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1 Difference Between Our Model and Existing
Models

There are a number of differences between our model and those of [5] and
[6]. Our model takes a ‘mixture model’ approach: each fragment is emitted
independently of the other fragments and a partial phase vector Φ(i) ∈ ∆(fi) is
independently drawn for each fragment fi:

P (F |Θ) =
∑

H∈H⊗N

N∏
i=1

∑
Φ(i)∈∆(fi)

P (fi|hi,Φ(i))pm(hi)P (Φ
(i))

On the other hand, [5] and [6] take a ‘hidden variables’ approach: the model
first draws a full-length phase vector Φ, then all the fragments are emitted from
this common phase vector Φ:

P (F |Θ) =
∑

Φ∈∆⊗M

P (Φ)
∑

H∈H⊗N

N∏
i=1

P (fi|hi,Φ)pm(hi)

Although their model might look somewhat more natural, since the fragments
are actually derived from the fixed true chromosomes, the computation of the
likelihood function is quite costly; we need either to traverse all the |∆|M -
phase patterns (where |∆| is the number of possible phases at each site), or
to traverse all the 2|F

c(j)|-patterns for assigning haplotype origins hi ∈ H to
covering fragments fi ∈ F c(j) for each site j. Therefore, it is impractical to
use their model to compute a likelihood for genome-scale data. On the other
hand, our model considers only one fragment at a time and the complexity of
the likelihood computation is only |∆|×

∑N
i=1 |X(fi)|. Although our model loses

some complicated correlations among fragments, it still takes into account the
allele co-occurrences within each fragment.
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2 Variational Bayes Expectation Maximization
Algorithm

We set the prior probabilities for parameters Θ to be those of the Dirichlet

distribution with hyperparameters Λ(0) = {λ(0)jν }:

P (Θ) =
M∏
j=1

Dir
(
θj |λ(0)j

)
Dir(θj |λ(0)j ) = Z

(
λ
(0)
j

)−1 ∏
ν

(θjν)
λ
(0)
jν ,

Z
(
λ
(0)
j

)
=

[∏
ν Γ

(
λ
(0)
jν

)]
/Γ

(∑
ν λ

(0)
jν

)
,

where Γ(x) is the gamma function, and we set λ
(0)
jν = 0.5 for all j and ν.

The solutions for QHΨ(H,Ψ) and QΘ(Θ) have the form

QHΨ(H,Ψ) =
1

ZHΨ
exp

 N∑
i=1

∑
h∈H

∑
j∈X(fi)

∑
ν∈∆

Iihjν log(βihjν)

 ,

QΘ(Θ) =
M∏
j=1

Dir(θj |λjν) ,

where ZHΨ represents a normalization constant and βihjν and λjν are the hy-
perparameters that specify the posterior distributions. Because QHΨ(H,Ψ) and
QΘ(Θ) are dependent on each other through the dependencies among the hyper-
parameters, they cannot be found simultaneously. Therefore, we optimize βihjν
and λjν by repeating two computational procedures, called VBE and VBM.

In the VBE step, we calculate the expectations

γihjν =
∑
HΨ

IihjνQHΨ(H,Ψ) = γ
(1)
ih γ

(2)
ihjν ,

γ
(1)
ih =

∏
j∈X(fi)

(
∑

ν∈∆ βihjν)∑
h′
∏

j∈X(fi)
(
∑

ν∈∆ βih′jν)
,

γ
(2)
ihjν =

βihjν∑
ν′∈∆ βihjν′

.

In the VBM step, we update the Dirichlet parameters λjν and then compute
expectation wjν as well as βihjν :

λjν = λ
(0)
jν +

N∑
i=1

∑
h∈H

γihjν ,

wjν =

∫
dΘ log(θjν)Q

Θ(Θ) = ψ(λjν)− ψ (
∑

ν λjν) ,

βihjν = pe(fij |νh) exp(wjν) .
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3 Iterative Twist Operations to Avoid Sub-optimal
Solutions

We optimize the parameters as follows.

1. Set λ
(0)
kν = 0.5 for all k and ν and initialize Λ with λkν = λ

(0)
kν + rkν .

Here, rkν are random numbers sampled from the uniform distribution in
the range [0.0, 0.1]. They are necessary to avoid the symmetric point of
the likelihood function. Let S be the empty set, and set score = −∞ and
Λ1 = Λ.

2. Do variational Bayes expectation maximization [1] with initial parameter
Λ1 until the parameters converge or the number of iterations exceeds a
given limit (100). Let score′ and Λ′ denote the converged likelihood and
converged parameter set, respectively.

3. If score < score′ then set score = score′, Λ = Λ′.

4. Select the site j out of sites X \ S that has the smallest connectivity cj
with respect to the model Λ.

5. Add j to S if j has already been selected once in the previous iterations.

6. Set Λ1 = Λ and twist Λ1 at site j. (The concept of ‘twisting’ is described
in ‘The Minimum Connectivity Score’ subsection in the main paper.)

7. If cj > 7.0 or X = S, then terminate, otherwise go to step 2.

4 Dependency of the parameter α and the cov-
erage

We examined the influence of α on the efficiency of MixSIH and calculated
the switch error rates of MiSIH with different α on the simulation data whose
connected component include all sites. We also calculated the switch error
rates of ReFHap, FastHare, DGS and HapCUT. Table 1 shows a comparison
of the switch error rates. It shows that the scores of MixSIH whose error rate
parameter α are set to sequence error rates e tend to be low, especially when
sequence error rates are high. It also shows that MixSIH outperforms FastHare
and DGS, and is comparable to ReFHap and HapCUT under the condition
that the inferred haplotypes are completely connected. This data also show
that almost complete haplotype information is obtained when the coverage are
high.

5 Comparison of Accuracy Measures

Because of the equivalence of predictions between the switched haplotypes as
explained above, measuring the difference between Φ(t) and Φ is nontrivial.
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Table 1: Comparison of switch error rates (%) for simulated data with varying
coverage c and sequence error rates e. We set M = 100, and repeated the eval-
uation 100 times for each parameter; average values are shown. The parameter
α is the error rate parameter of the MixSIH model. The best scores are shown
in bold for each (e, c) pair.

e = 0.0 e = 0.025 e = 0.05 e = 0.075 e = 0.1
c = 3 c = 3 c = 3 c = 5 c = 8 c = 3 c = 5 c = 8 c = 3 c = 5 c = 8

MixSIH(α=0.00) 0.00 0.03 0.33 0.02 0.01 0.79 0.10 0.00 1.90 0.36 0.01
MixSIH(α=0.05) 0.00 0.03 0.31 0.02 0.00 0.84 0.08 0.00 1.81 0.24 0.01
MixSIH(α=0.10) 0.00 0.04 0.29 0.03 0.00 0.76 0.08 0.00 1.80 0.18 0.01

ReFHap 0.00 0.01 0.29 0.03 0.00 0.75 0.10 0.00 1.88 0.27 0.01
FastHare 0.00 0.15 0.63 0.09 0.02 1.19 0.31 0.06 2.47 0.70 0.08
DGS 0.00 0.19 1.00 0.43 0.38 2.45 1.22 0.82 4.00 2.08 1.73

HapCUT 0.00 0.02 0.31 0.03 0.00 0.83 0.06 0.00 1.67 0.20 0.02

Many previous papers used the Hamming distance to measure the quality of
assembled haplotypes [3]:

R(Φ) = 1− 1

2M
min

[
D(Φ,Φ(t)), D(Φ, Φ̄(t))

]
,

D(Φ,Φ′) =
M∑
j=1

∑
h∈H

I(φjh = φ′
jh) ,

where I(a = b) represents the indicator function which assumes 1 if a = b and 0
otherwise. This definition is not appropriate when we consider the accuracy of
multiple, partially resolved haplotype segments. For example, there is no way
for the SIH algorithms to relate the haplotypes of chromosome 1 to those of
chromosome 2 because there is no fragment that overlaps with both the chro-
mosomes. It is also impossible for any SIH algorithm to relate the haplotypes
of two consecutive regions if there is no fragment that overlaps with both re-
gions. Furthermore, we wish to extract confidently assembled sub-regions using
the minimum connectivity thresholds. Therefore, it is desirable for the accu-
racy measures to allow comparisons on the set of partially assembled haplotype
segments.

We now consider a simple extension of the Hamming distance measure. Let
Φ = (Φ1,Φ2, . . . ,ΦB) be the set of partially assembled haplotype segments with
M total sites, then a simple modification of the above formula might be

R′(Φ) = 1− 1

2M

B∑
b=1

min
[
D(Φb,Φ

(t)
b ), D(Φb, Φ̄

(t)
b )

]
.

However, this definition is inconvenient because the minimization is applied
for each segment and this accuracy measure can always be improved just by
breaking a segment into smaller pieces at random positions.

The switch error rate [2] is another measure used for comparing SIH algo-
rithms. A switch error is defined by the inconsistency between Φ and Φ(t) at

neighboring heterozygous sites: (φj , φj+1) = (φ
(t)
j , φ̄

(t)
j+1) or (φ̄

(t)
j , φ

(t)
j+1). The
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switch error rate is defined by the total number of switch errors divided by the
total number of neighboring pairs of heterozygous sites in all the segments. Al-
though the switch error rate is useful for comparing different algorithms, it does
not reflect the global influence of switch errors. For example, a single switch
error in the middle of a reconstructed haplotype segment has a greater influence
on downstream analyses, through incorrect prediction of allele co-occurrences,
than a switch error located at an end of the segment.

There are other measures, such as the minimum number of entries to correct
(MEC) [4], the adjusted N50 (AN50) and its variants S50, N50 [7], and the
quality adjusted N50 (QAN50). Apart from QAN50, these measures do not use
the true haplotypes and there is no guarantee that the correct haplotypes have a
higher score than incorrect ones. The procedure to compute the QAN50 score is
complex and can be roughly described as follows. First the prediction is broken
into smaller segments that do not contain any switch errors. For each segment
an adjusted length score, which is the segment length in the reference genome
multiplied by the proportion of heterozygous sites inside of the segment, is as-
signed. The segments are sorted in order of decreasing adjusted length scores
and AN50 is defined as the threshold score such that half of heterozygous sites
are covered by segments with scores greater than the threshold. Although this
measure accounts for both the quality and segment sizes of the reconstruction,
the complex interactions between inhomogeneity of the SNP density and frag-
ment coverage seem to make it difficult to understand the practical utility of
SIH algorithms by using their QAN50 scores.

In comparison to the switch error rate, which cannot account for genotyp-
ing errors in homozygous sites, the pairwise consistency score works without
modification in the cases where homozygous sites are included in the prediction
space. Furthermore, although the notion of pairwise consistency is applicable
to haplotype segments that are not made up of simple contiguous sites, the
definition of a switch error for such segments is somewhat ambiguous.

6 Potential Chimeric Fragments

Figure 1 shows the chimerity distribution of real data [2], which indicates that
only a small proportion of the data has high chimerity. Figure 2 shows the accu-
racies for different chimerity thresholds, which suggests that the improvement
of the accuracies saturates at around chimerity threshold 10.

The fragments whose chimerity were over 10 might be not indeed chimeric
and these chimerity might be over 10 only by sequencing errors. To examine
whether the fragments whose chimerity were over 10 were indeed chimeric or
not, we calculated the probability that the chimerity of a fragment was over
10 only by sequencing errors. In the case that the fragment length was 18
which was about the average fragment length of the real data, the probability
was about 4.8× 10−5 and we concluded threshold 10 was enough to consider a
fragment as chimeric.
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Figure 1: Chimerity distribution of the real dataset [2].
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Figure 2: The precisions for the original dataset (◦) and the datasets in which the
fragments with chimerity greater than 5 (△), 10 (+), and 30 (×) are removed.
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7 Incorporation of the trio data

We devise a method that combines both of the trio data and the fosmid data.
The procedure is as follows:

1. Calculate chimerity of each fragment of the fosmid data by using the trio
data, and remove the fragments whose chimerity is over 10.

2. Infer the haplotypes from the SNP fragments data in which the fragments
with chimerity higher than 10 are removed.

3. Count the number of sites whose phases could be determined anew. The
phase at site i is defined to be determined anew if it satisfies the following
conditions.

(a) The phase of the site i is not determined by trio-based method.

(b) There exists a site j such that the phase of the site j is determined by
the trio-based data and the MC between i and j (MC(j, i) or MC(i+
1, j)) is higher than 6.

By using this method, about 82% (237,950/291,466) of the phases of the sites
which are undetermined by the trio-based data could be determined anew and
totally about 97% (1,601,381/1,654,897) of the phases could be determined by
both the methods.

8 Simulation with Chimeric Fragments

To examine the influence of chimeric fragments for various analyses, we repeated
the same analyses for simulation data which include chimeric fragments.

8.1 Comparison of Pairwise Accuracies for the Simulation
Data with Chimeric Fragments

We examined the accuracy for the simulation data which included 1.5% of
chimeric fragments, which was almost the same rate of the real data. Figure 3
shows the accuracies for the simulation data which include and don’t include
chimeric fragments, respectively. The precision of MixSIH for simulation data
with chimeric fragments is lower than that for data without chimeric fragments
around MC=1. The recall of MixSIH for data with chimeric fragments is almost
same to the recall of MixSIH for data without chimeric fragments at MC=4 at
which the precision becomes closed to one. This show that the influence of
chimeric fragments is ignored with high MC threshold in this simulation data.

8.2 Dependency of MC Values on the Simulation Data
with Chimeric Fragments

Figure 3 shows the dependency of MC values on the quality of the input dataset
which include about 1.5% of chimeric fragments, which is almost the same rate
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Figure 3: Precision curves based on the consistent pair counts. The x-axis
represents the number of predicted pairs in log scale. The arrows indicate the
MC thresholds. The accuracies are computed for the simulation dataset without
chimeric fragments(A), and the simulation dataset with chimeric fragments (B):
□ no assembly; ◦ MixSIH; △ ReFHap; + FastHare; × DGS. In the simulation,
we set M = 2000 and repeated the experiment 10 times for each algorithm;
average values are plotted.

Figure 4: Dependency of the lowest MC value with precision ≥ 0.95 for coverage
c, fragment length [l1, l2], error rate e, including 1.5% of chimeric fragments. The
experiments were repeated 10 times, and the average values are plotted.
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of the real data. Most of the minimal MC thresholds for this input dataset are
almost the same to those for dataset which don’t contain chimeric fragments,
but MC=6 is still enough strict to extract reliable haplotype regions.
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