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1 Supplementary Methods

1.1 Image processing and contour tracking algorithm

In contour tracking of the live cell images, the raw images are converted to from 16-bit to 8-bit to enhance
the processing speed. To even out the cell-to-cell variations in brightness, the images are minimally enhanced
using median filtering and entropy filtering routines in MATLAB R2011bs Image processing toolbox. The
first image in the time-series is initialized either by 1. using intensity of the image or 2. using non-informative
mask. In most cases, the two methods of contour initialization yields reasonably good agreement (determined
by the square difference in the contour point coordinates). In rare case when the two methods do not yield
similar contours, the image is enhanced and the contour is initialized using the intensity thresholded mask
of the enhanced image. For subsequent images, the detected contour of the immediate prior image is use to
initialize contour in the contour finding routine. Given that in most of the time series images cells do not
drastically change shape and size over one imaging interval, the detected contour from the prior image often
serves as an appropriate initial contour. In the traditional naive active contour algorithm, the objective
function is defined by the gradient in image intensity alone. For single cell tracking application, however,
the active contours performance can be significantly improved by using the gradient in intensity and the
detected contour of the neighboring images in the time series to bias the contours objective function. The
image preprocessing subroutines and subroutine for parsing the contour mask as initial contour for the
level set optimization of image in the subsequent time step were developed by the authors. The level set
active contour method is proposed and developed by Tony F. Chan and Luminita A. Vese ([1]). The level
set routine was adopted from Yue Wus contribution on publicly accessible MathWorks file exchange website
(http://www.mathworks.com/matlabcentral/fileexchange/23445) and slightly modify the level sets objective
function so the algorithm works well for our images.

1.2 Semi supervised sessile vs. motile state classification

In our dataset, there are more than 500,000 contour instances that need to classified into either sessile or
motile state. To meet the challenge of this classification task, we take a semi-supervised learning approach.
First, we generate state-labeled data by sampling 10 non-overlapped trajectories training sets (about 2% of
the total trajectories) and clustering them using agglomerative hierarchical clustering algorithm based on
Euclidean separation of the contour instances in feature space. Based on their cluster assignment, these
individual instances are labeled S or M. We then use this state-labeled training set to train 50 base clas-
sifiers (decision stumps) using AdaBoost algorithm ([2, 3]). To evaluate the classifier performance, we
perform K fold cross validation (with K varying from 2 to 15) by subdividing the labeled data into K
smaller chunks and use the first 1/K fraction to train the based classifier. We then evaluate the error
rate of the ensemble classifier on the other K-1/K fraction of the labeled data (SI Appendix Fig S3). We
find that most K-fold cross validated ensemble classifiers classify about 8% of the data incorrectly. More
important, the test error rates are comparable to the corresponding training error rates of the ensemble
classifiers, suggesting that a small fraction of the labeled data cannot be corrected classified with the en-
semble classifier. The cross validated ensemble classifier is used to classify the rest of the contour instances
and the classification results were visualized against the contour traces to ensure that the classification re-
sult follow definitions of sessile and migratory states. The subroutines for sampling the trajectories and
for generating the labeled data is developed by the authors. The adaptive boosting algorithm is imple-
mented in MATLAB by by Dirk-Jan Kroon and is publicly available through his MathWorks file exchange
page (http://www.mathworks.com/matlabcentral/fileexchange/27813-classic-adaboost-classifier). The ag-
glomerative hierarchical clustering routine is available through MATLAB R2011as Bioinformatics Toolbox.
The PCA routine used in data analysis in this manuscript is developed by Laurens van der Maaten and
is publicly downloadable as part of the toolbox for Dimensionality Reduction from the following website:
(http://homepage.tudelft.nl/19j49/Matlab Toolbox for Dimensionality Reduction.html).
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1.3 Angiogenesis sprouting assay in a high throughput microfluidic device (HTD)

PDMS device preparation

High throughput microfluidic photoresist pattarned silicon wafer mold was designed in house and custom-
ordered from the Stanford University Microfluidic Foundry. The microfluidic system consisting of PDMS
(polydimethylsiloxane; Silgard Dow Chemical, MI; Cat.No. 184) was prepared on SU-8 2050 photoresist-
patterned wafers (MicroChem, MA) using a standard soft lithography process described previously ([4, 5]).
The fabricated PDMS channel and the microscopy grade cover slip used to seal the channel were sterilized and
dried at 80◦C overnight. Subsequently, they were plasma treated (Harrick, CA) in air, and bonded together
to form a closed microfludic channel. After the plasma bonding, all microfluidic channels were coated with
1 mg/mL poly-D-lysine hydrobromide (Sigma-Aldrich St. Loius, MO; Cat.No. P7886) and incubated for at
least 4 hours at 37◦C in a humidified environment. The device was then washed thoroughly with sterile
water and dried at 80◦C overnight to allow the PDMS surface to return to its native hydrophobicity - a
crucial surface property in confining the extracellular matrix within a specified region.

Extracellular matrix casting and cell seeding

Microfluidic device that have been bonded, sterilized and surface treated were brought to room temperature
prior to gel injection. Type I rat tail collagen is diluted to 2.0 mg/mL concentration and calibrated to pH
7.4 as in the on-gel sprouting assay. While at 4◦C, the collagen gel solution was carefully injected into the
microfluidic gel region through a gel filling port using a standard 200 µL micropipette tip. The collagen gel
was allowed to solidify at 37◦C in a humidified chamber for at least one hour. After gel solidification, 37◦C
cell culture medium was flown into the device on both sides of the gel through the medium ports. The gel
was incubated with the cell culture medium for at least one hour before cell seeding. At the cell seeding
time, hMVECs and HUVECs cell suspensions were diluted to the instant monolayer seeding density, flown
into the channel, and allowed to adhered for at least one hour prior to additional medium filling.

Inflammatory cytokine treatment

After at least 24 hour of seeding in cell culture medium (EGM2MV; Lonza NJ Cat.No. CC-3202), hMVEC
culture were switched to conditioned medium contain- ing specified concentrations of recombinant human
VEGF and PF4 (Peprotech NJ; Cat.No. 100-20 and 300-16 respectively). Conditioned media were refreshed
every 24 hours onward.

Angiogenic sprout visualization and quantification

Sprouting endothelial cells in HTD were visualized under a phase contrast microscope every 24 hours after
seeding. Images were taken and analyzed using an image processing MATLAB script developed in house. At
the end point of the assay, 3D images of DAPI and Alexa-568 Phalloidin (Molecular Probes, Eugene, OR;
Cat.No. A12380) stained samples (in ongel and HTD setups) were imaged using a laser scanning microscopes
(Zeiss LSM510 and Olympus FV1000).

1.4 Hierarchical clustering of single cell state trajectories and phenotypic clus-
ter evaluation

The likelihood function of single cell state trajectories serves as an objective function for inferring the max-
imum likelihood estimates and Bayesian inference of the phenotypic state transition rates. The two sets of
parameters that determine the likelihood function which in turn determine the parameter estimates are:{a}
fss′ the trajectory length normalized frequencies of the transition from s to s′ states; and {b}

∑
ts the total

waiting time in a particular state s for that trajectory. To investigate the similarities or differences in the
likelihood functions of all the trajectories, we compute fss′ and

∑
ts of each trajectories and use them as
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classification features.

We perform hierarchical clustering of the single cell trajectories using an agglomerative clustering routine
clustergram, which is available through MATLAB R2011bs Bioinformatics Toolbox. For all the cytokine
conditions investigated in this study, we found that the clustergram routine yields clustering pattern that
follow the phenotypic behavior of single cells within the clusters (SI Appendix Fig S5), which we refer to as
‘phenotypic program based’ clustering pattern (grouping).

In clustering analysis, the main criteria used to evaluate the goodness of the clustering result are: 1. com-
pactness, 2. separation, and 3. partition fuzziness. Better clustering results is characterized by higher level
of compactness (cluster members should be as close as possible), higher level of separation (distinct clusters
should be separated as widely as possible), and lower level of fuzziness. To validate the phenotypic program
based grouping, we compute the mean intra-cluster spread, mean inter-group distances, and mean classifica-
tion entropies as scalar metrics of compactness, separation and fuzziness of the clustering results respectively.
In our study, intra-cluster spread is the pairwise distance of all data points within a cluster, inter-cluster
separation is the pairwise Euclidean distance between two cluster centers, and classification entropy is the
degree of uncertainty in cluster membership defined in an information theoretic sense. The classification
entropy is Shannons information entropy in which the probability of the uncertain random variable is cluster
membership.

We show that the phenotypic program based clustering is more compact, better separated, and better
partitioned than the condition based clustering (SI Appendix Fig S7). As an alternative to hard clustering
in which each data point belongs to exactly one cluster, cluster partition can be ‘fuzzy’. Fuzzy partition
allows each data point to be assigned to different clusters with varying degree of cluster membership – the
degree to which a data point associates with a particular cluster. By comparing the cluster membership of
all the data point assigned different clusters in the condition based grouping and phenotypic program based
group, we show that the phenotypic based grouping allows more distinct cluster assignment (SI Appendix
Fig S7), suggesting that phenotypic based grouping is better way of clustering the data than the condition
based one.

1.5 Pairwise statistical comparisons by Kolmogorov Smirnov test

Pairwise comparison were performed most extensively in two tasks: 1. comparing the condition- based rate
MLEs (λ(cond)) across cytokine conditions (Fig S5ab) and 2. comparing the cluster weights MLE across
cytokine conditions (Fig S12a-c). In comparing λ(cond), 1000 bootstrapped samples of 50 single cell MLE
trajectories were drawn from the pool of trajectories within each condition. Maximum likelihood of λ(cond))
were computed from the sampled trajectories to form λ(cond) distributions. In comparing the cluster weights,
1000 bootstrapped samples of 50 trajectories were drawn from the trajectories in each condition. The tra-
jectories were assigned to one of the five state transition dynamic clusters based on the relative Mahalonobis
distances of the trajectories to all the cluster centers. The cluster weights are computed for each boot-
strapped sample to form the distribution of cluster weights. In both of the pairwise statistical comparison
task, both the λ(cond) distributions and cluster weight distributions across conditions are compared using
MLE Kolmogorov-Smirnov test with the significance level of 0.05.
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2 Supplementary Modeling Approaches

2.1 Modeling single cell state trajectories as continuous time Markov chains
(CTMCs)

In this work, we model individual cell as a decision making entity called Markov agent that transition among
a finite number of phenotypic states. As we follow individual agent over time, we can trace out a sequence of
states through which the agent traverses as well as the corresponding waiting times before each transition.
We refer to the observed sequence as a cell’s state trajectory. In choosing a stochastic model to describe
the state transition of angiogenic endothelial cells, we showed that state trajectories satisfy the two Markov
criteria can be modeled as a continuous time Markov chain: 1. memorylessness and 2. conditional indepen-
dence properties (SI Appendix Fig S4).

A continuous time Markov chain (CTMC) is defined by the following descriptors: (1) a finite state set
S, (2) initial (marginal) state probabilities, (3) transition probabilities, and (4) state waiting time param-
eter. In the case of angiogenic endothelial cells, the appropriate set of phenotypic states are sessile (S),
proliferative (P), migratory (M), and apoptotic (A). In the following section, we construct the likelihood
expression of a single cell state trajectories from which the state transition rate parameters can be optimized.

Likelihood of one transition

s ...

s′2

s′N

s′1

λ1

λ2

λN

To construct an analytical expression for the likelihood function, we first
derive the probability of an occurrence of a state transition. Consider a
one step transition from s to a finite number of state reachable from s′n
shown below. The transition to state s′ 6= s happens at an exponentially
distributed random time with rate parameter µ = λ1 + . . .+ λN . At the
transition time, the new state s′ is chosen with the probabilitiy

ps′ =
λs′

λ1 + . . .+ λN
=

λs′

µ
.

Given the transition rate parameter set Λ = {λs} and the waiting time
parameter µ and assuming that the process is in state s initially, the
likelihood of the observing a transition ss′ is given by

`(sk+1 = s′|sk = s;T = τ ; Λs) = Pr(dwelling in si for ti)×
Pr(transitioning from s to s′)

= e−µsti × λss′

µs
.

Likelihood of one state trajectory

As the next step, consider an experimentally observed single cell state trajectory as a sequence of state
transitions. Let U = (s0, t0, s1, t1, . . . , sk−1, tk−1, sk) denotes the set of random variables describing a CTMC
of single cell state trajectory up to time t and let `ss′(t) represents the likelihood of ss′ type transition at time
t. Under the CTMC assumption, individual transition are independent of one another and the likelihood of
a state trajectory U is simply the product of individual transition in the trajectory. As such, the likelihood
of a particular state trajectory with η transitions is given by:

`(Ut |so,Λ) = Pso

η∏
i=1

`sisi+1(ti),
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where Pso is the initial probability of finding the process in state so initially.

We can further simplify the likelihood expression as follows. Let ηss′ be the total number ss′ type
transitions in a trajectory and let H be the set of all transition types. Since the transitions in a trajectory
are independence, one can factorize the above likelihood expression based on the transition types. The
resulting likelihood expression is given by

`(Ut |so,Λ) = Pso

∏
ss′∈H

( ηss′∏
hss′=1

`(ss′, τhss′ )
)

= Pso

∏
ss′∈H

(
λss′

µs

)ηss′

exp
(
−µs

ηss′∑
hss′=1

τhss′

)
.

To obtain the generalized likelihood expression for the entire observed population, one assumes inde-
pendence of state transition among cells in the population, in which case the joint likelihood is simply the
product of the likelihood of all trajectories within the population.

Estimation of the transition rate parameters

To obtain the state transition rate estimates from the data, we rely on two parameter estimation techniques:
Maximum likelihood estimation, and Bayesian estimation. Both of these estimation methods find parameter
values (in MLE case) or posterior rate distribution of the parameter (in BE case) that are most consistent
with the observation as described by the likelihood distribution.

Maximum Likelihood Estimation

Consider a set of state trajectories U = {U = (so, s1, t1, . . . sη−1, tη−1, sη)}. To find the parameter set that
is most consistent with the observed trajectories, we seek to optimize the above likelihood function for a
collection of state trajectories subject to the following constraints:∑

s′

λss′ = µs, ∀s and

λss′ ≥ 0, ∀ss′ ∈ H.

Since it is more convenient to optimize the logarithm of likelihood, we set up the optimization in term of log
likelihood using the Lagrange’s method:

argmax
(λss′ )∈Λ

log(`(Λ)) = argmax
(λss′ )∈Λ

L

= argmax
(λss′ )∈Λ

log(Pso) +
∑
ss′∈H

(
ηss′ log

(λss′
µs

)
− µs

ηss′∑
hss′=1

thss′

)
−
∑
s

(
ζs(
∑
ss′

λss′ − µs)

) ,
where ζss′ are the Lagrange’s multiplers. For each of the rate parameter λss′ , we take the derivatives of the
log likelihood with respect to λss′ , µs, andζss′ and set them to zero. The resulting system of equations take
the form:

∂

∂λss′
= 0 =

ηss′

λss′
− ζs ,

∂

∂µs
= 0 = −ηss

′

µs
−

ηss′∑
hss′=1

thss′ + ζs ,

∂

∂ζs
= 0 =

∑
s

λss′ − µs.
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Assuming that λss′ > 0, we rearrange the above expression and to obtain the maximum likelihood estimates
of the parameters:

λMLE
ss′ =

ηss′∑
hss′ thss′

(
1− ηss′∑

s ηss′

)
,

µMLE
s =

∑
s′ ηss′∑

hss′ thss′

(
1− ηss′∑

s ηss′

)
,

ζs =

∑
hss′ thss′

1− ηss′P
s′ ηss′

.

The above maximum likelihood estimators can be easily applied to multiple trajectories (i.e. a subpop-
ulation of multiple cells) by extending the summation of log likelihood over all trajectories U = {U}.

Bayesian estimation

To estimate the posterior distribution of the rate parameter we rely on the Bayes’ theorem which posits that
the posterior distribution of the parameters given the evidence (observed data) equals the likelihood of the
observed data given the parameters weighted by the evidence (marginal probability of the parameter), i.e.

P (Λ|U = {U}) =
P (U|Λ)× P (Λ)

P (U)

, =
P (U|Λ)× P (Λ)∫
Λ
P (U|Λ)× P (Λ)

.

2.2 Evaluation of the continuous time Markov chain criteria and application
for modeling phenotypic state transition data

Phenotypic state trajectories of a single cell can be represented a sequence of time-indexed random variables.
To determine if these trajectories can be represented by a Continuous time Markov chain, we evaluate
whether they satisfy the essential properties of a continuous time Markov process: 1. Exponential waiting
time (memorylessness) and 2. Markov property (conditional independence).

2.2.1 Waiting time distribution

We acquire the waiting time distribution by computing the dwell time within a particular state phenotypic
state from all the single cell state trajectories. We observe that the waiting time distribution of instances in
state S and M fit relatively well to exponential waiting time distribution with the goodness of fit of 0.73 for
instances S state and 0.97 for instances in M state. We are not able to obtain a reliable fit of the waiting
time distribution of instances in P, partially due to the small number of instances. For the A state instances,
the notion of waiting time (before transition) does not apply because trajectories terminate after transitions
to A state.

2.2.2 Conditional independence assumption (Markov property)

We first investigate the conditional independent assumption within smallest fragments of state trajectories
containing consecutive state transitions. These are three state fragments of state trajectories. To determine
whether our data satisfy the Markov property, we compare the likelihood distributions of the three state
fragment data predicted by either the model without the conditional independence assumption (full depen-
dence model) and without the conditional independence assumption (conditional independence model). The
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full dependence model predicts that these likelihood of a three state fragment S1S2S3 is given by

P (S3|S2, S1) =
N(S1, S2, S3)
N(S2, S3)

,

where N are the occurrences of specified fragments in the data. On the other hand, the conditional inde-
pendent model predicts that

P (S3|S2, S1) = P (S3|S2)× P (S2|S1) =
N(S2, S3)
N(S2)

× N(S1, S2)
N(S1)

.

We can estimate the likelihood distribution from the occurrence of these fragments in the data. If the
conditional independent model predicts a statistically similar likelihood distribution to the full dependence
model, then we conclude that the conditional independence assumption well approximate the observed state
transitions within the single cell state trajectories data set and that our single cell state trajectories follow
the conditional independent assumption. To measure the differences between the likelihood distributions
predicted by the full dependence and the conditional independence models, we compare the symmetric
Jensen-Shannon divergence (JSD) between the two distributions against JSD of computationally gener-
ated single cell state trajectories (background data generated from a full independence model in which the
three state fragments are fully independent and there is no inherent state transition patterns). Since the
background data set confers no dependence among the subsequent phenotypic transitions, the likelihood
distributions of this background dataset is consistent to both full dependence and conditional independence
models (P (S1|S2, S3) = P (S3|S2) × P (S2|S1) in both cases). We show that the average JSD of the data
is comparable to or smaller than of the background (independent transition data), suggesting that the two
models yields statistically the same likelihood distribution (SI Appendix Fig S4 c-d).

2.3 Switch model parameter optimization and model selection

To model the switch-like sprouting in response to VEGF and PF4, sprout density data were typically fitted
to a four-parameter Hill equation or hyperbolic Tangent switching equation with respective to one cytokine.
For the four parameter Hill equation, the predicted sprout response with changing one cytokine is given by

FHill
v (V |P ) = a0,V + a1,V

( V hv

ahv

2,V + V hv

)
;

FHill
p (P |V ) = a0,P + a1,P

( 1

a
hp

2,P + Php

)
,

where a0 denotes basal response, a1 is a lump parameter representing the effective maximal strength of
the response, a2 is a lump parameter representing effective binding/signal propagation coefficient, which
determines the zero cross point of the response function. The parameter h represents the Hill coefficient
which determines the sharpness of the switch-like response. For the hyperbolic Tangent switching equation,
the predicted response due to one cytokine is given by

FTanh
v (V |P ) = b0,V + b1,V (Tanh(b2,V V + b3,V ));
FTanh
p (P |V ) = b0,P + b1,P (Tanh(b2,PV + b3,P )),

where b0 denotes the basal response, b1 - a lump parameter representing the effective maximal strength of
the response, b2 - a lump parameter representing the sharpness of the response, and b3 - a lump param-
eter representing effective binding/signal propagation coefficient controlling the zero crossing point of the
response. To model the combined effect of the two cytokines, we consider variants of the switch like models
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in which the combined effects of the two cytokines multiplicative and additive.

FHill
(+) (V, P ) =

[
α0,V + α1,V

(
V hv

αhv

2,V + V hv

)]
+

[
α0,P + α1,P

(
1

α
hp

2,V + Php

)]

= α0 + α1

(
V hv

αhv
2 + V hv

)
+ α3

(
1

α
hp

4 + Php

)
;

FHill
(×) (V, P ) = α0 + α1

(
V hv

αhv
2 + V hv

)
×
(

1

α
hp

4 + Php

)
;

FTanh
(+) (V, P ) = β0 + β1

(
Tanh

(
β2V + β3

))
+ β4(Tanh(β5P + β6

))
;

FTanh
(×) (V, P ) = β0 + β1

(
Tanh

(
β2V + β3

))
×
(

Tanh
(
β4P + β5

))
.

For each these model variants, we employ MATLAB’s nlinfit function which finds optimal model parameters
using the Levenberg-Marquardt algorithm (LMA) to minimize the least square error between the switch
model prediction and the observed sprout density. We assess the performance of difference model variants
by 1. the normality of residual (Fig S6b and d) and 2. the forward and reverse Kullbeck-Liebler divergence
(DKL(F ∗||Fo) and DKL(Fo||F ∗))between the observed sprout density and the model prediction (Fig S6e).
These measures represent the differences between the predicted and the observed sprout density distributions.

2.4 Comparing the objective functions for the condition-based vs. the cluster-
based phenotypic transition rate estimates

In this section, we examine the difference in the objective functions used to derive the condition based and
the cluster based rate estimates. Starting with the likelihood expression derived in section 2, for condition
based estimates, we optimize the likelihood function over the set of trajectories within one experimental
treatment condition. Alternatively, for cluster based estimates, we derive the maximum likelihood values
after clustering the trajectories.

Given a set of experimentally observed state trajectories collected under a set C of Nc cytokine conditions,
let’s assume that a set K of Nk clusters are detected, where K is the set of all clusters and C is the set of all
conditions. Let ρc,kss′ denotes the total number ss′ type transitions observed in the single cell state trajectories
of cells under condition c and assigned to cluster k. (These subpopulations may be distinct in state transition
dynamics as consistent with the diverse population model for the sake of model comparison.) Then, the log
likelihood of observing just the trajectories within cluster k under condition c is given by

L(c,k) = log(`(c,k)) =
∑

U(c,k)

log(Pso
) + η

(c,k)
ss′ log

(
λss′

µs

)
− µs

η
(c,k)
ss′∑

hss′=1

thss′ .

Let ξ(c,k)
ss′ (λss′ , µs) be the derivative of log-likelihood with respect to λss′ evaluated on the set of trajectories

within condition c and condition k. From section 2, the this derivative take the following form:

ξss′(λss′ , µs) =
∑

trajectories

ηss′

(
1
λss′

− 1
µs

)
−

∑
trajectories

ηss′∑
hss′=1

thss′ .

Under the uniform population model, we optimize the log likelihood on the set each condition separate
such that the derivative of likelihood for the subsets of trajectories within each condition nc satisfy the
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Fig SM1: Condition based and cluster based estimates are computed over different sets of single cell trajec-
tories. Condition based estimates are optimized over single cell trajectories taken from the same cytokine
conditions, while cluster based estimates are optimized over trajectories taken from the same cluster.

following optimal condition ∑
k∈K

ξ
(c,k)
ss′ (λ(nc)

css′ , µ
(nc)
cs

) = 0 i.e.,

∑
k∈K

ρ
(c,k)
ss′

(
1

λ
(nc)
css′

− 1

µ
(nc)
cs

)
−
∑
k∈K

ρ
(c,k)
ss′∑

hss′=1

thss′ = 0.

10



Alternatively, under the diverse population model, the derivative of log-likelihood follows the relation∑
c∈C

ξ
(c,k)
ss′ (λ(nk)

kss′ , µ
(nk)
ks

) = 0 i.e.,

∑
c∈C

ρ
(c,k)
ss′

 1

λ
(nk)
kss′

− 1

µ
(nk)
ks

 − ∑
c∈C

ρ
(c,k)
ss′∑

hss′=1

thss′ = 0.

In attempting to relate the condition and cluster based estimates, we introduce λ(nc,nk)
ss′ and µ

(nc,nk)
s

which are the transition and total exit rate parameter sets optimized over the single cell trajectories in
the nk cluster within the nc condition. As such, this set of parameter satisfy the following optimization
condition:

ξ
(c,k)
ss′ (λ(nc,nk)

ss′ , µ(nc,nk)
s ) = 0 i.e.,

ρ
(k,c)
ss′

(
1

λ
(nc,nk)
ss′

− 1

µ
(nc,nk)
s

)
−
ρ

nk,nc

ss′∑
hss′=1

thss′ = 0. (1)

The subcluster estimates λ(nc,nk)
ss′ can be related to the condition based λnc

css′ and the cluster based
estimates λnk

kss′ as follow:

Eq (1) =
∑
k∈K

Eq (1) ;
(

1
λcss′

− 1
µcs

)∑
k∈K

ρ(nc,k) =
∑
k∈K

(
1

λ
(nc,nk)
ss′

− 1

µ
(nc,nk)
s

)
ρ(nc,nk) (2)

Eq (1) =
∑
c∈C

Eq (1) ;
(

1
λkss′

− 1
µks

)∑
c∈C

ρ(c,nk) =
∑
c∈C

(
1

λ
(nc,nk)
ss′

− 1

µ
(nc,nk)
s

)
ρ(nc,nk). (3)

We can expand the sum, divide through by the total number of trajectories within a cluster (
∑
k∈K ρ

(nc,k))
for Eq (2) and the total number of trajectories within a condition

∑
c∈C ρ

(c,nk)) for Eq (3) to further simplify
the above system of equations to obtain the following relationships:

1
λcss′

− 1
µcs

=
∑
k∈K

(
wc

λ
(nc,nk)
ss′

− wc

µ
(nc,nk)
s

)
and

1
λkss′

− 1
µks

=
∑
c∈C

(
wk

λ
(nc,nk)
ss′

− wk

µ
(nc,nk)
s

)
,where

wc =
ρ(nc,nk)∑
k∈K ρ

(nc,nk)
and wc =

ρ(nc,nk)∑
c∈C ρ

(nc,nk)

are the relative occurrence weights of ss′ type jump across condition within a cluster and the relative occur-
rence weights over cluster within a condition respectively. Though these results do not directly relate the
condition based estimates to the cluster based estimates, they reveal that the condition based and cluster
based estimates importantly differ by the relative occurrence of the transition types within the set of single
cell trajectories over which the parameters are optimized.
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3 Supplementary Tables

3.1 Phenotypic cluster weights of endothelial cells under increasing VEGF and
PF4

Cytokine Condition Cluster Weights
VEGF PF4 wA wP wM wSw wS

(ng/mL) (ng/mL)
0 0 0.186 0.096 0.244 0.292 0.183
10 0 0.086 0.142 0.234 0.173 0.366
20 0 0.030 0.173 0.364 0.236 0.197
40 0 0.037 0.192 0.104 0.160 0.508
0 0 0.125 0.045 0.180 0.220 0.430
20 0 0.045 0.161 0.324 0.154 0.316
20 50 0.069 0.044 0.489 0.182 0.216
20 500 0.097 0.034 0.226 0.260 0.384

3.2 Estimated phenotypic transition rates of single cell trajectories grouped
based on cytokine conditions (λ(cond))

Cytokine Condition Transition Rates from S Cytokine Condition Transition Rates from P
VEGF PF4 λSP λSM λSA VEGF PF4 λPS λPM λPA

(ng/mL) (ng/mL) (×10−4) (×10−4) (×10−4) (ng/mL) (ng/mL) (×10−4) (×10−4) (×10−4)
0 0 1.782 9.051 6.964 0 0 1.370 0.856 0.000
10 0 3.498 5.441 1.515 10 0 2.841 2.557 0.000
20 0 4.292 5.484 9.358 20 0 2.286 1.231 0.000
40 0 7.827 11.000 2.863 40 0 2.743 2.229 0.000
0 0 0.610 4.799 3.616 0 0 0.832 1.110 0.000
20 0 5.447 7.867 2.128 20 0 2.822 2.328 0.000
20 50 0.809 4.377 3.201 20 50 1.040 0.000 0.000
20 500 0.576 6.744 5.645 20 500 0.000 2.336 0.000

Cytokine Condition Transition Rates from M Cytokine Condition Transition Rates from A
VEGF PF4 λMS λMP λMA VEGF PF4 λAS λAP λAM

(ng/mL) (ng/mL) (×10−4) (×10−4) (×10−4) (ng/mL) (ng/mL) (×10−4) (×10−4) (×10−4)
0 0 1.235 3.107 0.620 0 0 0 0 0
10 0 1.306 0.982 0.000 10 0 0 0 0
20 0 1.056 0.530 0.265 20 0 0 0 0
40 0 0.806 0.270 0.270 40 0 0 0 0
0 0 1.167 0.000 0.780 0 0 0 0 0
20 0 0.792 0.397 0.000 20 0 0 0 0
20 50 1.722 0.433 0.865 20 50 0 0 0
20 500 0.326 0.000 0.000 20 500 0 0 0
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3.3 Estimated phenotypic transition rates of single cell trajectories grouped
based on phenotypic cluster (λ(clust))

Phenotypic Transition Rates from S Phenotypic Transition Rates from P
cluster λSP λSM λSA cluster λPS λPM λPA

(×10−4) (×10−4) (×10−4) (×10−4) (×10−4) (×10−4)
cluster A 0.000 32.071 31.729 cluster A 0.000 0.000 0.000
cluster P 30.238 30.647 0.000 cluster P 15.829 15.131 0.000
cluster M 0.000 0.157 0.000 cluster M 0.000 0.000 0.000
cluster Sw 0.000 0.168 0.000 cluster Sw 0.000 0.000 0.000
cluster S 0.000 0.280 0.000 cluster S 0.000 0.000 0.000

Phenotypic Transition Rates from S Phenotypic Transition Rates from S
cluster λMS λMP λMA cluster λAS λAP λAM

(×10−4) (×10−4) (×10−4) (×10−4) (×10−4) (×10−4)
cluster A 3.596 0.000 3.282 cluster A 0.000 0.000 0.000
cluster P 4.039 3.646 0.000 cluster P 0.000 0.000 0.000
cluster M 0.169 0.000 0.000 cluster M 0.000 0.000 0.000
cluster Sw 0.112 0.000 0.000 cluster Sw 0.000 0.000 0.000
cluster S 0.104 0.000 0.000 cluster S 0.000 0.000 0.000
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4 Supplementary Data Sets

4.1 SI Data Set 1: Multichannel live cel imaging data showing cell behavior of
GFP expression, RFP expression and unlabeled cells

The SI Data Set 1 contains example multichannel live cell images of a field of mixed population of GFP-
labeled, RFP-labeled, and unlabeled hMVECs on collagen I gel. These data sets show that GFP-labeled,
RFP-labeled, and unlabeled hMVECs are similar in their phenotypic transition patterns under the same
cytokine conditions. This observation in turn suggests that the GFP and RFP reporter protein expression
in hMVECs do not significantly affect hMVECs behavior and the interpretation of the imaging results.

4.2 SI Data Set 2: Data analysis scripts

The SI Data Set 2 contains all the data analysis scripts used in contour tracking, automated state classifi-
cation, and parameter estimation based on CTMC. MATLAB builtin functions are commercially available
through MathWorks and are not included here.

4.3 SI Data Set 3: Contour track data

The SI Data Set 3 contains all the tracked contour and centroid trajectories in the MATLAB data file format
(.mat) from which the automated state classification is performed.

4.4 SI Data Set 4: Fluorescent live cell images for contour tracking

The dataset containing the original images of all the tracked hMVECs has a large zip file size (4.15 GB), so
it is not submitted. However, the dataset is available upon request. The data in this dataset are taken from
independent experiments (exp1, exp2, exp3 ) as specified by the subfolder titiles. The experimental setup
from which these data sets are taken is described in the Fig1 and in the Method section.
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6 Supplementary Figures

Fig S1: Inflammatory cytokines VEGF and PF4 modulate sprout densities of hMVECs in microfluidic device
assay and collagen gel invasion assay. (a) The microfluidic device used in angiogenesis assay consists of two
microfluidic channels separated by a middle region in which collagen I gel is casted. hMVECs seeded into
one of the two channels form monolayer on the collagen I gel and subsequently send protrusions into the gel
region. Device design, fabrication, and cell seeding protocol is previously reported ([4, 9]). (b) Representative
images of hMVEC angiogenic sprouts in the two channel devices under different static cytokine conditions
(no gradient) at 24 - 72 hrs after treatments. Physiological concentration of VEGF (20 ng/mL) induces
extensive sprout formation. Addition of physiological concentration of PF4 (500 ng/mL) suppresses VEGF
induced sprout formation. (c) Quantification of the result in (b) at 72 hr after cytokine stimulation. (d)
Collagen gel invasion assay set up. Type I collagen gel is injected into a well of multi-well glass bottom
plate to yield approximately 1 mm collagen gel slap. After gel polymerization, hMVECs are seeded at an
instant monolayer density and are allowed to adhere on collagen gel. Adhered hMVECs send protrusions
into collagen gel. (e) Quantified sprout densities of hMVEC in collagen gel invasion assay reveals that
VEGF dose-dependently induces sprout formation in collagen invasion assay. Increasing PF4 concentrations
in addition to a constant physiological concentration of VEGF (20 ng/mL), lead to dose-dependent decrease
in hMVEC sprout density, indicating that PF4 dose-dependently suppresses sprout formation.
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Fig S2: Instances assigned to sessile (S) and migratory (M) state exhibit distinct values of mean and variance
of velocity autocorrelation functions (µVACF and σ2

VACF) for intervals of length 1- 4 h. For the value of mean
and variance in VACFs over 1h - 4h intervals, instances classified to M state have high mean VACF of 0.92,
low variance of 0.15 for 1h interval (corresponding to 23.44 degree average angle deviation). Over longer
time interval, mean VACF of M state instances continually decrease, reaching mean VACF of 0.68, variance
VACF of 0.42 at 4 h interval (corresponding to 46.97 degree in angle deviation). On the other hand, the
mean and variance VACF of instances in S states are low all across the time interval lengths over which
VACFs are computed. For 1 h intervals, S state instances exhibit mean VACFs of 0.40, and variance VACF
of 0.62 (corresponding to 66.20 degree angle deviation), while at 4 h intervals, S state instances exhibit mean
VACF of 0.20, and variance VACF of 0.65 (corresponding to 78.36 degree angle deviation). (c) The S vs. M
state classification errors of ensemble classifier determined by K-fold cross validation where K is the number
of evenly divided ‘chunks’ of data used for model training and testing. During the training, the algorithm
uses a randomly chosen ‘chunks’ (1/K fraction) of the data to tune the ensemble model. The optimized
model is then tested on the other K − 1/K fraction unseen data for their performance. In this study, 2-
to 15-fold cross validations are performed on more than 80,000 labeled cell migration instances. For all the
cross validation tests performed, approximately only 8% of the cell migration instances are misclassified.
Note that the training and test errors are comparable for all cross validation tests with varying amount of
labeled data used in training, suggesting that a small fraction of data cannot be correctly classified and that
the trained model does not over-fit.
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Fig S3: State trajectory can be well approximated by CTMC. (a) The dwell time distribution of in all
states (S, P, M, A) can be well described by an exponential distribution with the coefficient of determination
R2 of 0.90. The distributions of dwell time in state S and M fit well to exponential distribution with
R2 of 0.73 and 0.97 respectively. Due to insufficient number of proliferative and apoptotic instances, the
dwell time distributions in P and A states do not fit well to most well known statistical distributions.
(b) Comparison of likelihood distributions under the one step condition independence assumption to those
under the full dependence model of three step subsequence. The state trajectories distribution can be
well approximated by both the model with conditional independence assumption (left) and the model with
no conditional independence assumption (right). (c) The Jensen-Shannon divergence (JSD) measures the
difference between likelihood distributions predicted by the full dependence and the conditional independence
models. We compare JSD of the observed single cell state trajectories to that of a background trajectories
generated from a full independence model. Given that sequence of states within these background trajectories
are fully independent, likelihood distributions of these data based on one step dependent or full dependent
models should be statistically the same. As such, the JSD of likelihood distributions of these background
trajectories serves as a relevant control. JSD between the likelihood of full independence and conditional
independence model of the data (experimentally observed state trajectories) is comparable to or smaller
than that of the computationally generated background data (under the full independence model). (d). The
averaged JSD of the experimentally observed trajectories is significantly smaller than that of the background
trajectories computationally generated from full independence model.
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Fig S4: State trajectories of cells in different cytokine conditions cluster into 3-5 identifiable phenotypic
subgroups. (a) Hierarchical clustering results of single cell state trajectories under incrementally increasing
VEGF concentrations leads to identification of 5 highly phenotypic clusters. (b) Similar clustering results
are observed in single cell state trajectories of endothelial cells treated with increasing PF4 concentrations
in the background of physiological VEGF concentration (20 ng/mL).
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Fig S5: Statistical pairwise comparisons of the cluster weights across different cytokine conditions show
that most of the cytokine elicited differences in the cluster weights are statistically significant. (a) Indicator
matrix specifying the pairwise comparison. For example, the first row of (a) are true (white) for the first two
conditions, indicating that the conditions being compared are conditions 1 and 2 (no cytokine vs. 20 ng/mL
VEGF). (b) Log of the asymptotic p-value (probability of having the observed differences in cluster weights
given that the null hypothesis is true). (c). The hypothesis decision based on the p-values indicating that
most of the cytokine elicited changes in cluster weights are statistically significant.
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Fig S6: Assessment of switch model performance by normality of residuals and Kullback-Liebler divergence
between the switch model estimated and the experimentally observed sprout. Comparison of these measures
indicates that, given the same number of model parameters, the Tanh switch function more closely estimates
the distribution of sprout density quantified from the confocal data. (a and c) Optimized sprout density
distributions estimated by the transcriptional switch model (a) and Tanh switch model (c) are plotted
against averaged sprout density quantified from confocal images to depict closer approximation of the Tanh
switch model prediction to the data. (b and d) Normal probability plots of residuals in the transcriptional
switch model (b) and Tanh switch model (d) is used to assess whether model residuals follow a normal
distribution. While there are residual points that fall off the Q1-Q3 line (the line connecting the residual
values at 1st and 3rd quantiles) in both normality plots, more are observed in the normality plots of the
transcriptional switch model residual (b), especially at extreme values. (e) Forward and reverse Kullback-
Liebler divergence (DKL(F ∗||Fo) and DKL(Fo||F ∗) respectively) between the estimated and the observed
sprout density distributions over experimental range of VEGF and PF4 values. The Tanh switch model
exhibits much smaller forward and reverse KL-divergence, suggesting that it more closely approximate the
observed sprout density distribution.
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Fig S7: The single cell state trajectories of cells under the same cytokine conditions taken from independent
experiments (from different days) exhibit similar phenotypic program based groupings, PCA embeddings,
and phenotypic based cluster weights. Phenotypic states are colored labeled as in Fig 3. (a and b) Single
cell state trajectories from two independent tracking experiments of hMVEC on type I collagen gel under
no cytokine (a) and 20 ng/mL VEGF (b) conditions. (c and d) Independent experiments under the same
cytokine conditions exhibit similar three component PCA embeddings. Phenotypic based subgroups are
color labeled as in Fig 6-7. (e and f) Similar distributions of phenotypic based cluster weights are observed
in both no cytokine (e, left) and 20 ng/mL VEGF (f, left) conditions. Since the M, Sw, S subgroups cluster
closer together than A and P subgroups, the aggregate M,Sw,S cluster weights are also shown (e, right and
f, right subplots).
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Fig S8: hMVECs adopt both apoptotic and proliferative states in microfluidic device assay. hVMECs were
seeded into type I collagen gel containing microfluidic device as described in the Supplementary Methods
1.4 in SI Appendix and maintained in cell culture medium for 72 hrs. hMVECs were fixed in the microflu-
idic device, permeabilized and stained with anti-Ki67 (red) and anti-cleaved caspase3 (green) to visualize
proliferative and apoptotic states of the cells. The fixed samples were also counter stained with DAPI to
visualize nuclei. Ki67 positive cells and cleaved caspase 3 positive cells can be detected in the vicinity of the
gel-channel interface in the microfluidic device.
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Fig S9: High levels of VEGFR2 and CXCR3 are detected in both human umbilical vein endothelial cells
(HUVECs) and hMVECs as determined by flow cytometry (a - c) and immunofluorescent (IF) staining (d -
e). (a) Unstained control, (b) doubly stained HUVECs and (c) doubly stained hMVECs. Immunofluorescent
staining of cells in microfluidic devices reveals the two receptors are co-expressed in angiogenic sprouts (d)
as well as in an endothelial monolayer (e).
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