Supporting Information Informa Loebbermann et al. 10.1073/pnas.1217580110

Fig. S1. Formaldehyde-inactivated respiratory syncytial virus (FI-RSV) vaccination leads to a reduction of regulatory T cells (Tregs) in the lung but not in the draining lymph node (LN) after RSV infection. FI-RSV– or mock-infected Hep-2 cell material (FI-Mock)-vaccinated mice were infected with RSV on day 0. Lungs were harvested on days 2 and 4 postinfection. (A) Quantification of frequencies of Tregs and forkhead box p3 (Foxp3) gated CD3+CD4+ T cells (CD4 T cells) in
the lung on days 2 and 4 after PSV infection. (P) Total cell numb the lung on days 2 and 4 after RSV infection. (B) Total cell numbers of Tregs and CD4 T cells in the lung on days 2 and 4 after RSV infection. (C) Frequencies of Tregs and CD4⁺ T cells in the mediastinal LNs on days 2 and 4 after RSV infection. (D) Frequencies of CD3⁺CD4⁺gated Tregs in bronchoalveolar lavage (BAL) of
ELBSV vaccinated immune complexes of 11, 2/anti, 11, 2 (11, FI-RSV–vaccinated, immune complexes of IL-2/anti–IL-2 (IL-2 Cx)-injected mice on days 2 and 4 after RSV infection. (E) Quantification of frequencies of Tregs and CD4 T cells on days 2 and 4 after RSV infection in FI-RSV–vaccinated, IL-2 Cx–injected mice. One representative study of two independent experiments with five mice per group is shown. Results are presented as means ± SEM. The significance of results between the groups was analyzed by two-tailed, unpaired Student t test. *P < 0.05, **P < 0.01, ***P < 0.001 was used to compare different groups on one day point and $^{#}P$ < 0.05, $^{##}P$ < 0.001 was used for comparing
one group at different day points, *P < 0.05, **P < 0.01, ***P < 0.0 one group at different day points. $*P < 0.05$, $*P < 0.01$, $**P < 0.001$.

Fig. S2. Depletion of Foxp3⁺ cells in FI-RSV-vaccinated depletion of regulatory T-cell (DEREG) mice does not increase weight loss or cellular influx into the lungs after RSV infection. (A) Illness was monitored daily by weight for 8 d after RSV infection, displayed as percentage of original weight. (B) Total numbers of cells in the lung (Upper) and BAL (Lower) was enumerated on days 2 and 4 from RSV-infected FI-RSV–vaccinated mice, with and without Treg depletion. (C) Frequencies of CD4 T cells in the lung (Upper) and BAL (Lower) quantified by flow cytometry on days 2 and 4 after RSV infection. Graphs show data from one representative out of three independent experiments with five mice per group in each case. Results are presented as means ± SEM. The significance of results between the groups was analyzed by two-tailed, unpaired Student t test. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. S3. Tregs in the lung express CCR4. FI-Mock– or FI-RSV–vaccinated mice were infected with RSV on day 0, and lymphocytes recovered by BAL on day 4. When indicated, mice were injected with IL-2 Cx on days -3, -2, and -1. (A) Expression of CCR4 on Tregs and CD4 T cells in the BAL measured by flow cytometry on day 4 postinfection. (B) Quantification of CCR4 expression on Tregs and CD4 T cells in the BAL on days 2 and 4 postinfection measured as mean fluorescent intensity (MFI). (C) Relative expression of CCR4 to GAPDH of BAL CD4 T cells and Tregs on day 4 postinfection determined by real-time PCR of FI-RSV–vaccinated and RSV-infected mice. PCR was performed on pooled FACS-sorted cells. (D) Relative expression of CCR4 to GAPDH of CD4 T cells and Tregs in the lung on days 2 and day 4 postinfection determined by real-time PCR of pooled FACS-sorted cells. (E) Levels of chemokines CCL17 and CCL22 in the BAL of FI-RSV vaccinated mice measured by ELISA on days 2 and 4 after RSV infection. Data are pooled from two independent experiments, four to five mice per group in each graph. Results are presented as means \pm SEM. The significance of results between the groups was analyzed by two-tailed, unpaired Student t test. *P < 0.05, **P < 0.01, $***P < 0.001$.

Fig. S4. Effects of instillation of CCL17 and/or CCL22 in the airways of FI-RSV–vaccinated mice after RSV infection. (A) Quantification of frequencies of Tregs and CD4 T cells on days 2 and 4 after RSV infection in FI-RSV–vaccinated and either CCL17- or CCL22-treated mice. (B) Frequencies of CD4+IFN-γ+ T cells, CD4+TNF-
at T cells and CD4+TNF at IEN at T cells in the RAL on day α⁺ T cells, and CD4⁺TNF-α⁺IFN-γ⁺ T cells in the BAL on day 4 after RSV infection were quantified using flow cytometry on days 2 and 4 after RSV infection. (C)
Execuancies (Right) and total numbers (Loft) of massen Frequencies (Right) and total numbers (Left) of macrophages, neutrophils (PMNS), and eosinophils in the BAL were quantified using differential cell counting of H&E-stained cytospins slides on day 4 postinfection. Graphs show data from one representative out of two independent experiments with five mice per group in each case. Results are presented as means \pm SEM. The significance of results between the groups was analyzed by two-tailed, unpaired Student t test. *P < 0.05, ** $P < 0.01$, *** $P < 0.001$.

Fig. S5. Late effects of chemoattraction of Tregs into the airways by CCL17/22. BALB/c mice were vaccinated with FI-RSV and infected 3 wk later with RSV intranasally (i.n.) (day 0). When indicated, mice were treated i.n. with a mixture of 0.5 ^µg of both CCL17 and 22, or PBS on day 2 after RSV infection. (A) Frequencies of Tregs in the BAL were quantified using flow cytometry on day 8 after RSV infection with (17/22) or without (nil) i.n. administration of CCL17/22. (B) Quantification of Tregs and CD4 T-cell frequencies in the BAL on day 8 after RSV infection. (C) Quantification of total numbers of Tregs and CD4 T cells in the BAL on day 8 after RSV infection. Graphs show data from one representative out of two independent experiments with five mice per group in each case. Results are presented as means \pm SEM. The significance of results between the groups was analyzed by two-tailed, unpaired Student t test. *P < 0.05, **P < 0.01, $***P < 0.001$.

Fig. S6. Anti-CCL17/22 treatment decreases Treg frequencies. Mice were injected i.p. with anti-CCL17 and 22 antibodies or goat IgG control on day 1 after RSV infection into FI-RSV-vaccinated mice before instillation of CCL17/22 on day 2 postinfection. Quantification of Tregs (Left) and CD4 T-cell (Right) frequencies in the BAL on day 4 after RSV infection. Graphs show data from one representative out of two independent experiments with five mice per group in each case. Results are presented as means \pm SEM. The significance of results between the groups was analyzed by two-tailed, unpaired Student t test. *P < 0.05, **P < 0.01, $***P < 0.001$.

Fig. S7. The balance of regulatory and disease-causing T cells in RSV infection. (A) The airways of naive mice contain alveolar macrophages but no other immune cells. (B) In RSV primary infection, macrophages become activated and CD4 and CD8 T cells migrate into the lung and airways. These are kept in check by Tregs, which require granzyme B to function (1); both CD4 and CD8 T cells produce IL-10, which assists in modulation of the immune response (2). (C) RSV infection of mice previously vaccinated with FI-RSV shows a rapid and exuberant CD4 T-cell response, leading to mediator release into the local environment and shutdown of the production of CCL17/22 by resident cells. These chemokines normally recruit Tregs into the airways, so a decline in chemoattraction of Treg enhances disease. (D) Administration of CCL17/22 intranasally bypasses the shutdown of Treg recruitment and attenuates vaccine-augmented disease, reducing disease severity. APC, Antigen presenting cell.

1. Loebbermann J, et al. (2012) Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol 5(2):161–172. 2. Loebbermann J, et al. (2012) IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE 7(2):e32371.