

Calcineurin governs thermotolerance and virulence of Cryptococcus gattii

Ying-Lien Chen^{1,#}, Virginia N. Lehman^{1, 2}, Yonathan Lewit¹, Anna F. Averette¹, and Joseph Heitman^{1,*}

¹Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA ²Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA

 *Corresponding author: Joseph Heitman, MD, PhD Mailing address: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
 Phone: (919) 684-2824, FAX: (919) 684-5458, Email: <u>heitm001@duke.edu</u>
 # Present address: Department of Plant Pathology and Microbiology, National Taiwan University, 106 Taipei, Taiwan.

DOI: 10.1534/g3.112.004242

	A R	265_Cna1	
		· ×	
	99.4%	97	.0%
			Δ.,
	WM276 Cno1 +	> H0	0 Cnot
B		96.7%	9_Chai
	WA GOA MONTANA AND CHARTER	PREPROVAL PROP	
WM276_Cna1 H99_Cna1	MASPATQTANVIAAINNRSNLVI MASPATQTANVIAAINNRSNLVI MASPATQTANAIAAINNRSNLVI	PEIDFTQHQLENGEV PEIDFTQHQLENGEV PEIDFTQHQLENGEI	VSTTERVIKDVQAPAMIVPTDD VSTTERVIKDVQAPAMYVPTDD VSTTERVIKDVQAPAMYVPTDD
D265 Cmal 64		Catal	ytic
WM276_Cna1	QFFSKVDKTKPDIAFLKNHFIRE	GRLTEEQALYILEKG	GELLRSEPNLLEVDAPITVCGD
H99_Cna1	QFWSKVDKTKPDIAFLKNHFYRE	GRLTEEQALYILEKG	GELLRSEPNLLEVDAPITVCGD
R265_Cna1 121	IHGQYYDLMKLFEVGGNPADTRY	LFLGDYVDRGYFSIE	CVLYLWSLKMWYPDTLFLLRGN
WM276_Cna1 H99 Cna1	IHGQYYDLMKLFEVGGNPADTRY IHGOYYDLMKLFEVGGNPADTRY	LFLGDYVDRGYFSIE LFLGDYVDRGYFSIE	CVLYLWSLKMWYPDTLFLLRGN CVLYLWSLKMWYPDTLFLLRGN
R265_Cnal 181 WM276 Cnal	HECRHLTDYFTFKLECKHKYSET HECRHLTDYFTFKLECKHKYSET	VYNACMESFCNLPLA VYNACMESFCNLPLA	AVMNKQFLCIHGGLSPELHTLD AVMNKOFLCIHGGLSPELHTLD
H99_Cna1	HECRHLTDYFTFKLECKHKYSET	VYNACMESFCNLPLA	AVMNKQFLCIHGGLSPELHTLD
R265 Cnal 241	DLRSINRFREPPTQGLMCDILWA	DPLEDFGSEKTNDNF	LHNHVRGCSYFFTYNAACQFLE
WM276_Cna1	DLRSINRFREPPTQGLMCDILWA	DPLEDFGSEKTNDNF	LHNHVRGCSYFFTYNAACQFLE
H99_Chai	DERSINGFREPPTQGEMCDILWA	DPLEDFGSEKTNENF	LHNHVRGCSIFFTINAACQFLE
R265_Cna1 301	RNNLLSIIRAHEAQDAGYRMYRK	TKTTGFPSVMTIFSA	PNYLDVYSNKAAVLKYESNVMN
H99 Cnal	RNNLLSIIRAHEAQDAGIRMIRK	TKTTGFPSVMTIFSA	PNYLDVYSNKAAVLKYESNVMN
- D265 Crol 264	TRAENORDURYHT DIEMOVEMUC	T DEVOEPTEDMT TAT	INCOMPERT REPORTED TO
WM276_Cna1	IRQFNCTPHPYWLPNFMDVFTWS	LPFVGEKITDMLIAI	LNCCTKEELEEEDEEFPLGALE
H99_Cna1	IRQFNCTPHPYWLPNFMDVFTWS	LPFVGEKITDMLIAI	INCCTKEELEEEDEEFPINAPE
R265 Cnal 421	TTDAESAAERRQIIKNKILAVGR	MSRVFSLLREESERV	SELKSIAGSNALPAGMLASGAE
WM276_Cna1	TTDVESAAERRQIIKNKILAVGR	MSRVFSLLREESERV	SELKSIAGSNALPAGMLASGAE
H99_Chai	PTDAESAAERRQIIKNKILAVGR	CaM bin	ding
R265_Cna1 481	GIKETIQGFEDARKSDIENERLP	PDIIDPDEDKPASPS	ASPIMPATEKETTSEILHDSPI
WM276_Cnal H99 Cnal	GIKETIQGFEDARKSDIENERLP GIKEAIOGFEDARKSDIENERLP	PDIIDPDEDKPASPS PDIIDPDEDKPASPS	ASPIMPATPKETTSEILHDSPI ASPIMPATPEEIPSEIPYDSPI
i halioni - Anna an		Autoinhib	itory
R265_Cna1 541	IGTPGTPISSAIISGSPGSPGTP	TSPSVGGPPLTAWRP	GHGRRTSLGTTKTSPSTRRRSL GHGRRTSLGTTKTSPSTRRRSL
H99_Cna1	TGTERTFISSAIASGSPGSPGTF	TSPSIGGPPLTAWRP	GHGRRTSLGTTKTSPSTRRRSL
R265 Cna1 601	ENTMHLIRDVVGGKDAOGDGOLE	RLAEVISSPTKGGO	ERE
WM276_Cna1	ENTMHLIRDVVGGKDAQGDGQLE	RLAEVISSPTKGGQD	ERE
H99 Cnal	ENTMILIRDVVGGKDAOGDGOLE	RLAEVISSPTKGGCC	E

Figure S1 Amino acid identity and pairwise alignments of calcineurin catalytic subunit (Cna1) from *C. gattii* R265, *C. gattii* WM276, and *C. neoformans* H99. Amino acid identity and multiple sequence alignments are depicted using ClustalW software (<u>http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_clustalw.html</u>). (A) The % identity shared between the full-length proteins is shown in red. (B) The conserved and divergent amino acids are indicated with yellow shading and red rectangle, respectively. The catalytic domain, calcineurin regulatory subunit (Cnb) binding, calmodulin (CaM) binding, and autoinhibitory domains are indicated with gray, green, red, and blue underlining, respectively. The amino acids of the *C. gattii* R265 Cna1 protein are numbered.

Figure S2 The fungal burden of *C. gattii* wild-type and calcineurin mutants in the brain. The fungal burden in the brain was determined at 14 days post-infection (5x10⁴ cells per mouse). Five mice per strain were used. *P* values were determined by ANOVA and Dunnett's multiple comparison tests.

Figure S3 Calcineurin is not required for melanin production in *C. gattii* and *C. neoformans*. Cells were grown overnight at 24°C, washed twice with dH₂O, diluted to 1 OD_{600} /ml, and 3μ l of cell suspension was plated on Niger seed **(A)** and L-DOPA **(B)** agar medium and incubated for 72 hr at 24°C. Strains analyzed are indicated in panel **(C)**.

Figure S5 Roles of *C. gattii* calcineurin in the wax moth model. Survival of *Galleria mellonella* after injection of 5×10^4 (A) or 10^5 (B) CFU/larva of *C. gattii* wild-type or calcineurin mutants (10 moths per isolate).

(A) Capsule radius (labeled with r) of wild-type and calcineurin mutants was determined with India ink staining. Cells were grown overnight at 24°C in YPD media. Cells were washed twice with dH_2O and diluted to 0.2 OD_{600} /ml (5 ml) with liquid Low Iron Media for growth at 24°C for 72 hr. Three microliters of India ink were added to 97 µl of cell suspension. The images were taken at 1000X magnification and photographed. Scale bar = 5 µm.

(B) *C. gattii* strain WM276 produced a larger capsule radius compared with the *C. gattii* R265 and R272, and the *C. neoformans* strain H99. Capsule radius was measured from ~50 cells for each strain and plotted with Prism 5.03. *** P < 0.0001 (unpaired *t* test).

(C) Divergent roles of calcineurin on capsule production. Capsule radius of wild-type and calcineurin mutants was measured as described above and plotted with Prism 5.03. The *P* values are indicated (Dunnett's multiple comparison test for comparing *C. gattii* wild-type and two independent mutants, while an unpaired *t* test was used to compare *C. neoformans* wild-type and the calcineurin mutant strain KK1).

(A) In the *CNA1* complemented strains YC875 (native-locus integration) and YC879 (ectopic integration), and two independently derived suppressor mutants YC883 and YC886 the ability of the *cna1* mutant YL165 to grow at 37°C was complemented or suppressed and growth was restored at 37°C. An 818 bp region of the *CNA1* ORF could be PCR amplified with primers JC203/JC204 (right panel) from complemented strains YC875 and YC879, but not from the suppressor mutant strains YC883 and YC886. The red superscripts N, E, and SUP represent 'Native', 'Ectopic', and 'Suppressor' respectively.

(B) *CNA1* native-locus complemented strain YC875 was fully rescued for the *cna1* mutant phenotype in response to the cell wall integrity-damaging agent SDS or fluconazole, while the *CNA1* etopically complemented strain YC879 was only partially rescued for phenotypes on SDS, but not fluconazole. The suppressor mutants YC883 and YC886 were not rescued for phenotypes on SDS or fluconazole.

File S1

Supplemental Results

Calcineurin is not required for melanin production

Melanins, widely distributed in the living world, are high molecular weight pigments formed by oxidative polymerization of phenolic compounds and are usually dark brown or black in color (Jacobson, 2000). Melanin synthesis has been associated with virulence in several pathogenic fungi, including *C. neoformans* (Casadevall *et al.*, 2000). *C. neoformans* also produces melanin *in vivo* during human or rodent infections (Nosanchuk *et al.*, 2000; Rosas *et al.*, 2000), and strains that are unable to synthesize melanin have attenuated virulence in animal infection models (Casadevall *et al.*, 2000). This correlation between melanin and virulence is most likely due to the ability of melanized cells to avoid being phagocytosed by macrophages as well as their ability to down-regulate the T-cell-mediated immune response (Rosas *et al.*, 2000). *C. neoformans* requires a phenolic substrate in order to produce melanin *in vitro*, and it is predicted that it is able to synthesize the product *in vivo* by taking advantage of host catecholamines such as DOPA and norepenephrine (Garcia-Rivera *et al.*, 2005). Laccase, encoded by the *LAC1* gene in *C. neoformans*, is the enzyme that is required to convert phenolic substances to polymerized melanin (Casadevall *et al.*, 2000). Here we investigated the roles of calcineurin in melanin production in *C. gattii* and *C. neoformans*. We found that calcineurin is not required for melanin production in these two species, as demonstrated by similar melanin production levels on Niger seed and L-DOPA agar plates between wild-type and calcineurin mutants (Figure S3).

C. gattii calcineurin plays minor roles in controlling capsule production

Capsule production is a key virulence determinant for pathogenic fungi, and its synthesis is regulated by iron levels (Lian *et al.*, 2005). The capsule is thought to either protect a cell from being engulfed by phagocytes or to allow the cell to survive inside of a phagocyte. The capsule may also suppress inflammatory cells and influence antibody production (Lian *et al.*, 2005). Here, we investigated how capsule production in different *C. gattii* and *C. neoformans* isolates is affected by a low iron environment. We found that the environmental *C. gattii* WM276 isolate produced larger capsules under low iron conditions compared with the clinical *C. gattii* isolates R265 and R272, and *C. neoformans* H99 (Figures S6A and S6B; P < 0.0001; unpaired *t* test). However, the roles of *C. neoformans* calcineurin in capsule production remain elusive. We found that calcineurin mutants from *C. gattii* R265 and R272 VGII strains exhibited a larger capsule when compared with their wild-type (Figure S6C, P < 0.05; ANOVA and Dunnett's multiple comparison test), while calcineurin mutants from *C. gattii* WM276 and *C. neoformans* H99 exhibited similar capsule size compared with their wild-type counterpart (Figure S6C; P > 0.05).

LITERATURE CITED

- Casadevall, A., Rosas, A.L., and Nosanchuk, J.D. (2000) Melanin and virulence in *Cryptococcus neoformans. Curr Opin Microbiol* **3**: 354-358.
- Garcia-Rivera, J., Eisenman, H.C., Nosanchuk, J.D., Aisen, P., Zaragoza, O., Moadel, T., Dadachova, E., and Casadevall,
 A. (2005) Comparative analysis of *Cryptococcus neoformans* acid-resistant particles generated from pigmented cells grown in different laccase substrates. *Fungal Genet Biol* 42: 989-998.
- Jacobson, E.S. (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13: 708-717.
- Lian, T., Simmer, M.I., D'Souza, C.A., Steen, B.R., Zuyderduyn, S.D., Jones, S.J., Marra, M.A., and Kronstad, J.W. (2005) Iron-regulated transcription and capsule formation in the fungal pathogen *Cryptococcus neoformans. Mol Microbiol* 55: 1452-1472.
- Nosanchuk, J.D., Rosas, A.L., Lee, S.C., and Casadevall, A. (2000) Melanisation of *Cryptococcus neoformans* in human brain tissue. *Lancet* **355**: 2049-2050.
- Rosas, A.L., Nosanchuk, J.D., Feldmesser, M., Cox, G.M., McDade, H.C., and Casadevall, A. (2000) Synthesis of polymerized melanin by *Cryptococcus neoformans* in infected rodents. *Infect Immun* **68**: 2845-2853.

Table S1 PCR primers used in this study.

Primer	Use	Sequence $(5' \rightarrow 3')$	
JC65	NAT marker (M13 Forward)	GTAAAACGACGGCCAGT	
JC66	NAT marker (M13 Reverse)	GGAAACAGCTATGACCATG	
JC174	R265 & R272 5' NCR of <i>CNA1</i>	TCTTGGGATTAGCCTCTCCCT	
JC175	R265 & R272 5' NCR of CNA1	ACTGGCCGTCGTTTTACGGAAGTTGACTGATTGGTGGT	
JC176	R265 & R272 3' NCR of CNA1	CATGGTCATAGCTGTTTCCAGTTTCGAACGATGGAATCG	
JC177	R265 & R272 3' NCR of CNA1	TTGGCTGACAAACCCGCTA	
JC178	R265 & R272 Overlap PCR	GGAAGGCCAAAGGATTTACA	
JC179	R265 & R272 Overlap PCR	AAGGTAAGACTCCAGGCGAA	
JC203	R265 & R272 CNA1 ORF	TCAGAACCAAACTTGCTGGA	
JC204	R265 & R272 CNA1 ORF	TCCAAGAACTGACATGCAGCA	
JC207	WM276 5' NCR of <i>CNA1</i>	TCTTGGGATTAGCCTCTCCCT	
JC208	WM276 5' NCR of <i>CNA1</i>	ACTGGCCGTCGTTTTACAAGTTGGCTGACTAGTGGTGG	
JC209	WM276 3' NCR of <i>CNA1</i>	CATGGTCATAGCTGTTTCCTGATCGAATCGTTTGAACGAC	
JC210	WM276 3' NCR of <i>CNA1</i>	TGCCAAAAAACTTGACGTCTG	
JC211	WM276 overlap PCR	AGGAAGGCCAAAGGATTTACA	
JC212	WM276 overlap PCR	TACCCTTACATCTTTGTACG	
JOHE23397	WM276 <i>CNA1</i> ORF	GGACGTGTTCACCTGGAGTT	
JOHE23398	WM276 <i>CNA1</i> ORF	AGCAAGGCTTAA TGGCAGAA	