Fig. S1. Effects of loss of core planar polarity activity on embryonic and tracheal system development. (A-C') Scoring stage of tracheal development versus general embryonic development on the basis of embryonic morphology (epidermal tissues stained with anti-Crumbs in green) and pole cell migration (stained for anti-Vasa in red) shows no delay in tracheal development in embryos lacking core pathway activity. w^{1118} (wild type) (A-C) and fz^{P21} (A'-C') embryos at stage 12 (A,A'), stage 14 (B,B') and stage 17 (C,C'). (D-G) Dorsal trunk labelled with Crumbs in w^{1118} (wild type) (D), and planar polarity mutants fz^{P21} (E), dsh^i (F), $stbm^6$ (G). (H-J) Lateral view of embryonic tracheal branches at stage 14 showing defects in cell intercalation in core pathway mutant embryos stained for the junctional marker Crumbs in dsh^i (H) and pk- $sple^{13}$ (I), or GFP in btl-GALA/UAS-fz embryos co-expressing α -Cat-GFP (J). Compare with w^{1118} (wild type) in Fig. 1A. Insets show magnified regions of indicated dorsal and ventral branches, arrowheads indicate unresolved intercalations. (K-K") Specificity of the anti-Fz antibody in the embryo. Loss of Fz immunostaining in fz^{P21} mutants [Fz (red or white), Crumbs (green or white)]. Compare with supplementary material Fig.S2D. (L,M) Tracheal cells are similarly aligned in stage 13 dorsal branches in wild-type (L) and dsh^i (M) embryos. The larger insets show examples of well-aligned pairs of cells and smaller insets show poorly aligned pairs of cells (marked as red boxes on main panel), in both genotypes. **Fig. S2. Fuzzy and Multiple Wing Hairs are not required for tracheal branch intercalation.** (**A**,**B**) Lateral view of embryonic tracheal branches at stage 14 showing cell intercalation in embryos lacking activity of downstream effectors of the core pathway, stained for the junctional marker Crumbs. (**A**) mwh^{l} (**B**) $fuzzy^{2}$. Compare with w^{lll8} (wild type) in Fig. 1A. Insets show magnified regions of indicated branches. (**C**) Quantification of the number of branches with unresolved intercalations at stages 13, 14-15 and 16-17. Error bars are s.e.m. ANOVAs were used to compare the wild-type control and the mutant conditions at each stage: stage 13, P=0.012; stage 14-15, P=0.072; stage 16-17, P=0.069. (**D**) Co-labelling of Fz (red in D or white in D') and E-cad (blue in D or white in D") in junctions of stage 15 tracheal branches. Fig. S3. Effects of the core planar polarity pathway and Src42A on E-cad turnover in the embryonic epidermis. (A-C) FRAP analysis in the epidermis of junctional E-cad-GFP expressed under control of the *ubiquitin* promoter in dsh^1 embryos (P=0.83 comparing stable fractions on vertical and horizontal junctions, t-test), fmi^{E59} (P=0.13), en-GAL4 ($P \le 0.0001$). (**D**) Quantification of E-cad-GFP under control of the *ubiquitin* promoter in the epidermis at stage 8, measured on vertical and horizontal junctions, for w^{1118} (wild type) (black bars), and core pathway mutants fz^{P21} (green bars), dsh^{1} (blue bars), $stbm^{6}$ (orange bars) and $RhoGEF2^{6.5}/+$ antimorphs (purple bars). Note that E-cad is no longer enriched on horizontal junctions in the mutant backgrounds, but overall E-cad-GFP levels go down, presumably due to competition from increased levels of endogenous E-cad. (E,F) FRAP analysis of junctional E-cad-GFP expressed under its endogenous promoter, one copy of E-cad-GFP present heterozygous with one copy of wild-type E-cad. In a wildtype background, a larger stable fraction is seen on horizontal junctions than on vertical junctions ($P \le 0.0001$, t-test); this difference is lost in a dsh^1 background (P=0.63, t-test). (G) Quantification of pSrc on horizontal and vertical junctions in the epidermis of stage 8 embryos, w^{1118} (wild type) (white bars) and core pathway mutants fz^{P21} (green bars), dsh^1 (blue bars) and stbm⁶ (orange bars). pSrc remains higher on horizontal than vertical junctions in the absence of core protein activity; however, overall levels are increased in a similar fashion to the increase in overall E-cad levels seen in these backgrounds (compare with Fig. 4G), pSrc asymmetry is therefore independent of either core protein activity or E-cad distribution; however, additional E-cad at junctions may be recruiting additional Src, consistent with the reported physical interaction between Src and E-cad (Takahashi et al., 2005). An ANOVA comparing all intensities shows that they vary significantly, $P \le 0.0001$. Asterisks above chart show individual results from the ANOVA. *P = 0.0123, ***P < 0.0001. (H) Localisation of E-cad-GFP expressed at endogenous levels in a wild-type background (H) and in a Src42A zygotic mutant (H'). E-cad-GFP localises to the junctions in the Src42A background, and large aggregates of E-cad-GFP are also visible localising at the cell periphery. Arrow indicates a sensory organ precursor. (I) FRAP analysis was performed on regions of the junctions away from the large aggregates of E-cad-GFP. E-cad-GFP recovery still shows a difference between vertical and horizontal junctions in Src42A mutant embryos ($P \le 0.0001$, t-test). Fig. S4. Effects of core pathway mutants on protein asymmetry and germband extension in the embryo. (A) Quantification of Bazooka (yellow) and E-cad (blue) asymmetric localisation on horizontal and vertical junctions in stage 7 ventrolateral epidermis in wild type (w^{III8}), dsh^1 and $stbm^6$ shown as ratio of horizontal to vertical (a value of 1 indicates symmetric localisation). Asterisks above the charts show individual results from a Dunnett's multiple comparison test (* $P \le 0.05$, ** $P \le 0.01$). (B) Quantification of Zipper on horizontal and vertical junctions in stage 7 epidermis in wild type (w^{III8}) , dsh^I and $stbm^6$. *P=0.0114, **P=0.0009. (C) Quantification of the time taken for the fast phase of germband elongation to complete for wild type (w^{1118}) and dsh^1 and $stbm^6$ mutants; an ANOVA test shows that w^{1118} is not significantly different from the mutants (P=0.3411). (**D**) Images of germband extending wild-type (w^{1118}), dsh^1 and $stbm^6$ embryos at 0 minutes, 20 minutes and 140 minutes. Arrows indicate the anterior furrow, lines indicate the posterior end of the germband. (E-E''') RhoGEF2 knockdown by RNAi in the ptc-GAL4 domain of a pupal wing (indicated by white line) immunolabelled for RhoGEF2 (blue in E, white in E"), Fmi (red in E, white in E') and E-cad (green in E, white in E"). Wild-type tissue is in the lower part of the image. E" shows RhoGEF2 antibody specificity, loss of RhoGEF2 staining in ptc-Gal4/UAS-RhoGEF2 RNAi region. (F) Quantification of intensity ratios comparing horizontal with vertical junctions. E-cad (plain bars) and Fmi (checked bars) levels were compared in the ptc-GAL4 domain of wings expressing ptc-Gal4/ *UAS-RhoGEF2-RNAi* (purple bars) and control *ptc-GAL4* domains in wings expressing only *ptc-Gal4* (white bars). Asterisks above the charts show individual results from t-tests (NS, not significant; $*P \le 0.05$). Defects in cell packing were also investigated in the ptc-GAL4 domain expressing RhoGEF2-RNAi compared with control ptc-GAL4 wings (see Materials and methods); however, no difference was observed (ptc-GAL4/UAS-RhoGEF2-RNAi, mean number of cell sides=5.762 seconds, s.d.=0.754; ptc-GAL4 only, mean number of cell sides=5.831 second, s.d.=0.671; t-test, P=0.0655). (G-I) Quantification of endogenous junctional E-cad (blue) and Fmi (red) asymmetry in pupal wings showing ratios of anterior-posterior junctions to proximal-distal junctions at 20 hours (J), 24 hours (K) and 28 hours (L). Error bars are s.d. Fig. S5. Effects of the core pathway on E-cad and RhoGEF2 localisation in the 28 hour pupal wing. (A-A") E-cad (magenta in A, white in A') and Stbm (blue in A, white in A") in a fz^{p21} lopal wing clone marked by absence of lacZ expression (green in A). Distal is to the right in these and the following images. (B) Quantification of endogenous junctional E-cad in wild type and fz^{p21} (blue bars), and Stbm (orange bars) in wild-type 28 hour pupal wings. E-cad is increased on the horizontal junctions in wild-type tissue but this is lost in fz^{p21} (t-tests comparing horizontal and vertical intensities: Stbm in wild type, $P \le 0.0001$; E-cad in wild type, $P \le 0.0001$; E-cad in fz^{p21} , P = 0.0770). All error bars in this figure are s.d. (C-C") Endogenous E-cad (magenta in C, white in C') and Stbm (blue in C, white in C") in a $stbm^6$ pupal wing clone marked by absence of lacZ expression (green in C). (D) Quantification of endogenous junctional E-cad in wild type and $stbm^6$ (blue bars), and Stbm (orange bars) in wild-type 28 hour pupal wings. E-cad is increased on the horizontal junctions in wild-type tissue but this is lost in $stbm^6$ (t-tests comparing horizontal and vertical intensities: Stbm in wild type, $P \le 0.0001$; E-cad in wild type, $P \le 0.0001$; E-cad in $stbm^6$ (t-test comparing horizontal and vertical intensities: Stbm in wild type, t-0.0001; E-cad in wild type, t-0.0001; E-cad in t-0.0001 Table S1. List of mutant alleles and transgenic constructs used | Name of gene | Allele | Class | Comments | Flybase reference | |-------------------------|-------------------------------------|--|---------------------------|-------------------| | white | w^{III8} (outcrossed to Oregon R) | n/a | Used as wild type | FBgn0003996 | | frizzled | $\int z^{P2I}$ | Null allele | Crossed out to wild type | FBal0004937 | | strabismus (Van Gogh) | stbm ⁶ | Null allele | Crossed out to wild type | FBal0062423 | | dishevelled | dsh^{I} | Strong allele for planar polarity function | Crossed out to wild type | FBal0003138 | | prickle-spiny-legs | pk-sple ¹³ | Null allele | Crossed out to wild type | FBal0060943 | | flamingo (starry night) | fmi ^{E59} | Null allele | | FBal0101421 | | multiple wing hairs | mwh^{I} | Null allele | Crossed out to wild type | FBal0012675 | | fuzzy | $\int uzzy^2$ | Null allele | Crossed out to wild type | FBal0004916 | | RhoGEF2 | RhoGEF2 ^{6.5} | Antimorphic allele | Zygotic mutants die early | FBal0085926 | | shotgun | shg^{IG27} | P-element loss of function allele | | FBgn0003391 | | Src42A | $Src42A^{F80}$ | Amino acid substitution in the kinase domain | | FBal0277626 | | Name of construct | Comments | Flybase reference | |---------------------------------|---|-------------------| | UAS-fz | UAS-driven expression of <i>frizzled</i> | FBal0060399 | | en-Gal4 ^{e16E} | Gal4 driven by the <i>engrailed</i> promoter | FBal0052377 | | shg-lacZ | lacZ enhancer trap insertion in the shotgun (E-cadherin) locus | FBtp0039292 | | btl-Gal4 | Gal4 expression by the <i>breathless</i> promoter | FBti0072919 | | UAS-Apoliner⁵ | UAS-driven expression of Apoliner on II | FBti0131165 | | UAS-red-stinger | UAS-driven expression of red stinger-NLS on III | FBtp0018199 | | UAS-α-Cat-GFP | UAS-driven expression of α-Catenin tagged with GFP | FBti0015823 | | UAS-Rab5 ^{SN} | UAS-driven expression of Rab5 dominant negative | FBal0189754 | | UAS -shg- $DEFL^{6.3}$ (GFP), | UAS-driven expression of E-cadherin tagged with GFP | FBti0015825 | | UAS-RhoGEF2 ⁵ | UAS-driven expression of RhoGEF2 | FBal0190772 | | RhoGEF2 ^{IR-HMS01118} | UAS-driven expression of RNAi targeting RhoGEF2 | FBtp0065361 | | UAS-RhoA ^{V14} | UAS-driven expression of RhoA ^{V14} dominant active | FBal0105124 | | UAS-RhoA ^{N19} | UAS-driven expression of RhoA ^{N19} dominant negative | FBtp0008154 | | dsh-GFP | Dishevelled tagged with GFP expressed under its endogenous promoter | FBti0017855 | | Ubi-E-cad-GFP | E-cadherin tagged with GFP expressed under control of the <i>ubiquitin</i> promoter | FBtp0014096 | | E-cad::GFP | Knock-in of GFP into the endogenous <i>E-cadherin</i> (<i>shotgun</i>) locus | FBal0247908 | | hs-FLP | Yeast FLP recombinase under control of a <i>heat-shock</i> promoter | FBst0005256 | | <i>btl>y+>GAL4</i> | breathless promoter upstream of the GAL4 coding sequence, | FBtp0020129 | | | separated by an FRT cassette containing a yellow transgene | | | ptc-GAL4 | Gal4 driven by the <i>patched</i> promoter | FBal0040487 | | UAS-pk | UAS-driven expression of Prickle | FBal0101220 |