Supplementary Text:
Reconciling Differential Gene Expression Data
with Molecular Interaction Networks

Christopher L. Poirel!, Ahsanur Rahman', Richard R. Rodrigues'?
Arjun Krishnan?, Jacqueline R. Addesa!, T. M. Murali'?

1 Supplementary Methods

1.1 Comparison to Previous Approaches

Here we provide a qualitative comparison of network reconciliation methods to techniques that
have already been published in the literature. As noted in the main manuscript, BioNet [2] and
DEGAS [16] aim to compute small connected subgraphs that are correlated with a disease. Such
approaches were motivated by the observation that only part of a pathway is often changed by
disease [16] and that interpreting small subnetworks is easier than interpreting larger ones [2]. We
differ from these techniques in the following ways:

(i) DEGAS and BioNet formulate problems that are computationally intractable (NP-complete
or NP-hard). They solve these problems either by using approximation algorithms or methods
to solve integer linear programs. In contrast, we propose comparatively simpler methods that
need to solve a (sparse) linear system. Therefore, our algorithms are considerably simpler.

(ii) Rather than directly compute subnetworks, network reconciliation algorithms modify the
score of each gene in the network based on their interactions. The modified scores can be
smoothly incorporated into a number of systems biology analyses, including active subnetwork
discovery.

(iii) Moreover, by computing a new ranking of all genes we retain the possibility of discovering
multiple pathways related to the disease of interest.

We do acknowledge that DEGAS incorporates per-gene variations among samples in a more subtle
manner than our approaches can.

Other authors have proposed using PageRank to integrate gene expression data with protein
interaction networks [9, 10, 18]. PINTA [10] uses the algorithms we have described but evaluates
them in a more restricted biological context. They check if knocked-out genes are ranked highly
by the algorithms in gene expression data collected following the knock-out. Two applications
have used PageRank to study doxorubicin dosage response [9] and to select diagnostic genes in
cancers [18, 6]. Our approach extends these previous works in the following ways:

(i) We list three well-motivated criteria to evaluate the algorithms. We demonstrate the depen-
dence of these evaluations on the input parameter ¢, thereby suggesting suitable values of the
parameter.

(ii) We use the reconciliation algorithms to study a diverse set of human diseases. We show that
the algorithms can retain differences between diseases while also taking the network structure
into account.
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(iii) Using a set of seven brain diseases, we demonstrated that our algorithms could reveal genes
involved in a relevant biological function, even when those genes were not differentially ex-
pressed.

1.2 Computing Weights of Protein Interactions

We used the human MiMI network [15] as the underlying protein interaction network in our analysis.
MiMI merges interaction data from over 20 interaction databases. We discarded self-edges and
repeated edges from the interaction network, resulting in a network comprised of 11,074 proteins
and 77,952 interactions. Although MiMI is a very comprehensive resource, a number of interactions
included in it were detected by error-prone high throughput experiments.

Typically, there is little information regarding the confidence of interactions discovered exper-
imentally via high- or low-throughput technologies. As a result, many network-based methods
operate on unweighted molecular interaction networks [12, 17, 18] even though these methods
may be applicable to weighted networks. However, we anticipate that estimating the quality of
each interaction will improve the results of network-based algorithms. A number of approaches
have emerged in the literature to estimate the confidence of molecular interactions. For example,
predicted interaction networks assign a prediction score to each interaction that is often directly
applied as an edge weight [8, 10]. Alternatively, binding affinities between transcription factors
and their target binding sites may offer an appropriate estimate of interaction confidence [5] when
working with transcriptional regulatory networks. Similarly, weighting edges by the number of mu-
tations observed on a pair of interacting genes [17] has proven appropriate for detecting mutated
pathways in cancer. Nevertheless, there is no standard approach for estimating the confidence of
an interaction, and implemented approaches are often problem-specific.

We desired an edge weighting method that used purely topological measures of reliability, since
we incorporated gene expression data into these methods and used functional annotations to inter-
pret the results. We estimated the reliability of each interaction by its F'S-weight [4]. Let G(V, E)
denote the interaction network, where V' is the set of nodes and F is the set of edges in the network.
For each edge (u,v) € E, define the weight of (u,v) as follows:
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Notice that wy, is large when v and v have many neighbors in common and small when they
have diverse neighborhoods. Thus, we assign higher confidence to a pair of nodes that share many
common interactors in the interaction network.

1.3 Selection of Functional Enrichment Algorithm

A wide variety of functional enrichment methods are available in the literature [3, 7, 11, 13]. These
approaches typically perform a term-by-term analysis, reporting the significance of the relationship
between each function and a collection of genes being studied. The disadvantage of these approaches
is that they typically return long lists of significantly enriched functions, from which the user must
determine which are the most relevant. After applying FuncAssociate [3], GSEA [13], and PAGE [7]



on our datasets, we found it difficult to distinguish top-ranking functions from one another because
they annotated similar collections of genes. However, Model-based Gene Set Analysis (MGSA) [1]
simultaneously evaluates all gene sets using a Bayesian approach that integrates overlap between
gene sets into the enrichment analysis. MGSA attempts to compute a non-overlapping set of
pathways that annotate the study set. MGSA computes a posterior probability for each pathway
that reflects how well the pathway overlaps with the study set while not overlapping with other
pathways with higher posterior probability. We performed all tests for functional enrichment using
MGSA. MGSA allows ranges to be set for two primary parameters o and 5. Parameter o controls
the fraction of unknown false positive genes, while 5 controls the fraction of unknown false negatives.
We set an upper limit of the o and 8 parameters to 0.3 and 0.5, respectively. Thus, less than 30%
of the genes annotated by enriched functions are not in the study set (i.e., top 250 genes from the
given ranking), and less than half of the genes from the study set are not annotated by any enriched
function. All other parameters were left to their default settings.

1.4 Expression Data for Human Diseases

We used gene expression data from [14], who collected publicly-available expression data for the
following 54 different human diseases and for the corresponding normal tissues:

Actinic Keratosis Idiopathic Thrombocytopenic Purpura
Acute Myeloid Leukemia Ischemic Cardiomyopathy
Adenocarcinoma of Esophagus Lung Transplant Rejection
Adenocarcinoma of Lung Malaria

Alzheimers Disease Malignant Melanoma

Anaplasmosis Malignant Neoplasm of Hypopharynx
Bipolar Disorder Malignant Neoplasm of Prostate
Chronic Obstructive Lung Disease Malignant Pleural Mesothelioma
Chronic Polyarticular Juvenile Rheumatoid Arthritis Malignant Tumor of Colon

Chronic Progressive Ophthalmoplegia Mixed Hyperlipidemia

Clear Cell Carcinoma of Kidney Myelodysplastic Syndrome
Complex Dental Cavity Nephroblastoma

Congestive Cardiomyopathy Obesity

Crohns Disease Papillary Thyroid Carcinoma
Cystic Fibrosis Polycystic Ovary Syndrome
Dermatomyositis Progeria Syndrome

Diabetic Nephropathy Rett Syndrome

Dilated Cardiomyopathy Secondary to Viral Myocarditis | Rheumatoid Arthritis

Duchenne Muscular Dystrophy Rotavirus Infection of Children
Endometriosis Sarcoidosis

Essential Thrombocythemia Schizophrenia

Glaucoma Scott Syndrome

Glioblastoma Senescence

Hereditary Gingival Fibromatosis Squamous Cell Carcinoma of Lung
Human Immunodefiency Virus Encephalitis Squamous Cell Carcinoma of Mouth
Huntingtons Disease Urothelial Carcinoma

Idiopathic Pulmonary Fibrosis Uterine Leiomyoma




2 Supplementary Results

2.1 Network coherence

Figure S1 reports the number of connected components in the subnetwork induced by the top k
genes returned by each algorithm for different values of ¢q. Each point is the average number of
connected components across all 54 diseases. The initial lines represent the connected components
induced by the rankings given solely by the expression data (i.e, ¢ = 1); these lines serve as a
common reference across the four subplots. For all values of ¢, the number of connected components
increases at every rank cutoff, suggesting that the Vanilla algorithm decreases network coherence
among top-ranking genes. However, PageRank, GeneMANIA, and Heat Kernel each decrease the
number of connected components drastically as ¢ increases.

Next, we assessed the significance of these connected component counts. We randomly shuffled
the gene identifiers in the gene expression data and applied PageRank to the randomized expression
data. As in the previous analysis, we computed the number of connected components induced by
the top k genes returned by PageRank when we set the parameter ¢ to 1.0, 0.5, and 0.1. We
repeated this process 100 times. Figure S2 plots the number of connected components induced
by the top k genes for 100 random rankings and the ranking given by applying PageRank to the
true expression data. Thus, the blue, cyan, and yellow curves in Figure S2 correspond to the blue,
cyan, and yellow curves in the PageRank subfigure (upper right) of Figure S1, and the dashed red
lines correspond to the results from 100 random rankings. Figure S2 indicates that the number
of connected components induced by the top 1000 genes is lower than the number of connected
components given by applying PageRank to any of the 100 random rankings.
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Figure S1: Connected components induced by the top-ranking nodes from each algorithm.
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Figure S2: Connected components induced by the top-ranking nodes from PageRank applied to
100 randomized gene expression datasets and to the true gene expression data.



2.2 Similarity of Gene Rankings Between Diseases

For each algorithm, we computed the Jaccard index of the top k, 0 < k < 250, genes after reconcil-
iation between every pair of diseases. Figure S3 illustrates the Jaccard indices for each algorithm
using a range of values for the input parameter g. Each point indicates the average Jaccard index
across all (524) pairs of diseases. This figure is the same as Figure 2 from the main manuscript but
expanded to include results for the Vanilla algorithm.

005 Vanilla

0.04
é q=0.10
2oo q=0.30
o q=0.50
8 0.02 q=0.70
o initial

0.01

0.0 50 100 150 200 250

rank cutoff

o GeneMANIA

0.25
éo.zo e q=0.10
I e q=0.30
D015 e« =0.50
® e—o =0.70
® 010 «—e initial

0.05

0.005 50 100 150 200 250

rank cutoff

Jaccard index

Jaccard index

08 PageRank

0.6]

0.5| — q=0.10
o— g=0.30

0.4 o =0.50
o—o (q=0.70

03 o—s initial

0.2 W

0.1

o0 —0—0—0 0 000 o000 0 000000 0 0 00C
0,00 50 100 150 260 250
rank cutoff

08 Heat Kernel

0.7]

0.6

0.5 —e =0.10
e—e q=0.30

0.4 e q=0.50
o q=0.70

03 oo initial

0.2]

e oo oo oo oo o oo oo o oo e s oo o o
0.1 .
0.00 50 100 1;:0 ZBO 250

rank cutoff

Figure S3: The Jaccard index of the top k genes reported by each algorithm for a pair of different

54

diseases. Each point indicates the average Jaccard index of all (2) pairs of diseases using a

particular value of ¢ as input to the algorithm.



2.3 Similarity of Gene Rankings Between Algorithms

For PageRank, Heat Kernel, and GeneMANIA, Figure S4 plots the average Jaccard index across
all 54 diseases of the top k genes, 0 < k < 1000, for each pair of algorithms. This plot demonstrates
that PageRank and Heat Kernel provide similar rankings for each disease.
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Figure S4: The average Jaccard index of the top-ranking genes between each pair of algorithms
returned by MGSA across all 54 diseases.



2.4 Functional Enrichment Between Algorithms

We investigated the similarity between the functional results of different algorithms. In Figure S5,
we show the average Jaccard index between the top k functions returned by MGSA for a pair of
reconciliation algorithms applied to a single disease. We plot the average across the seven brain
disorders. Figure S5 is the same as Figure 3(b) from the main manuscript but expanded to include
comparisons with the Vanilla algorithm.
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Figure S5: The Jaccard index of the top-ranking functions between all pairs of algorithms returned
by MGSA on the seven brain disorders.



2.5 Insulin-Mediated Glucose Transport Subnetworks

Figure S6 illustrates the subnetworks induced by proteins in the insulin-mediated glucose transport
pathway before and after applying each of the four reconciliation algorithms. The networks in
Figure S6 are the same as those in Figure 4 from the main manuscript, but we additionally report
subnetworks for Heat Kernel, GeneMANIA, and Vanilla.

PPP1R3A

(a) Initial insulin-mediated glucose
transport network.

PPP1R3A PPP1R3A

(b) After PageRank. (c) After Heat Kernel.

(d) After GeneMANIA. (e) After Vanilla.

Figure S6: A comparison of the subnetwork induced by genes involved in the NCI pathway insulin-
mediated glucose transport with nodes weighted by (a) differential expression p-values from patients
diagnosed with Huntington’s disease, and after applying (b) PageRank, (c) Heat Kernel, (d) Gen-
eMANIA, and (e) Vanilla. Blue nodes indicate genes ranked in the top 250, and darker nodes
indicate higher ranking. Nodes with a red outline indicate genes in the 14-3-3 family of proteins.
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