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SI Text
Minimal Energy Conformation of the Polymer Chain Is Determined by
Convex Properties of the Effective Deformation Energy Curve of
Individual Monomer Site. Consider a linear polymer chain of
N � 1 identical sites (monomeric units). Each site i is extended
by Δli, with the corresponding deformation energy E(Δli). When
pulled by both ends, the equilibrium energy of the entire chain
can be found by solving the constrained (conditional) minimi-
zation problem:

NENUðΔLÞ= min
Δl1+...+Δln=NΔL

fEðΔl1Þ+ . . . +EðΔlnÞg;

where NΔL is the total extension of the chain. Here, as in the
text, ΔL denotes the mean per site extension of the chain. Using
the method of Lagrange multipliers, the problem is converted to
the unconditional minimization problem over (N + 1) variables:

minfEðΔl1Þ+ . . . +EðΔlnÞ− λðΔl1 + . . . +Δln −NΔLÞg:

Differentiating with respect to Δli yields E′(Δli) − λ that should
equal zero for each i. Derivative with respect to λ also equals
zero; this condition yields the original constraint. Excluding λ
from all of the equations, we obtain the following system of N
equations:

E′ðΔl1Þ=E′ðΔl2Þ= . . . = E′ðΔlNÞ and [S1]

Δl1 + . . . + Δln =NΔL: [S2]

When the function E(Δl) is convex, its derivative is a mono-
tonically increasing function, and the condition 1 can be satisfied
only when extensions of all of the sites are equal to each other:
Δla = . . . = Δln = Δl = ΔL (that is, when the chain is extended
uniformly). In contrast, when the energy function E(Δl) is non-
convex, it is possible for its derivative (tangent) to have the same
value at two distinct points Δla and Δlb (Fig. 1). In this case,
some Δli (for simplicity, i= 1; . . . ; pN) are equal to Δlb, whereas
the rest of Δli (i= pN + 1; . . . ;N) are equal to Δla, Δla < Δlb. If
N� 1 (technically, if N→∞), one can always find such p, 0 < p <
1, that the constraint ΔL= pΔlb + ð1− pÞΔla is satisfied. The
deformation energy in this case of nonuniform stretching is
equal to pNEðΔlbÞ+ ð1− pÞNEðΔlaÞ=NðpEðΔlbÞ+ ð1− pÞEðΔlaÞÞ,
which is a linear function of ΔL that connects points ðΔla;
EðΔlaÞÞ; ðΔlb;EðΔlbÞÞ. This linear function is the convex hull of E
(Δl) (Fig. 1). By definition of nonconvex function, pEðΔlbÞ+
ð1− pÞEðΔlaÞ<EðpΔlb + ð1− pÞΔlaÞ=EðΔLÞ, which proves that
the two-phase extension is energetically preferred relative to the
uniform extension in this case. As the chain is stretched farther
and ΔL increases, p increases accordingly so that ΔL= pΔlb +
ð1− pÞΔla is satisfied. The extension of the chain through the
change in the fraction of sites extended by Δlb can continue until
p = 1 at ΔL = Δlb.
The above reasoning does not take into account phase boundary

effects. However, these effects, as well as end effects, are negligible
as long as the polymer chain is long,N� 1, which is always the case
experimentally. Our numerical calculations presented in the text
and below—in which all of the boundary effects are included—give
the same results supporting our general conclusions.
In what follows, we consider threemicroscopic polymermodels in

detail: 2D zigzag, α-helix, and dsDNA. Because we are interested in

the regime where polymer extension approaches its contour length,
entropic contributions (key in weak stretching) are neglected.

2D Zigzag. Consider a dimensionless 2D model of zigzag chain
shown in Fig. S1. Such a chain can be considered as a quasi-1D
crystal with the elementary cell being two neighboring sites; that
is, each cell can be obtained from the previous one by translation
along the x axes. The potential energy of the zigzag chain is given
by Eq. 1 in the text. The equilibrium bond length is ρ0 = 1, and
zigzag angle is ϕ0 = arccos(−1/3) = 109.47° (so that equilibrium
longitudinal step is l0 = 0.8165). The nonvalent interaction is

given by W ðrÞ= «hb

��
r0 − d
r− d

�6
− 1

�2
, where «hb ≥ 0 is the interaction

energy, r0 = 2hx = 1.633 is the equilibrium length, and d = 0.5 is
the diameter of the inner hard core. For simplicity, but without
loss of generality, we set the equilibrium length r0 to correspond
to the equilibrium value of the angle θ0. The nonvalent in-
teraction energy coefficient was fixed at «hb = 0.0178 [so that
W″ðr0Þ= 72«hb=ðr0 − dÞ2 = 1].
Let the x axis be along the chain, and the y axis be in the

perpendicular direction (Fig. S1). The longitudinal (x) step l and
transverse (y) step h for site n are shown in Fig. S1. To find the
uniform extension energy that is energy of a single zigzag site
extended by Δl > 0 along the x axis, one has to solve the mini-
mization problem over transverse step h:

EðlÞ=V ðρÞ+ «ϕUðϕÞ+W ðrÞ→min : h; [S3]

with fixed value of the longitudinal step l0 + Δl. Note that the
distance between next-nearest neighbors is r = 2(l0 + Δl), and
the value of the angle ϕ is defined by the bond length ρ. Solving
the minimization problem (1) yields the energy (per one site) of
a uniformly stretched zigzag as a function of the relative longitudi-
nal extension Δl. Conjugate gradient is used to find the minimum.
The angle ϕ, energy, and tension force as functions of the

extension are shown in Figs. S2 and S3 for different values of the
coefficient «ϕ. This coefficient controls the relative contribution
of a valent interaction (angle deformation energy) to the elastic
response of the chain.
To find the energy of the extended (generally nonuniform)

chain for each value of the mean (per site) extension ΔL ≥ 0, one
has to solve the minimization problem

XN−1

n=1

V ðρnÞ+
XN−1

n=2

«ϕUðϕnÞ+
XN−2

n= 1

W ðrnÞ→ min
fxn ;yngNn=1

[S4]

with the condition of fixed ends:

x1≡ −
1
2
ðN − 1ÞΔL;   xN = ðN − 1Þl0 + 1

2
ðN − 1ÞΔL:

Conjugate gradient is used to find the minimum. The initial
condition is chosen to be that of a uniformly stretched chain. It
should be mentioned that, in what follows, only the x coordinate
is fixed, and all other coordinates are allowed to change freely. If
fxn; yngNn=1 is a solution of the minimization problem (2), then the
distribution of the longitudinal extension in the chain is given by
the function Δln = xn+1 − xn − l0, and the distribution of the
transverse step is given by the function hn = jyn+1 − ynj.
One can see from Fig. S4 that, when «ϕ = 0, the distribution of

the longitudinal step extension Δln and the transverse step hn
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along the chain is in agreement with the prediction that can be
made based on convexity of the function E(Δl). That is, when 0 ≤
Δl ≤ 0.037 and Δl ≥ 0.2056, uniform stretching takes place,
whereas when 0.037 < Δl < 0.2056, nonuniform stretching is
observed. Here, the end sites of the zigzag are in the strongly
extended state with extension Δln = 0.2056, whereas the central
part is in weakly stretched state with extension Δln = 0.037 (Fig.
S4). Gradual transition from one state to the other is observed
along the domain boundary. As the chain extends, the size of the
weakly stretched part in the center monotonously decreases and
vanishes at Δl = 0.2056. At even higher tension, the zigzag is
stretched uniformly. The two-phase stretching scenario persists
for as long as 0 ≤ «ϕ ≤ 0.015. The range of extensions where the
scenario is realized gradually shrinks as the contribution of the
valent bond potential grows. After «ϕ > 0.015, all of the sites are
stretched uniformly (Fig. S5). One can see from Fig. S2 that the
strongly extended state corresponds to the completely stretched
out zigzag (angle ϕ = 1800).

α-Helix.Consider a 3D molecular chain corresponding to an ideal
(3) α-helix. The equilibrium atomic helix coordinates are

R0
n = ðR0   cos ðnφ0Þ;R0   sin ðnφ0Þ; nl0Þ; [S5]

with n = 0, ±1, ±2, . . . being the atom number, R0 being the
helical radius, φ0 and l0 being the angular and longitudinal helix
period. For the sake of simplicity, we consider dimensionless
model of the helix (Fig. 4A), where the (dimensionless) helix
radius is R0 = 0.4919, angular step is φ0 = 100°, and longitudinal
step is l0 = 0.6572 (4). Such a helix can be treated as a quasi-1D
crystal; that is, each site can be obtained from the previous one
by the appropriate translation along longitudinal axes and rota-
tion around the same axis.
The chain potential energy is

H =
X
n

�
V ðρnÞ+ «ϕUðϕnÞ+ «θZðθnÞ+W ðrnÞ

�
: [S6]

The term V(ρn) gives the energy of interaction between neighbor
sites n and (n + 1), where ρn is the distance between them. Bond
rigidity is K = 10, and the equilibrium bond length is ρ0 = 1. The
angle deformation energy is described by «ϕU(ϕn), where ϕn is
the angle between sites (n − 1), n, and (n + 1) (the vertex is on
site n). Equilibrium angle is ϕ0 = arccos(−1/3) = 109.47°, and
coefficient is «ϕ = 1. The specific form of these terms is described
in Methods. The third term «θ Z(θn) is the energy of the torsional
deformation (rotation) around the nth bond:

«θZðθÞ= «θðcos  θ− cos  θ0Þ2; [S7]

where «θ ≥ 0 is the torsional rigidity; different values of «θ are
considered while keeping other interactions fixed. The equilib-
rium torsion angle is θ0 = arccos(0.2395). The function W(rn) is
the energy of the nth hydrogen bond connecting sites n and (n +
3). It is given by the formula

W ðrÞ= «hb

��
r0 − d
r− d

	6
− 1

�2
: [S8]

The equilibrium hydrogen bond length is r0 = 2.0322. Other
parameters of the hydrogen bonding potential are d = 0.7 (inner
core diameter) and «hb = 0.0246, so that rigidity of nonvalent
interactions W″ðr0Þ= 72«hb=ðr0 − dÞ2 = 1. Equilibrium values of
angles and distances correspond to specified values of helix ra-
dius R0, angle step φ0, and longitudinal step l0 of the helix in
ground state.

To determine the dependence of the effective helix site energy
E (per one step) on the relative uniform extension Δl, we solve
the following conditional minimization problem

EðR;φ; l0 +ΔlÞ=V ðρÞ+ «ϕUðϕÞ+ «θZðθÞ+W ðrÞ→ min
R;ϕ

[S9]

with the fixed value of longitudinal step l0 + Δl. Here, R is the
helix radius, and φ is its angular step (Methods). Conjugate gra-
dient is used to find the minimum.
In general, to find variable extensions Δln of each helix site in

the case of nonuniform stretching, we solve

XN−1

n=1

V ðρnÞ+
XN−1

n=2

«ϕUðϕnÞ+
XN−2

n=2

«θZðθnÞ+
XN−3

n=1

W ðrnÞ

   →min :fðRn;φn; l0+ΔlnÞgNn=1
[S10]

with the fixed ends condition:

l1≡ −
1
2
ðN − 1ÞΔL;   lN ≡ðN − 1Þl0 + 1

2
ðN − 1ÞΔL:

Here, as before, NΔL is the total extension of the chain of N
sites. Conjugate gradient is used to find the minimum. The initial
condition corresponds to the uniformly stretched helix.

dsDNA. Model details. The 12CG model of the DNA double helix
used in this work is shown in Figs. S7 and S8. To provide addi-
tional information to what was presented in the text, we switch to
atomic units.
The total potential energy of the system has the following form:

H = ½Ev +Eb +Ea +Et +Eel +EvdW �+E*
hb +Est: [S11]

The terms in the brackets describe the deformation energy of
both strands. In the text, a shorthand notation was used to avoid
unnecessary details. For example, the energy EA of strand A,
which appears in the text, equals the bracketed terms above in
which only the untied atoms from strand A are retained. The
terms Ev, Ea, and Et correspond to valent bond, angle, and tor-
sion deformation energy, respectively. These potentials have
a common form; bond deformation energy is calculated as

UαβðrÞ= 1
2
Kαβ



r−Rαβ

�2
;

with the rigidity coefficients Kαβ and equilibrium values Rαβ being
different for different grains. Angle deformation energy has the
form

UaðϕÞ= «aðcos  ϕ− cos  ϕaÞ2;

where values of the coefficient «a and the equilibrium angle differ
for different angle types. Torsion deformation energy is de-
scribed by the potential

Ut = «tð1− cosðθ− θ0ÞÞ;

where values of the coefficient «t and the equilibrium torsion
angle θ0 differ for different torsions. Rotational axis of the tor-
sional potential is shown in Fig. S8. The second term Eb in the
energy function (S11) describes deformation energy of a nitro-
gen base. The nitrogen base is a rather rigid chemical structure
modeled here by rigid harmonic potentials, which keep four
points near one plain: grain C1 and the three points on each
nucleobase.
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The next two terms Eel and EvdW describe electrostatic and van
der Waals interactions between backbone grains. Solvent is
treated implicitly through the Generalized Born model (2, 6) (in
the text). The methodology has been used to model free DNA
in solution (7, 8), binding between proteins and nucleic acids (9–
11), and conformational changes such as the A → B transition
(5), as well as explore dynamics of long DNA fragments (12).
The Generalized Born model approximates solvation energy of
two interacting charges by the following formula originally pro-
posed by Still et al. (2):

ΔGsolv ≈ −
1
2

�
1−

1
«out

	X
ij

qiqj
f


rij;Ri;Rj

�; [S12]

where «out is the dielectric constant of water, rij is the distance
between atoms i and j, qi is the partial charge of atom i,
Ri is the so-called effective Born radius of atom i, and
f = ½r2ij +RiRjexpð−r2ij=4RiRjÞ�

1
2:

The empirical function f is designed to interpolate between the
limits of large rij �

ffiffiffiffiffiffiffiffiffi
RiRj

p
, where the Coulomb law applies, and

the opposite limit, where the two atomic spheres fuse into one,
restoring the famous Born formula for solvation energy of
a single ion. The effective Born radius of an atom represents its
degree of burial within the low dielectric interior of the mole-
cule: the farther away the atom is from the solvent, the larger its
effective radius is. In our model, we assume constant effective
Born radii, which we calculate one time from the first principles
(6) for the B-form DNA. The screening effects of monovalent
salt are introduced approximately at the Debye–Huckel level by
substitution:

1− «−1out → 1− «−1out   expð−0:73κf Þ:

The 0.73 prefactor was found empirically to give the best agree-
ment with the numerical Poisson–Boltzmann treatment (13).

Here, κ is the Debye–Huckel screening parameter κ
h
�A

−1i
≈

0:316
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½salt�½mol=L�p

. Implementation details in the context of
the 12CG DNA coarse-grained model can be found in ref. 1.
The last two terms E*

hb and Est in Eq. S11 describe interactions
between nitrogen bases (including stacking and hydrogen bonds).
Because nitrogen base is a rather rigid structure, we can calcu-
late coordinates of all of the original atoms (corresponding to
the all-atom representation) from positions of the three united
atoms. This useful property allows us to use, directly, the all-
atom AMBER (14) Coulomb and van der Waals potentials used
to mimic hydrogen bonds and stacking (1).
Assuming no sequence variability along the strand [e.g., poly

(A)-poly(T)], such double helix can be considered as a quasi-1D
crystal, with the elementary cell being one nucleotide pair of the
double helix. In the ground (minimum energy) state, each suc-
cessive nucleotide pair is obtained from its predecessor by
translation along the z axis by step l followed by a rotation
around the same axis through helical step Δϕ. (Here, we use l
instead of Δl = l − l0, because unlike in the case of a simple
structure such as the 2D zigzag, the equilibrium value of the
DNA longitudinal step l0 in our model is not known a priori and
is obtained by solving the corresponding minimization problem.)
Thus, the energy of the ground state is a function of 38 variables:
36 Cartesian coordinates of 12 grains in the first nucleotide pair,
Δϕ, and l.
To find the minimum energy (ground) state of the homoge-

neous (that is, no sequence variability along the strand) double
helix under tension, we solve the following minimization problem
over 37 variables,

H = ðEv +Eb +Ea +Et +Eel +EvdW Þ+E*
hb +Est

→min :
�
xj
�12
j=1;Δϕ;

[S13]

under the fixed value of the longitudinal step l. The summation is
taken over only 1 bp, and neighboring base pairs are obtained
from it by rotation and translation. Conjugate gradient is used to
find the minimum; the initial condition corresponds to all-atom
B-form DNA. The minimization yields the effective site energy
(per 1 bp) E(l) as a function of the longitudinal step l (Fig. 6).
The energy minimum is reached for the longitudinal step l0 =
3.352 Å, which corresponds to the B-form of dsDNA.
Because the effective site energy is nonconvex, we predict two-

phase stretching for dsDNA based on the general mechanism
described in the text. Namely, a part of the double helix is in the
weakly extended state with the longitudinal step la, while the rest
of the base-pairs are in the strongly extended state with longi-
tudinal step lb (Fig. S9). The DNA structure and its model po-
tentials are most complex among the three polymer models
analyzed in this work. We have, therefore, chosen the DNA to
further test our general predictions through molecular dynamics
simulations at 300 K (for the 2D zigzag and the α-helix, only
purely mechanical stretching without thermal fluctuations was
considered; more information in the text).
Origins of the nonconvex shape of the effective site deformation for
dsDNA. Variation of the base stacking and hydrogen bond com-
ponents of the effective site deformation energy as a function of
the chain extension for the double-helix DNA is shown in Fig.
S11A. In this computation, thermal fluctuations are not consid-
ered. As the tension grows, the base stacking weakens, and the
corresponding energy curve has a distinct nonconvex region. The
hydrogen bonds also weaken but do not break; the nonconvex
region on this curve is much less prominent.
Room temperature simulations of the DNA. To bring the temperature
of the molecule to the desired value T = 300 K, we integrate over
time the Langevin system of equations of motion:

Mn€rn =−∂H=∂rn −ΓMn _rn +Ξn; [S14]

where the index n= 1; 2; . . . ;N runs over all of the united atoms
(grains) (Figs. S7 and S8). Γ = 1/tr is the Langevin collision
frequency with tr = 1 ps being the corresponding particle relax-
ation time, Mn is the mass of nth united atom, and Ξn(t), n = 1N

is a set of N 3D vectors of independent Gaussian distributed
stochastic forces describing the interaction of nth united atom
with the thermostat with correlation functions

hΞnðt1ÞΞmðt2Þi= 2MnΓkBTδnmδðt2 − t1Þ:

The initial conditions correspond to the equilibrium state of the
double helix.
After the system is thermalized, the temperature is maintained

at T = 300 K, and the trajectory continues for the desired sim-
ulation time. We use Verlet integrator with the integration time
step of 0.5 fs.
Dependence of the dsDNA site length and angular step (twist)

is shown in Fig. S12. Twist was calculated using in-house software
based on the algorithms described in ref. 15. The length was
calculated as the distance between neighboring phosphorus
atoms along the longitudinal axis (averaged over both strands).
Insensitivity of the plateau transition to the Watson–Crick bond strength.
Within the framework of the 12CG coarse-grained model (1) used
in the paper, the relative strength of the Watson–Crick (WC) hy-
drogen bonds is controlled by parameter c0 in E*

hb = c0Ehb (Meth-
ods). In the main text, we used c0 = 0.4, which gives an excellent
agreement with the relevant single-molecule stretching experiment
(16) (Fig. 9, main text).
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Here, we vary c0 to test the effect that the hydrogen bond
strength may have on the overstretching plateau of dsDNA. The
main conclusion is that doubling the strength of the WC bonds—to
the point that they no longer break on stretching at 300 K—has
little effect on the existence of the overstretching plateau in
the force-extension diagram. Specifically, we have performed
a 700-ps-long simulation of the same 500-bp poly(A)-poly(T)
DNA fragment at 300 K but now, with an unphysically large
value of c0 = 1.0 intended to keep the WC bonds from
breaking. Now, even in the stretched state (Fig. S13), the bonds
do not break. However, the plateau in the force-extension di-
agram still exists (Fig. S14). Moreover, one can see from Fig.
S14 that the value of the tension at the plateau and its range
differ only slightly from the c = 0.4 case, where the bonds do
break as the chain is stretched, which is in perfect agreement

with the experiment (discussed in the text). Therefore, the
existence and key characteristics of the plateau in the force-
extension diagram for dsDNA are rather insensitive to hydro-
gen bond strength. The comparison of the DNA stretching
behavior in these two parameter regimes—with regular and
artificially strong WC bonds—is another confirmation that the
DNA overstretching plateau does not arise from WC bond
breaking: the plateau exists even when the hydrogen bonds
remain unbroken.

Computational Resources. Most of computationally intense calcu-
lations presented here, such as the minimization and molecular
dynamics simulations of 500-bp DNA, were performed at the
Joint Supercomputer Center of the Russian Academy of Sciences.
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Fig. S1. Schematic of a 2D zigzag polymer chain. «ϕU(ϕ) and V(ρ) are the valent angle bending and bond stretching potentials; W(r) is the nonvalent in-
teraction between next-nearest neighbors. The longitudinal step of site n is ln, and the transverse step is hn.
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A

B

C

Fig. S2. 2D zigzag. The dependence of (A) angle ϕ, (B) effective site deformation energy E of the zigzag on extension Δl of its sites, and (C) tension as
a function of the mean site extension. Angle deformation stiffness is «ϕ = 0, which leads to the two-phase stretching regime. The red line in B is the convex hull
of E(l). Dimensionless units.
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A

B

C

Fig. S3. 2D zigzag. The dependence of (A) angle ϕ, (B) effective site deformation energy E, and (C) tension as a function of the site extension. Angle de-
formation stiffness is «ϕ = 0.02; nonvalent interactions dominate the elastic response, and therefore, only uniform stretching is possible. Dimensionless units.
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Fig. S4. The two-phase stretching in 2D zigzag chain. Shown is the dependence of site extension Δln and transverse step hn on the site number n and the
mean (per site) extension ΔL. A chain with n = 400 sites (atoms) with fixed ends. Angle deformation stiffness is «ϕ = 0. Dimensionless units.
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Fig. S5. The uniform stretching of the 2D zigzag chain. Shown is the dependence of site extension Δln and transverse step hn on the site number n and the
mean (per site) extension ΔL. A chain with n = 400 sites (atoms) with fixed ends. Angle deformation stiffness is «ϕ = 0.02. Dimensionless units.
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C

Fig. S6. (A) Dependence of the effective site energy E, (B) angular step φ, and (C) radius R of the helix from on its relative (uniform) longitudinal site extension
Δl. Torsional rigidity is «θ = 0.002. Dimensionless units.

Fig. S7. A DNA fragment in the coarse-grained representation (1) used here. Each base pair (site) is modeled by 12 united atom particles (grains).

1. Savin AV, Mazo MA, Kikot IP, Manevitch LI, Onufriev AV (2011) Heat conductivity of the DNA double helix. Phys Rev B 83(24):245406.
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Fig. S8. United atom particles (grains) involved in the valent interactions in the 12CG coarse-grained DNA model. Blue lines denote valent (harmonic) bonds,
red arcs mark valent angles, and bold lines are axes of rotation in the torsional potentials. The circles marked as N stand for atoms N9 in A and G bases and N1
in T and C bases (no grain is situated on these atoms; their coordinates are calculated directly from positions of the base grains as detailed in ref. 1).

Fig. S9. Schematic view of the minimum energy (ground) state of (A) weakly stretched (longitudinal step is l = la = 3.75 Å) and (B) strongly stretched
(longitudinal step is l = lb = 6.15 Å) poly(A)-poly(T) DNA double helix.

1. Savin AV, Mazo MA, Kikot IP, Manevitch LI, Onufriev AV (2011) Heat conductivity of the DNA double helix. Phys Rev B 83(24):245406.
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Fig. S10. Schematic view of a fragment of (A) weakly stretched (averaged longitudinal step is L = la = 3.75 Å) and (B) strongly stretched (averaged longitudinal
step is L = lb = 6.15 Å) poly(A)-poly(T) DNA double helix at T = 300 K.

A

B

Fig. S11. (A) Effective energy E(l) per base pair of extended poly(A)-poly(T) DNA in ground state, hydrogen bond energy E*
hb, and neighbor base pair stacking

interaction energy Est as a function of longitudinal step l. (B) The tension as a function of the average longitudinal step L.
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Fig. S12. The two-phase stretching in dsDNA. Shown is the dependence of site length ln and angular step (twist) Δϕn on the base pair number n along the
DNA chain. A 500-bp poly(A)-poly(T) fragment was used in the simulation at 300 K; several values of the relative mean extension L/l0 are tested. (A and B) L/l0 =
1.33; (C and D) L/l0 = 1.48; and (E and F) L/l0 = 1.63.
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Fig. S13. Fraction of remaining hydrogen bonds as a function of relative chain extension for dsDNA. Blue line, artificially strong WC bonds (c0 = 1.0). Red line,
regular-strength WC bonds (c0 = 0.4). Simulation at T = 300 K.
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Fig. S14. Force-extension diagram for an ideal dsDNA helix. Blue line, artificially strong WC bonds (c0 = 1.0). Red line, regular strength WC bonds (c0 = 0.4).
Simulation at T = 300 K.
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