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SI Results
Long-Range Coherence. Movie S1 corresponds to Fig. 2, illustrat-
ing the long-range coherence between the fusiform face area
(FFA) and the rest of the cortex. Because coherence was com-
puted using a sliding time window, we were able to see how it
changes in time. Whereas Fig. 2 provides static snapshots of the
results, Movie S1 provides a dynamic picture of Z-Coherence in
each group as it evolves in time relative to stimulus onset.

Local Functional Connectivity. Phase-amplitude coupling (PAC) for
twoparticipants, one fromeachgroup, is illustrated inFig. S1A. Fig
S1B confirms that the observed PAC differences do not arise from
differences in intertrial coherence (ITC) (1). This latter result is
also supported by other studies (2). Fig. S2 shows whole-cortex
PAC data for the houses condition and emotional faces condition,
and Fig. S3 provides additional views of the normalized PAC
value (Z-PAC) data presented in Fig. 3C (PAC for emotional
faces condition normalized by PAC for the houses condition).

Correlation Between Local and Long-Range Functional Connectivity.
Fig. S4 shows the correlation between Z-PAC and Z-Coherence
within each group, and thus complements Fig. 4.

Functional Connectivity and Autism Spectrum Disorders Severity and
Diagnosis. Movie S2 is a rotating version of the five dimensions (Z-
PAC, Z-Coherence on three axes, and probability; Fig. 5B) pro-
jected onto three dimensions. Quadratic discriminant analysis
(QDA) is a probabilistic classifier, meaning each data point is as-
signed a probability of belonging to a group. Looking at the in-
dividual data, it is clear that all but one participant were assigned
the correct probability, well above or below 50%, in accordance
with their diagnosis. Only one participant with autism spectrum
disorders (ASD) was assigned a roughly 50% probability of be-
longing to the ASD group, meaning the model could not classify
that participant correctly. In other words, a hypercurve can be
drawn that would completely separate the groups except for one
participant. This result is striking because the vast majority of
studies looking for ASD biomarkers find group differences in the
means but large overlaps between groups when individual data are
considered (e.g., ref. 3).

Receiver Operating Characteristic Curves for Different Statistical
Classifiers. Fig. S4 shows the receiver operating characteristic
(ROC) curves for the QDA classifier using different subsets of the
data, as well as the ROC curve for a linear discriminant analysis
(LDA) classifier. The performance of the two classifiers was
equivalent (details are provided in the legend for Fig. S4).

No Group Differences in the Induced Response. Fig. S5 shows the
induced response in each group, condition, and region of interest
(details of how the induced response was computed are provided
in the legend for Fig. S5).

SI Materials and Methods
Participants. Participants were 17 adolescent and young adult
males diagnosed with ASD and 20 age-matched typically de-
veloping (TD) males. Data were obtained for 5 additional par-
ticipants (4 diagnosed with ASD and 1 diagnosed as TD) who
were excluded from our analysis due to excessive movement or
poor head position localization. Two of our participants (both
TD) with initially poor data quality returned for a second, suc-
cessful MEG session, and these data are included in our analysis.

Participants were recruited through community sources. Par-
ticipants with ASD were recruited for having a prior diagnosis of
ASD and were required to meet a cutoff of >15 on the Social
Communication Questionnaire (SCQ), Lifetime Version. In-
dividuals with autism-related medical conditions (e.g., fragile X
syndrome, tuberous sclerosis) and other known risk factors (e.g.,
premature birth) were not included in this study. Participants
with ASD were subsequently assessed with either module 3 (n = 3)
or module 4 (n = 14) of the Autism Diagnostic Observation
Schedule (ADOS) (4), which was administered by trained re-
search personnel who had previously established interrater re-
liability. All participants met ADOS classificatory criteria for
autism (n = 7) or ASD (n = 9), with the exception of one par-
ticipant who exceeded the ADOS autism cutoff for social
symptoms but had a score one below the cutoff for communi-
cation symptoms. This individual was rated 27 on the SCQ, and
was confirmed by clinical impression to meet diagnostic criteria
of the Diagnostic and Statistical Manual of Mental Disorders,
fourth edition, for pervasive developmental disorder.
All TD participants were scored below threshold on the SCQ

and were confirmed to be free of any neurological or psychiatric
conditions, as well as free of substance use for the past 6 mo, via
parent and self-report and clinical observation. The ASD and TD
groups did not differ in verbal or nonverbal intelligence quotient
(IQ), as measured with the Kaufman Brief Intelligence Test,
second edition (5). Handedness information was collected using
the Dean Questionnaire (6) for 34 participants and was self-
reported for the remaining 3 participants. Each group had 1
ambidextrous participant, and the ASD group had 2 left-handed
participants. The rest of the participants were right-handed.
Participant data are shown in Table S1.

Experimental Paradigm and Task. The paradigm presented in the
magnetoencephalography (MEG) studies consisted of houses and
neutral, fearful, and angry faces (Fig. S6). Each stimulus was dis-
played for 1 s, separated by 1 s of fixation cross baseline (fixation on
a cross at the center of the screen). Eight stimuli of the same
condition were presented consecutively. The paradigm was pre-
sented in three consecutive runs. Each run lasted 3 min and con-
sisted of eight blocks, two of each condition, presented in random
orderwithin the run, followedby a short break (1–2min). Toensure
attention, participants were asked to press a button when the same
face appeared twice in succession. This was a rare (1/8) occurrence,
and all participants performed at ceiling level on the task.We were
not concerned about motor-preparation artifacts from trials in-
volving a button press, because our analysis was always time-locked
to stimulus onset. Therefore, the non–time-locked effects from the
16% of trials associated with a motor response would average out
to a level no greater than the noise inherent in the data.
The face stimuli were collected from three databases: Karolinska

Directed Emotional Faces (KDEF) (7), NimStim Face Stimulus Set,
and Gur (8). The houses stimuli were obtained from the Kanwisher
Laboratory database at Massachusetts Institute of Technology.
All stimuli were homogenized using an oval black mask. The se-
quence of stimuli was generated and presented using the psycho-
physics toolbox (9, 10), and presented with a projector through an
opening in the wall onto a back-projection screen placed 100 cm
in front of the participant inside a magnetically shielded room.

Structural MRI Data Acquisition and Processing. T1-weighted, high-
resolution, magnetization-prepared rapid gradient echo struc-
tural images were acquired on a 3.0-T Siemens Trio whole-body
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magnetic resonance scanner (SiemensMedical Systems) using a 32-
channel head coil. The images were acquired with a 1-mm × 1-mm
in-plane resolution, 1.3-mm slice thickness with no gaps, and
a repetition time/time following inversion pulse/echo time/flip
angle of 2,530 ms/1,100 ms/3.39 ms/7°. Cortical reconstructions
and parcellations for each subject were generated using FreeSurfer
(11, 12). After correcting for topological defects, cortical surfaces
were triangulated with dense meshes with ∼130,000 vertices in
each hemisphere. To expose the sulci in the visualization of cortical
data, we used the inflated surfaces provided by FreeSurfer (11).

MEG Data Acquisition and Preprocessing. Acquisition. The MEG data
were acquired inside a magnetically shielded room (IMEDCO)
using a whole-head Elekta Neuromag VectorView system com-
posed of 306 sensors arranged in 102 triplets of two orthogonal
planar gradiometers and one magnetometer. The signals were
filtered between 0.1 Hz and 200 Hz and sampled at 600 Hz. The
position and orientation of the head with respect to the MEG
sensor array were recorded continuously throughout the session
(at 200-ms intervals) during each trial with the help of four head
position indicator (HPI) coils (13). These continuous head po-
sition data were later used to apply movement correction to each
individual participant. To allow coregistration of the MEG and
MRI data, the locations of three fiduciary points (nasion and
auricular points) that define a head-based coordinate system,
a set of points from the head surface, and the sites of the four
HPI coils were digitized using a Fastrak digitizer (Polhemus)
integrated with the VectorView system. ECG and electrooculo-
gram (EOG) signals were recorded simultaneously to identify
epochs containing heartbeats as well as vertical and horizontal
eye movement and blink artifacts. During data acquisition, on-
line averages were computed from artifact-free trials to monitor
data quality in real time. All off-line analysis was based on the
saved continuous raw data. In addition, 5 min of data from the
room void of a subject were recorded before each experimental
session for noise estimation purposes.
Noise suppression and motion correction. The data were spatially fil-
tered using the signal space separation (SSS) method (14, 15) with
Elekta Neuromag Maxfilter software to suppress noise generated
by sources outside the brain. This SSS procedure also corrects for
head motion between runs as well as within each run, using the
continuous head position data described in the previous section.
The heartbeats were identified using in-house MATLAB code
modified from QRS detector in BioSig (16). Subsequently, a sig-
nal-space projection operator was computed separately for
magnetometers and gradiometers using the Singular Value De-
composition (SVD) of the concatenated data segments contain-
ing the QRS complexes. Data were also low-pass filtered at 145
Hz to eliminate the HPI coil excitation signals.
Epoching. The data were epoched into single trials lasting 2 s, from
800 ms before stimulus onset to 1,200 ms following it. A total of 48
trials were collected for each of the four conditions. Epochs were
rejected if the peak-to-peak amplitude during the epoch exceeded
150 μV, 1,000 fT, and 3,000 fT/cm in any of the EOG, magne-
tometer, and gradiometer channels, respectively. This resulted in
the loss of 2–8 trials per participant per condition. To maintain
a constant signal-to-noise ratio across conditions and participants,
we fixed the number of trials per condition per participant at 40,
the minimum number of accepted trials that we had for each
condition and participant. For conditions and participants having
more than 40 good trials, we selected 40 trials randomly from the
available trials. There were no group differences in overall quality
of the data, and the number of good (unrejected) trials per con-
dition was not significantly different between groups or across
conditions. For each participant, the same set of trials was used for
all the analyses (delineation of FFA, coherence, and PAC).
Eye tracking. Prior research has shown that individuals with ASD
tend to look away from faces or away from the eye region of the

face (17), which can have an impact on responses in the FFA (18,
19). It has also been shown that individuals with ASD can be
biased to look at the eye region by using a fixation point at the
correct location, as we did, and that in such cases, FFA activation
normalizes in individuals with ASD as a function of the amount
of time spent looking at the eye region (20–22). To verify fixa-
tion, we recorded participants’ eye movements using two EOG
electrodes placed above and below the left eye to track vertical
eye movements and near the temporal end of each eye to track
horizontal eye movements. Although EOG electrodes do not
record absolute eye gaze direction, they record changes in eye
gaze direction in a highly reliable manner. We found that eye
movements in unrejected epochs were similar across groups for
all conditions. Because each trial consisted of a fixation period
followed by the stimulus, this means the participants with ASD
maintained their fixation throughout each trial similar to the TD
participants. Although EOG tracking does not inform about
absolute direction of gaze, we verified that participants with ASD
fixated near the fixation point (which overlapped closely with the
top of the nose) by examining the evoked responses in the FFA
for each participant and group. As shown in SI Results, we found
no significant group difference in evoked responses to faces in
the FFA region, indicating that the absolute direction of fixation
did not differ between groups (20–22).

Mapping MEG Data onto Cortical Space. Source estimation. The dense
triangulation of the folded cortical surface provided by FreeSurfer
was decimated to a grid of 10,242 dipoles per hemisphere, cor-
responding to a spacing of ∼3 mm between adjacent source lo-
cations. To compute the forward solution, a boundary-element
model with a single compartment bounded by the inner surface
of the skull was assumed (23). The watershed algorithm in
FreeSurfer was used to generate the inner skull surface trian-
gulations from the MRI scans of each participant. The current
distribution was estimated using the minimum-norm estimate
(MNE) by fixing the source orientation to be perpendicular to
the cortex. The noise covariance matrix used to calculate the
inverse operator was estimated from data acquired in the ab-
sence of a subject before each session. This approach has been
validated using intracranial measurements (24). To reduce the
bias of the MNEs toward superficial currents, we incorporated
depth weighting by adjusting the source covariance matrix, which
has been shown to result in a spatial specificity of cortical MEG
data of less than 1 cm (25).
Cortical parcellations. The fusiform gyrus, anterior cingulate cortex
(ACC), inferior frontal gyrus (IFG), and precuneus were iden-
tified automatically by the FreeSurfer anatomical parcellation of
the cortex (11, 12).
Intersubject cortical surface registration for group analysis. The cortical
surface of each participant was registered to an average cortical
representation (FsAverage in FreeSurfer) by optimally aligning
individual sulcal-gyral patterns (26).

Delineating the FFA. To delineate the FFA, we first identified the
frontal gyrus in each participant using the individual FreeSurfer
anatomical parcellation. We then aligned single trials in the
houses and neutral faces conditions by latency. The latency es-
timation procedure is based the method of Gramfort et al. (27),
and it was adapted for cortical space data. By aligning single
trials so that for each participant, the latency at the peak of the
response is the same for all trials, temporal jitters in single-trial
brain responses could be corrected. To delineate the FFA within
the frontal gyrus, we used a vertex-by-vertex statistical analysis of
the peak of the evoked response to neutral faces vs. the peak of
response to evoked houses. The FFA is defined as the region in
the frontal gyrus that responds more strongly to faces than to
houses (28). Accordingly, we identified all vertices in the frontal
gyrus that responded more strongly to faces than to houses and
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used cluster-based statistical analysis to eliminate spurious re-
sults and correct for multiple comparisons (Fig. S7). The re-
sulting region comprised the FFA for that participant. The
procedure was repeated for each participant, and the mean FFA
size in our participants was 0.65 cm2, in agreement with the
fMRI literature. This statistical procedure yielded very high
spatial specificity in the identification and delineation of the
FFA. The spatial specificity for the rest of our spatial data
(precuneus/IFG/ACC) is less precise, in line with the standard
spatial resolution of the MNE inverse mapping process.

Long-Range Coherence Analysis. FFA time course. To compute co-
herence between the FFA and each vertex on the cortex, we first
averaged the MEG source waveforms across all vertices of the
FFA. This yielded amean time course for the FFA, which was used
as the seed in computations of coherence with the rest of the
cortical vertices. To avoid signal cancellation, the averaging took
into account the polarity mismatches that occur because of MNE
estimate spreading across sources whose orientations were not
aligned. This was done by flipping the polarity of the signals from
sources that were oriented at greater than 90° relative to a prin-
cipal direction of the cortical normals within the FFA region.
Coherence computation. We computed the coherence between the
averaged time course across the FFA and every other vertex on
the cortex, from 6 Hz to 55 Hz, for each participant. Coherence
computations were carried out on single trials and performed in
MATLAB using the FieldTrip toolbox (29). For each condition,
coherence was computed using a moving time window, from 800
ms before stimulus onset to 1,200 ms after stimulus onset. This
procedure allowed us to compute long-range coherence in space
as well as in time. The window length was seven cycles, and thus
inversely proportional to the frequency. The results from each
frequency were binned by frequency band and averaged within
each band to obtain a mean band coherence value for each point
in time for each vertex, condition, and participant. For alpha, the
only frequency band in which we found significant group dif-
ferences, results ranging from 8–12 Hz were averaged.
Z-Coherence. We eliminated the statistical bias due to the non-
Gaussian distribution of coherence values and unequal sample
sizes, as well as the problem of spurious coherence (30), by using
Z-Coherence (31), a normalized coherence measure in which the
principal condition (emotional faces, a total of 80 trials per
participant) is normalized with respect to a baseline condition
(houses, a total of 40 trials per participant). The Z-Coherence is
defined as:

where N1 and N2 denote the degrees of freedom in the first and
second conditions, respectively; C1 is coherence in the principal
condition (emotional faces); and C2 is coherence in the baseline
condition (houses). The sign of this quantity indicates whether
coherence in the principal condition is higher (positive) or lower
(negative) than in the baseline condition. Z-Coherence was
computed for individual cortical surfaces, and the results were
then morphed onto the FsAverage cortex surface using the
morphing maps provided by the MNE tools. Fig. S9 outlines this
procedure in detail.

Local PACAnalysis.PAC between the alpha band phase and gamma
band amplitude was quantified for each vertex in the FFA, for
each participant, using the modulation index (MI), which is
a statistical score representing the degree of coupling between
two time series, one of phase and the other of amplitude (32).
This procedure was modified for epoched data by computing
PAC as measured by the MI between the frequencies of 7 Hz
and 13 Hz for phase and between the frequencies of 40 Hz and
130 Hz for amplitude for each single trial (epoch) and then
computing the median across all epochs within a condition. It
was also modified for computing alpha, rather than theta, phase
coupling by setting amplitude series filter bandwidths to 12 Hz.
For the baseline, each epoch lasted from 900 ms before stim-
ulus onset to 0 ms (stimulus onset). For each of the stimulus
conditions, each epoch lasted from 0 ms (stimulus onset) to
1,100 ms after stimulus onset. Thus, on average, the baseline
epoch spanned 9 cycles of alpha, whereas the epochs for each
of the conditions spanned 11 cycles of alpha.
To normalize PAC values in the same way that we normalized

coherence values, we defined Z-PAC as the PAC due to a prin-
cipal condition (emotional faces, 80 trials per participant) nor-
malized with respect to a baseline condition (houses, 40 trials per
participant). We computed Z-PAC by performing the Wilcoxon
rank-sum test, which allows for an unequal number of trials, be-
tween the principal condition (emotional faces) and the baseline
condition (houses),using single trials.Therank-sumtest, inaddition
to a P value, also gives as an outcome a Z-value that quantifies the
difference between the two conditions. We refer to this rank-sum
Z-value as the Z-PAC. Fig. S10 outlines this procedure.
For the global PAC plot (Fig. 3C and Figs. S2 and S3), we

repeated this procedure for every voxel in the cortex; however,
due to computation time, we limited the analysis to PAC be-
tween the phase of alpha (8–12 Hz) and the amplitude of high
gamma (75–110 Hz), where group difference was maximal.
Finally, there are multiple methods of computing PAC (33, 34).

To ensure the robustness of our measurements, we computed
PAC using three additional independent methods (35–37) in
a subset of our participants. All these approaches yielded similar
results. We chose to use the MI method of Canolty et al. (32)
because it is inherently a statistical measure, and thus more
amenable to generating a null hypothesis for the purpose of
comparing the results across groups.

QDA. QDA is a standard classification procedure also known as
Fisher discriminant analysis (38). Unlike LDA, QDA classifies

data using a quadratic function. To assess the validity of the
procedure, the data were split randomly 1,000 times into a train-
ing set (75% of participants) and a test set (25% of participants).
For each of the 1,000 permutations, the QDA model estimated
the prediction function on the training set, and the results were
tested on the test set. This procedure yielded 1,000 classification
results. The SE associated with the procedure was less than 0.05%
for all values (sensitivity, specificity, and accuracy), which confirms
the validity of the classifier.
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Fig. S1. (A) Examples of PAC from one TD participant (Left) and one participant with ASD (Right). The white sine wave shows four cycles of a 10-Hz alpha
rhythm. PAC measures the extent to which the gamma power is modulated in phase with the alpha oscillations. This figure was obtained by averaging the
response with respect to the trough of the alpha cycle. In the TD participant, it is clear that gamma peaks, especially high gamma peaks (∼75–110 Hz) reliably
coincide with the troughs of the alpha cycles. In the participant with ASD, the timing of gamma bursts is not as time-locked to the alpha troughs as in the TD
participant. (B) Intertrial coherence (ITC), which measures the consistency of phase across trials, was computed using the standard approach. We calculated
a continuous time-frequency decomposition using seven-cycle Morlet wavelets for each trial and then computed the phase in each trial continuously. ITC is
then defined as the mean vector length on unit circles across trials. We did not find any group differences in ITC in the FFA in either the houses or emotional
faces conditions.
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Fig. S2. Whole-cortex alpha to high gamma PAC analysis for houses and emotional faces conditions computed at the frequencies corresponding to the
maximum contrast (alpha phase to high gamma: 75–110 Hz amplitude; Fig. 3). The four views of the cortex presented in each panel are used to display PAC
(significant PAC is represented by higher, colored MI values) over the entire cortex. (A) Average PAC for the TD group during the houses condition. There was
significant PAC in the occipital cortex only and none within the FFA, shown outlined in bold on the ventral view. (B) Average PAC for the ASD group during the
houses condition. As in the TD group, there is no significant alpha to high gamma PAC in the FFA (bold outline.) (C) Average PAC for the TD group during the
emotional faces condition. Here, there is significant PAC in the FFA (bold outline). (D) Average PAC for the ASD group during the emotional faces condition.
Unlike the TD group, there is no significant PAC in the FFA (bold outline).
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Fig. S3. PAC for the emotional faces condition normalized by PAC for the houses condition (Z-PAC) over the whole cortex. The ventral view shown here is also
presented in Fig. 3C. (A) Normalized PAC (i.e., data shown in Fig. S2C normalized by data shown in Fig. S2A) for the TD group. The largest area of significant
positive normalized PAC (i.e., PAC greater for emotional faces than for houses) is within the FFA, outlined in bold in the ventral view. (B) Normalized PAC (i.e.,
data shown in Fig. S2D normalized by data shown in Fig. S2B) for the ASD group. There is no increase in PAC for emotional faces over houses within the FFA.
Several small areas in the occipital lobe show increased PAC for houses over faces.

Fig. S4. Correlation between Z-PAC and Z-Coherence is the same as in Fig. 4, but with data plotted separately for each group. Correlations between the
magnitude of Z-PAC and the magnitude of Z-Coherence remain significant within each group for all three regions of interest (precuneus, ACC, and IFG).
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Fig. S5. ROCs showing performance of statistical classifiers using different subsets of features and different approaches. For each case, we evaluated the
performance of the classifier using the standard approach of measuring the area under the curve (AUC), where an AUC of 0.5 represents chance (dashed line).
Magenta, QDA classifier when only Z-PAC data were used (AUC = 0.876); blue, QDA classifier when only Z-Coherence data were used (AUC = 0.872); red, QDA
classifier using both Z-PAC and Z-Coherence data (AUC = 0.974); green, LDA classifier using both Z-PAC and Z-Coherence data (AUC = 0.967). The performance
of the QDA classifier significantly improved when both Z-PAC and Z-Coherence data were used. The performance of the LDA classifier was similar to that of the
QDA classifier.

Fig. S6. Experimental paradigm. We had three runs in total. Each run consisted of two blocks, with each containing 8 stimuli from the same condition, for
a total of 48 distinct stimuli per condition.
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Fig. S7. Delineating the FFA. (A) For each participant, we extracted single-trial data corresponding to the FreeSurfer fusiform gyrus (FG) label. (B) These trials
were then aligned in time (the averages are shown) and subjected to cluster-based statistics (P < 0.05 corrected) to determine which cluster of vertices within
the FG responded significantly more to neutral faces than to houses over the duration of each trial. (C) This cluster was then delineated as the FFA for that
participant.
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Fig. S8. Induced response in the FFA, precuneus, IFG, and ACC for each group in the emotional faces (Left) and houses (Right) conditions. The induced re-
sponse was calculated by first subtracting the evoked response from each trial, followed by time-frequency decomposition using seven-cycle Morlet wavelets.
Using the mean and SD in the baseline time window (−350 to −10 ms), we computed the Z-score for each trial as a function of time and frequency; the induced
response was defined as the mean Z-score value across all trials. After correcting for multiple comparisons using cluster-based statistics, we found no significant
group differences in induced responses in any of the conditions or areas.
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Fig. S9. Computation of Z-Coherence group differences. (A) Event-related coherence between the FFA and the rest of the cortex was computed using
a moving time window, for each participant (one example from the TD group shown) for the emotional faces (Left) and houses (Right) conditions. Shown here
is a single time snapshot, from t = 150 ms after stimulus onset. (B) Z-Coherence was computed for each participant and morphed from the individual brain
(Left) to the FsAverage brain (Right). (C) This procedure was repeated for each participant. (D) Mean group Z-Coherence value at t = 150 ms, masked at
significant group difference (i.e., all Z-Coherence values outside the significant cluster were set to 0) (P < 0.05 corrected).
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Fig. S10. Computation of Z-PAC group differences. (A) (Top) MI in the FFA was computed for each participant for individual trials in each condition. (Upper
Middle) Median across trials was computed for each participant and condition. We used the median rather than the mean because (i) the MI is always positive
and the values are not normally distributed, (ii) the median is less susceptible to noise, and (iii) the median is a more natural value for the rank-sum test than
the mean. (Lower Middle) We repeated this procedure for each participant. (Bottom) We took the mean across participants, and the result was the corre-
sponding (group, condition) panel in Fig. 3A. (B) (Top Left) Same as Top in A. (Top Right) Same as Top in A, for the houses condition. (Upper Middle) Z-PAC (PAC
for emotional faces normalized by PAC for houses) was then computed for that participant. (Lower Middle) Procedure was repeated for each participant.
(Bottom) Cluster-based statistics were used to determine regions of significant group differences. Dashed line marks areas that showed significant group
difference (P < 0.03 corrected) overlaid on the mean Z-PAC plot for each group (as in Fig. 3B).
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Movie S1. Z-coherence (coherence during viewing of emotional faces normalized by coherence during viewing of houses) as a function of time relative to
stimulus onset. The TD group (Upper) and the ASD group (Lower) are shown.

Movie S1

Table S1. Participant data

ASD (n = 17), mean (SD), range TD (n = 20), mean (SD), range t (35), P value

Age, y 16.8 (2.0), 14–20 16.5 (2.5), 13–21 0.4, 0.67
SCQ lifetime 22.0 (3.8), 16–28 3.4 (3.8), 1–15 14.4, 0.000
ADOS communication 3.4 (1.7), 1–7 — —

ADOS social 7.6 (2.6), 4–12 — —

Verbal IQ 112 (21), 61–142 115 (10), 93–132 0.6, 0.56
Nonverbal IQ 112 (16), 74–132 112 (18), 74–132 0.1, 0.92
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Movie S2. Rotating visualization of the 5D depiction of the QDA shown in Fig. 5B: the three Z-Coherence values for the precuneus, ACC, and IFG (the three
axes); Z-PAC (size of the marker); and probability of that participant having an ASD diagnosis (color of the marker). Plain circles represent participants with
ASD, and crossed circles represent TD participants. For all but 1 of the 37 participants, the probability of having an ASD diagnosis is assigned correctly
(i.e., greater than or less than 50% in agreement with the actual diagnosis). Only 1 participant with ASD is assigned an ambiguous probability of about 50%
for carrying an ASD diagnosis. The movie clearly shows that a hypercurve exists that will correctly separate ASD participants from TD participants for all but
1 participant.

Movie S2
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