.00
	40	N		2	-1.125	1 005	1 229	1 00	0.00
	47			2	-3.090	1.095	1 093	1 00	0.00
	40			ວ ຈ	-3.335	T.0/0	U 200 T•202	1 00	0.00
	49		тик	ა ი	-3.090	U.J∠Ŏ 0 210	0.170		0.00
	50	пА СР	тик	ວ ວ	-J.210	0 52/	-U.I/Z	1 00	0.00
ATOM	51 50		THK	3 2	-4.931	-0.034	1 450	1 00	0.00
ATOM	5Z		THK	3 2		U.U89	1.452	1 00	0.00
ATOM	- 53 54	UGI	THK	3 2		-1.093	2.310	1 00	0.00
ALOM	34	HG I	тик	3	-3.314	-1.JU4	2.09/	T.00	0.00

АТОМ	55	CG2	THR	3	-5.477	-1.677	0.321	1.00	0.00
ATOM	56	HG21	THR	3	-6.215	-1.300	-0.369	1.00	0.00
ATOM	57	HG22	THR	3	-5.933	-2.406	0.975	1.00	0.00
ATOM	58	HG23	THR	3	-4.671	-2.142	-0.227	1.00	0.00
ATOM	59	С	THR	3	-4.596	1.274	-0.584	1.00	0.00
ATOM	60	0	THR	3	-5.447	2.069	-0.177	1.00	0.00
ATOM	61	N	ILE	4	-4.225	1.204	- 1.867	1.00	0.00
ATOM	62	HN	ILE	4	-3.531	0.558	-2.141	1.00	0.00
ATOM	63	CA	ILE	4	-4.822	2.084	-2.872	1.00	0.00
ATOM	64	HA	ILE	4	-5.761	2.432	-2.473	1.00	0.00
ATOM	65	CB	ILE	4	-3.920	3.313	-3.145	1.00	0.00
ATOM	66	HB	ILE	4	-2.982	2.958	-3.544	1.00	0.00
ATOM	67	CG1	ILE	4	-3.648	4.083	-1.847	1.00	0.00
ATOM	68	HG11	ILE	4	-3.413	3.380	-1.061	1.00	0.00
ATOM	69	HG12	ILE	4	-4.533	4.638	- 1 . 573	1.00	0.00
ATOM	70	CG2	ILE	4	-4.553	4.232	-4.182	1.00	0.00
ATOM	71	HG21	ILE	4	-5.454	4.668	-3.776	1.00	0.00
ATOM	72	HG22	ILE	4	-4.796	3.663	-5.068	1.00	0.00
ATOM	73	HG23	ILE	4	-3.858	5.017	-4.439	1.00	0.00
ATOM	74	CD1	ILE	4	-2.500	5.063	-1.952	1.00	0.00
ATOM	75	HD11	ILE	4	-1.685	4.607	-2.495	1.00	0.00
ATOM	76	HD12	ILE	4	-2.165	5.333	-0.961	1.00	0.00
ATOM	77	HD13	ILE	4	-2.829	5.949	-2.474	1.00	0.00
ATOM	78	С	ILE	4	-5.074	1.341	-4.188	1.00	0.00
ATOM	79	0	ILE	4	-4.179	0.661	-4.697	1.00	0.00
ATOM	80	Ν	PRO	5	-6.301	1.448	-4.763	1.00	0.00
ATOM	81	CA	PRO	5	-6.622	0.756	-6.024	1.00	0.00
ATOM	82	HA	PRO	5	-5.854	0.922	-6.749	1.00	0.00
ATOM	83	CB	PRO	5	-7.937	1.395	-6.488	1.00	0.00
ATOM	84	HB1	PRO	5	-8.762	0.745	-6.235	1.00	0.00
ATOM	85	HB2	PRO	5	-7.914	1.549	-7.559	1.00	0.00
ATOM	86	CG	PRO	5	-8.030	2.687	-5.760	1.00	0.00
ATOM	87	HG1	PRO	5	-9.064	2.916	-5.561	1.00	0.00
ATOM	88	HG2	PRO	5	-7.579	3.473	-6.348	1.00	0.00
ATOM	89	CD	PRO	5	-7.284	2.513	-4.468	1.00	0.00
ATOM	90	HD1	PRO	5	-7.958	2.208	-3.681	1.00	0.00
ATOM	91	HD2	PRO	5	-6.791	3.435	-4.207	1.00	0.00
ATOM	92	С	PRO	5	-6.807	-0.750	-5.857	1.00	0.00
ATOM	93	0	PRO	5	-7.168	-1.450	-6.806	1.00	0.00
ATOM	94	N	GLY	6	-6.544	-1.237	-4.656	1.00	0.00
ATOM	95	HN	GLY	6	-6.253	-0.630	-3.960	1.00	0.00
ATOM	96	CA	GLY	6	-6.666	-2.649	-4.370	1.00	0.00
ATOM	97	HA1	GLY	6	-7.012	-3.157	-5.258	1.00	0.00
ATOM	98	HA2	GLY	6	-7.396	-2.783	-3.585	1.00	0.00
ATOM	99	С	GLY	6	-5.352	-3.270	-3.931	1.00	0.00
ATOM	100	0	GLY	6	-5.344	-4.390	-3.417	1.00	0.00
ATOM	101	Ν	LYS	7	-4.232	-2.563	-4.147	1.00	0.00
ATOM	102	HN	LYS	7	-4.279	-1.686	-4.574	1.00	0.00
АТОМ	103	CA	LYS	7	-2.933	-3.090	-3.778	1.00	0.00
АТОМ	104	HA	LYS	7	-3.022	-4.154	-3.785	1.00	0.00
АТОМ	105	СВ	LYS	7	-1.869	-2.676	-4.797	1.00	0.00
АТОМ	106	HB1	LYS	7	-0.896	-2.845	-4.363	1.00	0.00
АТОМ	107	HB2	LYS	7	-1.973	-1.623	-5.004	1.00	0.00
АТОМ	108	CG	LYS	7	-1.945	-3.438	-6.111	1.00	0.00
ATOM	109	HG1	LYS	7	-2.932	-3.863	-6.215	1.00	0.00

АТОМ	110	HG2	LYS	7	-1.211	-4.230	-6.099	1.00	0.00
АТОМ	111	CD	LYS	7	-1.669	-2.531	-7.300	1.00	0.00
АТОМ	112	HD1	LYS	7	-0.687	-2.095	-7.187	1.00	0.00
АТОМ	113	HD2	LYS	7	-2.411	-1.748	-7.322	1.00	0.00
АТОМ	114	CE	LYS	7	-1.722	-3.297	-8.613	1.00	0.00
АТОМ	115	HE1	LYS	7	-1.877	-2.594	-9.418	1.00	0.00
АТОМ	116	HE2	LYS	7	-2.551	-3.989	-8.578	1.00	0.00
АТОМ	117	NZ	LYS	7	-0.467	-4.059	-8.867	1.00	0.00
АТОМ	118	HZ1	LYS	7	-0.335	-4.786	-8.135	1.00	0.00
АТОМ	119	HZ2	LYS	7	0.351	-3.416	-8.854	1.00	0.00
АТОМ	120	HZ3	LYS	7	-0.513	-4.522	-9.797	1.00	0.00
АТОМ	121	С	LYS	7	-2.485	-2.648	-2.388	1.00	0.00
АТОМ	122	0	LYS	7	-3.001	-1.685	-1.821	1.00	0.00
АТОМ	123	N	HIS	8	-1.486	-3.364	-1.878	1.00	0.00
АТОМ	124	HN	HIS	8	-1.121	-4.098	-2.407	1.00	0.00
АТОМ	125	CA	HIS	8	-0.884	-3.098	-0.586	1.00	0.00
АТОМ	126	HA	HIS	8	-1.403	-2.276	-0.116	1.00	0.00
АТОМ	127	CB	HIS	8	-0.999	-4.342	0.287	1.00	0.00
АТОМ	128	HB1	HIS	8	-0.056	-4.871	0.275	1.00	0.00
АТОМ	129	HB2	HIS	8	-1.763	-4.979	-0.108	1.00	0.00
АТОМ	130	CG	HIS	8	-1.350	-4.038	1.700	1.00	0.00
АТОМ	131	ND1	HIS	8	-2.638	-4.041	2.194	1.00	0.00
АТОМ	132	HD1	HIS	8	-3.449	-4.247	1.684	1.00	0.00
АТОМ	133	CD2	HIS	8	-0.560	-3.706	2.721	1.00	0.00
АТОМ	134	HD2	HIS	8	0.500	-3.608	2.670	1.00	0.00
АТОМ	135	CE1	HIS	8	-2.610	-3.715	3.476	1.00	0.00
АТОМ	136	HE1	HIS	8	-3.465	-3.627	4.128	1.00	0.00
АТОМ	137	NE2	HIS	8	-1.355	-3.508	3.821	1.00	0.00
АТОМ	138	HE2	HIS	8	-1.034	-3.393	4.740	1.00	0.00
АТОМ	139	С	HIS	8	0.576	-2.714	-0.812	1.00	0.00
АТОМ	140	0	HIS	8	1.340	-3.490	-1.391	1.00	0.00
АТОМ	141	Ν	ILE	9	0.953	-1.502	-0.404	1.00	0.00
АТОМ	142	HN	ILE	9	0.308	-0.915	0.024	1.00	0.00
АТОМ	143	CA	ILE	9	2.306	-1.023	-0.623	1.00	0.00
АТОМ	144	HA	ILE	9	2.896	-1.861	-0.963	1.00	0.00
АТОМ	145	СВ	ILE	9	2.396	0.094	-1.715	1.00	0.00
АТОМ	146	HB	ILE	9	2.957	0.893	-1.272	1.00	0.00
АТОМ	147	CG1	ILE	9	1.040	0.676	-2.191	1.00	0.00
АТОМ	148	HG11	ILE	9	1.224	1.258	-3.083	1.00	0.00
АТОМ	149	HG12	ILE	9	0.642	1.339	-1.438	1.00	0.00
АТОМ	150	CG2	ILE	9	3.178	-0.397	-2.923	1.00	0.00
АТОМ	151	HG21	ILE	9	4.028	0.251	-3.087	1.00	0.00
АТОМ	152	HG22	ILE	9	2.538	-0.380	-3.795	1.00	0.00
АТОМ	153	HG23	ILE	9	3.520	-1.405	-2.751	1.00	0.00
АТОМ	154	CD1	ILE	9	-0.024	-0.347	-2.539	1.00	0.00
АТОМ	155	HD11	ILE	9	-0.690	-0.476	-1.699	1.00	0.00
АТОМ	156	HD12	ILE	9	0.446	-1.290	-2.775	1.00	0.00
АТОМ	157	HD13	ILE	9	-0.587	-0.003	-3.394	1.00	0.00
АТОМ	158	С	ILE	9	2.943	-0.473	0.653	1.00	0.00
АТОМ	159	0	ILE	9	2.351	0.357	1.346	1.00	0.00
АТОМ	160	N	PHE	10	4.178	-0.908	0.927	1.00	0.00
АТОМ	161	HN	PHE	10	4.610	-1.546	0.313	1.00	0.00
АТОМ	162	CA	PHE	10	4.925	-0.421	2.088	1.00	0.00
АТОМ	163	HA	PHE	10	4.219	-0.086	2.839	1.00	0.00
АТОМ	164	СВ	PHE	10	5.813	-1.523	2.681	1.00	0.00

ATOM	165	HB1	PHE	10	6.581	-1.772	1.965	1.00	0.00
ATOM	166	HB2	PHE	10	5.214	-2.404	2.856	1.00	0.00
ATOM	167	CG	PHE	10	6.487	-1.106	3.986	1.00	0.00
ATOM	168	CD1	PHE	10	7.762	-0.531	3.979	1.00	0.00
ATOM	169	HD1	PHE	10	8.283	-0.388	3.043	1.00	0.00
АТОМ	170	CD2	\mathbf{PHE}	10	5.848	-1.266	5.224	1.00	0.00
ATOM	171	HD2	PHE	10	4.861	-1.702	5.272	1.00	0.00
ATOM	172	CE1	PHE	10	8.370	-0.137	5.159	1.00	0.00
ATOM	173	HE1	\mathbf{PHE}	10	9.357	0.307	5.141	1.00	0.00
ATOM	174	CE2	PHE	10	6.467	-0.871	6.397	1.00	0.00
ATOM	175	HE2	PHE	10	5.966	-1.001	7.348	1.00	0.00
ATOM	176	CZ	PHE	10	7.722	-0.309	6.360	1.00	0.00
ATOM	177	ΗZ	PHE	10	8.197	-0.001	7.272	1.00	0.00
ATOM	178	С	PHE	10	5.781	0.766	1.657	1.00	0.00
ATOM	179	0	\mathbf{PHE}	10	6.941	0.603	1.271	1.00	0.00
ATOM	180	N	THR	11	5.191	1.957	1.699	1.00	0.00
ATOM	181	HN	THR	11	4.258	2.020	1.999	1.00	0.00
ATOM	182	CA	THR	11	5.890	3.171	1.287	1.00	0.00
ATOM	183	HA	THR	11	6.922	2.909	1.118	1.00	0.00
ATOM	184	СВ	THR	11	5.294	3.699	-0.027	1.00	0.00
ATOM	185	HB	THR	11	5.684	4.688	-0.213	1.00	0.00
ATOM	186	OG1	THR	11	3.880	3.790	0.054	1.00	0.00
ATOM	187	HG1	THR	11	3.497	2.909	0.064	1.00	0.00
ATOM	188	CG2	THR	11	5.635	2.840	-1.230	1.00	0.00
ATOM	189	HG21	THR	11	5.627	3.450	-2.121	1.00	0.00
ATOM	190	HG22	THR	11	4.906	2.050	-1.329	1.00	0.00
ATOM	191	HG23	THR	11	6.617	2.409	-1.099	1.00	0.00
ATOM	192	С	THR	11	5.835	4.245	2.377	1.00	0.00
ATOM	193	0	THR	11	5.579	5.418	2.093	1.00	0.00
ATOM	194	N	GLY	12	6.090	3.831	3.624	1.00	0.00
ATOM	195	HN	GLY	12	6.297	2.885	3.780	1.00	0.00
ATOM	196	CA	GLY	12	6.079	4.756	4.751	1.00	0.00
ATOM	197	HA1	GLY	12	6.987	5.341	4.727	1.00	0.00
ATOM	198	HA2	GLY	12	6.060	4.185	5.667	1.00	0.00
ATOM	199	С	GLY	12	4.887	5.700	4.742	1.00	0.00
ATOM	200	OT1	GLY	12	3.738	5.211	4.756	1.00	0.00
ATOM	201	OT2	GLY	12	5.106	6.929	4.720	1.00	0.00
ENDMDL									

6. RMSD and RMSF Plots from Simulations of Peptides in the Ground State

Panel *A* of Figure S6 shows the root-mean-square deviations (RMSDs) of the C α carbons from their initial positions during ground-state simulations of the hairpin peptide Ac-WVTIpGKAIFTG-NH₂. Panels *B* and *C* show the same for the analogs with His replacing Ala8 (*B*) or Phe10 (*C*). *D* and *E* show the RMSDs for peptides with Tyr replacing Ala8 or Phe10; *F* and *G*, for peptides with Glu, Gln, Asp or Asn at position 8. The peptides containing His or Tyr were simulated with the side chains of these residues in both their neutral (H or Y, *black curves*) and ionized (H+ or Y–, *blue* and *red*, respectively) forms. The MD trajectories were propagated in 1-fs steps at 300 K, and the RMSD was calculated at 1-ps intervals.

Figure S6.

Panels *A*-*C* of Figure S7 show the C α RMSDs from ground-state trajectories of the TrpCage16b peptide DAFAQWLADaGPASaRPPPS (*A*, *black curve*), and its variants with Ala replacing Asp9 (*A*, *cyan*), citrulline (Cit) replacing Arg16 (*B*, *black*), Leu replacing Asp9 (*B*, *cyan*), Ala replacing Asp9 and norvaline (Nva) replacing Arg16 (*C*, *black*), or Leu replacing Asp9 and Ile replacing Arg16 (*C*, *cyan*). Panels *D*-*F* show the C α RMSDs from trajectories of TrpCage10b peptide, DAFAQWLKDGGPASGRPPPS, with norvaline (Nva) replacing Arg16 (*A*, *black curve*), Glu replacing Asp9 (*A*, *cyan*), Δ Ser20 (*B*, *black*), ornithing (Orn) replacing Arg16 (*B*, *cyan*). Arg replacing Asp9 and Glu replacing Arg16 (*C*, *black*), or Ala replacing Lys8 (*C*, *cyan*).

Figure S7.

Figure S8 shows representative plots of the root-mean-square fluctuations (RMSFs) of the C α carbons about their mean positions in the same simulations as Figures S6 and S7.

Figure S8.

7. Calculated $\pi - \pi^*$ and CT Energies of Additional Peptides

Figure S9 shows the calculated energies of the first two excited singlet π - π * states and lowest four CT states of the hairpin peptide with Trp at position 1 and either serine (*A*), cyclohexylalanine (*B*) or ε -N-acetyllysine (*C*) relacing Ala at position 8. The results are similar to those obtained with the Ala8 peptide.

Figure S9.

Figure S10 shows the energy distributions for excited singlet π - π * states and CT states of the Arg16Nva variant of the Trp-cage10b peptide (*A*), and the Asp8Ala and Asp9Leu/Arg16Ile variants of TrpCage16b peptide (*B* and *C*, respectively). The results are similar to those obtained with the other Trp-cage peptides (Figure 8).

Figure S10.

8. Predicted Fluorescence Yields

Figure S11 shows the correlation of the measured fluorescence yields with the yields predicted by using eq. (24) with $\phi_0 = 0.2475$. The results are for the same 26 peptides used in Figure 10 of the text, and the symbols are the same as in that figure (*circles*, hairpin peptides; *squares*, Trp-cage 16b peptides; and *triangles*, Trp-cage 10b peptides). Other details are given in the legend to Figure 10. The *straight line* is a linear least-squares fit to the data ($R^2 = 0.836$, Pearson correlation coefficient = 0.914, *y*-intercept = 0.0050 ± 0.0132, slope = 0.9411 ± 0.0851. Note that eq. (24) does not consider the magnitude of the electron-transfer matrix element. Equations (25) – (27) give better overall agreement with experiment, particularly for the peptides with low fluorescence yields (see Figure 10). Plots of $|V|^2 \xi/(|V|^2 + \hbar\xi/2\pi)$ and ρ_{FC} , the two fluctuating functions that enter into eq. (25) are shown in Fig. S12. Table S4 gives the detailed results of both treatments, along with the measured fluorescence yields and their errors.

Figure S11.

Figure S12.

Table S4

Peptide	$\Phi_{\rm f}$ obs ^a	$\Phi_{\rm f}$ calc ^b	$\Phi_{\rm f}$ calc ^c
Hairpin ^d	0.25 ± 0.02	0.2475	0.2475
Ala8Nak	0.25 ± 0.01	0.2475	0.2475
Ala8Cha	0.27 ± 0.01	0.2475	0.2475
Ala8Ser	0.22 ± 0.01	0.2475	0.2475
Ala8Asn	0.28 ± 0.03	0.2313	0.1817
Ala8Gln	0.23 ± 0.02	0.2096	0.1427
Ala8Asp	0.0649 ± 0.0065	0.0176	0.0240
Ala8Glu	0.1124 ± 0.0113	0.1095	0.0436
Ala8His	0.2351 ± 0.0122	0.2471	0.2461
Ala8His+	0.0860 ± 0.0063	0.0265	0.0332
Ala8Tyr	0.1332 ± 0.0027	0.2144	0.1530
Ala8Tyr-	0.0162 ± 0.0061	0.0003	0.0354
Phe10His	0.2145 ± 0.0091	0.2394	0.2241
Phe10His+	0.0454 ± 0.0054	0.1116	0.0662
Phe10Tyr	0.1726 ± 0.0042	0.2149	0.1514
Phe10Tyr-	0.0212 ± 0.0082	0.0003	0.0536
Trp1Phe/Phe10Trp	0.068 ± 0.005	0.0519	0.0298
Trp-cage 16b ^e	0.009 ± 0.001	0.0293	0.0384
Asp9Leu	0.019 ± 0.002	0.0726	0.0475
Asp9Ala/Arg16Nva	0.014 ± 0.001	0.0835	0.0497
Arg16Cit	0.016 ± 0.003	0.0162	0.0363
Asp9Leu/Arg16Ile	0.014 ± 0.004	0.0547	0.0438
Trp-cage 10b ^f			
Asp9Arg / Arg16Glu	0.040 ± 0.002	0.1438	0.0727
Asp9Glu	0.043 ± 0.005	0.0604	0.0457
ΔSer20	0.024 ± 0.001	0.0363	0.0393
Lys8Ala	0.017 ± 0.003	0.0223	0.0375

^a Observed fluorescence yield. The values for hairpin peptides with Asp, Glu, His or Tyr at position 8 or 10 are the asymptotes of the titration curves shown in Figure 2 of the main text.

^b Fluorescence yield calculated using eq. (24) with $\phi_0 = 0.2475$.

^c Fluorescence yield calculated using eqs. (25) - (27) with the parameter values given in the text.

^d Hairpin peptide Ac-WVTIpGKAIFTG-NH₂ with substitutions as indicated (Nak = N-acetyllysine, Cha = cyclohexylalanine). Ionized forms of His and Tyr are denoted by + and -.

^e Trp-cage peptide 16b (DAFAQWLADaGPASaRPPPS) with substitutions as indicated (Nva = norvaline).

^f Trp-cage peptide 10b (DAFAQWLKDGGPASGRPPPS) with substitutions or deletions as indicated.

11. References for Supplementary Material

- (1) Gubskaya, A. V.; Kusalik, P. G. J. Chem. Phys. 2002, 117, 5290-5302.
- (2) Silvestrelli, P. L.; Parrinello, M. J. Chem. Phys. 1999, 111, 3572-3580.

(3) Bernardo, D. N.; Ding, Y.; Krogh-Jespersen, K.; Levy, R. M. J. Phys. Chem. 1994, 98, 4180-4187.

- (4) Burnham, C. J.; Xantheas, S. S. J. Chem. Phys. 2002, 116,
- (5) Ren, P.; Ponder, J. W. J. Phys. Chem. B 2003, 107, 5933-5947.
- (6) Jensen, L.; Swart, M.; Van Duijnen, P. T. J. Chem. Phys. 2005, 122, 034103.
- (7) Soper, A. K.; Benmore, C. J. Phys. Rev. Lett. 2008, Art. 065502.

(8) Sorensen, J. M.; Hura, G.; Glaeser, R. M.; Head-Gordon, T. J. Chem. Phys. 2000, 113, 9149-9161.

(9) Soper, A. K. J. Phys. Condensed Matter 2007, Art. 335206.

(10) Ichikawa, K.; Kameda, Y.; Yamaguchi, T.; Wakita, H.; Misawa, M. *Mol. Phys.* **1991**, *73*, 79-86.

(11) Mills, R. J. Phys. Chem. 1973, 77, 685-688.

(12) Holz, M.; Heil, S. R.; Sacco, A. Phys. Chem. Chem. Phys. 2000, 2, 4740-4742.