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Criterion for Pinning Random Particles. We equilibrate the system at
reduced temperatureT= 1.00, which is quite high in this case. After
equilibrating these configurations, we randomly choose the pinning
particles and freeze them in space and time. Then, we decrease the
temperature to the required temperature and equilibrate it. So, in
short, the particles are frozen from the high-temperature configu-
ration. This is done for the simple reason that at lower temper-
atures, the unconstrained system crystallizes; therefore, if we do not
freeze the particles at high temperature, we will not be able to
suppress the crystallization. It is important to note that in ref. 1, the
particles are frozen starting from the equilibrium configuration at
the required temperature, which differs from our protocol. It re-
mains to be seen whether these different protocols lead to different
qualitative results. We expect that the results might be different in
general for these two cases, as the nature of the disorder changes
quantitatively. We also expect that the choice of temperature at
which we equilibrate the particles before freezing should be crucial
as it is in the high-temperature phase, as discussed in ref. 2.

Time–Temperature Superposition for Q(t). In Fig. S1, we show the
time–temperature superposition for the full overlap correlation
functionQ(t) with the same relaxation time τα used to collapse the
data for the self part of the correlation function, i.e., Qs(t). The
figure clearly shows that initial decay of the correlation function is
the same as that of the self part only.Q(t) deviates from themaster
curve because of the nonzero asymptotic value Q(∞). In this fig-
ure, we also plot the data for all system sizes. Different colors
indicate the temperatures, and the symbols distinguish the dif-
ferent system sizes. The inset shows the temperature dependence
of the asymptotic value ofQ(t), i.e.,Q(∞), and one can see clearly
that there are very small finite size effects in this quantity.

Extraction of Static Length Scale from the Replica Correlation Function.
As discussed in Materials and Methods in the main article about
how we extracted the length scale from the replica correlation
function, we present here some data for the N = 4,000 system size
in Fig. S2. We used the method explained in Materials and Meth-
ods,Replica Overlap and Extraction of Static Length Scale . The nice
fitting of the data over the whole range and for all temperatures
indicates that the extracted length scale is very reliable. This also
can be seen from the data shown in Fig. 1, in which we compare the
results of this fitting for different system sizes. The data for N =
2,000 is very close to the one obtained from the N = 4,000 system
size. This implies that this method of extraction of the length scale
is very robust once we rule out the finite size effect in the data.

Parallel Tempering Methods. To equilibrate the system at an even
lower temperature, we have implemented the parallel tempering
method. We mention this method here only briefly, as details may
be found in ref. 3. We construct a system consisting of M non-
interacting subsystems (replicas), each consisting of N particles
with phase space coordinate {Pi, Qi}, where Pi = {p1, p2 . . . pN}
and Qi = {q1, q2, . . . qN} for the i

th subsystem. The Hamiltonian of
the ith subsystem is given by
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Pi;Qi�=K

�
Pi�+ΛiE
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where K is the kinetic energy, E is the potential energy of the
system, and Λi ∈ {λ1, . . . λM} is the parameter to rescale the po-
tential energy. Next, we perform a molecular dynamics (MD)
simulation of the whole system with Hamiltonian H=

PM
i Hi at

a reduced temperature T = 1/β0 using a modified isokinetic sim-
ulationmethod. The time step for theMD is taken to be δt= 0.005.
Then, at each time interval of ΔtX = 1,000δt we exchange the
parameter λ between different replica i and j, keeping all other
things unchanged. The exchange is accepted using a Metropolis
scheme, with a probability
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We perform these steps long enough get proper equilibration of
the system; this way, we generate canonical distribution at inverse
temperatures β = λiβ0. Here, we also parallelized the code using
message passing interface to speed the simulation process. We used
M = 12 replicas between temperatures 0.300 and 0.600 and another
12 replicas for temperature range 0.600–1.000 for N = 100 and 150
system sizes. For N = 200, we used 16 replicas for the 0.300–0.600
temperature range and 12 between 0.600 and 1.000. ForN= 250, we
tried to equilibrate the system only up to T = 0.330 and used 16
replicas between temperatures 0.330 and 0.600 and 12 between
0.600 and 1.000. We averaged the data over 400 different realiza-
tions of the disorder for systems N = 100, 150, 200, and 250.
Therefore, the estimated computer time for theN= 250 system size
is close to 105 h. To check the equilibration of the system, we used
the method in ref. 3 to rescale the canonical distribution function
using the formula
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In equilibrium, the left-hand side of the above equation should
be independent of i to within the accuracy of the data, as may be
seen in Fig. 2 Left.

Check of Equilibration in Parallel Tempering Runs.Weperformed two
separate tests to check the equilibration of our sample. One was
a test of the distribution of energy P(E), in which we tried to re-
scale all the P(E) for different temperatures to collapse on the
distribution of our reference temperature T0 as shown in Fig. 2 in
the main article using the ansatz Eq. S3. Here we present the data
for the second test, which determined when the square of the
replica overlap 〈q2〉 reached a steady plateau value with time. In
Fig. S3, we show data for the N = 100 system size, and the data
clearly show that our simulation time is longer than the time re-
quired to reach a plateau value for 〈q2〉. Because we started from
two completely uncorrelated replicas, their initial overlap is very
small and over time reaches the equilibrium value from below.
Fig. S4 shows the spin glass susceptibility χ calculated for all four

system sizes for two different run lengths. Run1 is 1 × 108 MD
steps long, and Run2 is two times longer than Run1. The value of
the susceptibility is within the error bar of each other, which also
confirms that our data are well equilibrated.

Sample-to-Sample Variation of P(q). In this section, we show the
sample-to-sample fluctuations of the distribution of P(q) for two
different system sizes at the lowest temperature simulated for two
system sizes N = 150 and 250. Fig. S5 shows P(q) for eight ran-
domly chosen samples. One can see clearly the strong sample-to-
sample fluctuations of this distribution, which also is very similar to
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spin glass models (4). Some samples have only two peaks, with
a deep valley between them, whereas others have a third peak.

Skewness and Kurtosis. In Fig. S6, we show the skewness (S) and
the kurtosis (B), defined as

S=

��
δq3

��
½hδq2i�3=2

;  B= 3:0−
��
δq4

��
½hδq2i�2

  with  δq= q− hqi: [S4]

The usual Binder cumulant is equal to g(T) = B/2.0 according to
our definition. Notice that g(T) is a nonmonotonic function of
temperature. In conventional phase transition, this is a very useful
quantity that has been used extensively in finite size-scaling anal-
ysis for determining the critical temperature in the thermodynamic
limit. These quantities for different system sizes cross each other at
critical temperature because of the finite size scaling.
At zero magnetic field in the Sherrington–Kirkpatrick model

for spin glass and the short-range Edwards–Anderson model,

g(T) is always a positive function of T and increases regularly
with decreasing temperature and the skewness is identically zero.
Unfortunately, as soon as the magnetic field differs from zero in
the Sherrington–Kirkpatrick model (in which mean field theory
is correct), the behavior at the transition point for the cumulant
is much more complex, and for 1,024 spins, we also are very far
from the asymptotic limit (5).
The behavior we see here is distinctly different from this simple

case. Moreover, it is nonmonotonic and mostly a negative function
of temperature over almost the whole range. This stems from the
fact that the distribution of q, P(q) starts to become non-Gaussian
at quite a high temperature. This behavior is similar to that seen
for the finite-range three-spin model in four dimensions (6), in
which the skewness decreases strongly toward the large negative
values when the temperature decreases. This similarity once again
seems to suggest that this model also may be in the same univer-
sality class as short-range three-spin glasses, which apparently have
their own universality class. We need further study to clearly de-
termine the exact nature of the transition, if any.
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Fig. S1. Data for N = 512, N = 2,000, and N = 4,000. (Left) System size dependence of the relaxation function Q(t). One can see that there is a very small finite
size effect in these system sizes. (Right) Time–temperature superposition of Q(t) using the relaxation time τα obtained from the self part of Q(t) from the
condition Qs(τα) = 1/e. It clearly shows that the initial part of the relaxation function is very much the same as that of the self part but deviates from it, as the
infinite time value of Q(t) is not 0 in this case. The black solid line is the master curve obtained if one tried to do the time–temperature superposition for Qs(t) as
done in Fig. 1. This is shown just to point out that the master curve for Q(t) also follows the same curve but deviates from it because of the nonzero asymptotic
value. (Inset) Temperature dependence of the infinite time value of Q(t) that is Q(∞) for all system sizes. One clearly can see that there is hardly any system size
dependence in this quantity.
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Fig. S2. Extraction of the static length scale for N = 4,000 system size. We used the functional form ~cðxÞ=a+ expð−x=ξÞ½b+ c  cosðxd + eÞ� to fit the data. The
nice fitting over the whole range of the data indicates that the length scale extracted this way is very reliable. Data for different curves are shifted vertically by
0.01 from each curve for clarity.

Fig. S3. Evolution of 〈q2〉 as a function of MD steps to check whether the time evolution of 〈q2〉 reached a plateau. We take the sample to be equilibrated if
〈q2〉 reaches a plateau value within the error bar.
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Fig. S4. Comparison of susceptibility χ for two sets of runs for different system sizes. Run2 is two times longer than Run1. Error bars are calculated by the
bootstrap method.

Fig. S5. (Left) Distribution of overlap P(q) for N = 150 system size with ρimp = 0.110 for the temperature T = 0.300 for eight different samples. (Right) Dis-
tribution for the N = 250 system size at T = 0.330.

Fig. S6. (Left) Temperature dependence of skewness S for different system sizes with ρimp = 0.110. (Right) Kurtosis for the same dataset.
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